Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae)

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae) Zootaxa 4104 (1): 001–109 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4104.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:D598E724-C9E4-4BBA-B25D-511300A47B1D ZOOTAXA 4104 Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae) WILLIAM E. DUELLMAN1,3, ANGELA B. MARION2 & S. BLAIR HEDGES2 1Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045-7593, USA 2Center for Biodiversity, Temple University, 1925 N 12th Street, Philadelphia, Pennsylvania 19122-1601, USA 3Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Vences: 27 Oct. 2015; published: 19 Apr. 2016 WILLIAM E. DUELLMAN, ANGELA B. MARION & S. BLAIR HEDGES Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae) (Zootaxa 4104) 109 pp.; 30 cm. 19 April 2016 ISBN 978-1-77557-937-3 (paperback) ISBN 978-1-77557-938-0 (Online edition) FIRST PUBLISHED IN 2016 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/j/zt © 2016 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4104 (1) © 2016 Magnolia Press DUELLMAN ET AL. Table of contents Abstract . 4 Resumen . 4 Resumo . 4 Introduction . 5 Material and methods . 5 Classification . 7 Arboranae new taxon. 7 Family Hylidae Rafinesque, 1815 . 8 Subfamily Acridinae Mivart, 1869 . 10 Hyliola Mocquard, 1899 . 10 Pseudacris Fitzinger 1843. 11 Subfamily Hylinae Rafinesque, 1815 . 17 Sarcohyla new genus . 18 Plectrohyla Brocchi, 1877 . 19 Bromeliohyla, Duellmanohyla, and Ptychohyla . 19 Rheohyla new genus . 19 Ecnomiohyla Faivovich, Haddad, Garcia, Frost, Campbell, and Wheeler, 2005 . 21 Hyla Laurenti, 1768 . 22 Dryophytes Fitzinger, 1843 . 23 Subfamily Pseudinae Fitzinger, 1843 . 23 Subfamily Dendropsophinae Fitzinger, 1843 . 24 Subfamily Lophyohylinae Miranda-Ribeiro, 1926 . 24 Subfamily Scinaxinae New Subfamily . 25 Sphaenorhynchus Tschudi, 1838 . 26 Ololygon Fitzinger, 1843. 26 Julianus new genus . 28 Scinax Wagler, 1830 . 28 Subfamily Cophomantinae Hoffmann, 1878 . 29 Colomascirtus new genus . 30 Hyloscirtus Peters, 1882 . 31 Family Phyllomedusidae Günther, 1859 . 32 Pithecopus Cope, 1866 . 32 Callimedusa new genus . 33 Phyllomedusa Wagler, 1830 . 33 Hylomantis Peters, 1873 . 35 Agalychnis Cope, 1864 . 36 Family Pelodryadidae Günther, 1859 . 36 Subfamily Pelobiinae Fitzinger, 1843 . 37 Litoria Tschudi, 1838 . 37 Subfamily Pelodryadinae Günther, 1859 . 39 Nyctimystes Stejneger, 1916 . ..
Recommended publications
  • Auto Guia Version Ingles
    Parque Natural Metropolitano Tel: (507) 232-5516/5552 Fax: (507) 232-5615 www.parquemetropolitano.org Ave. Juan Pablo II final P.O. Box 0843-03129 Balboa, Ancón, Panamá República de Panamá 2 Taylor, L. 2006. Raintree Nutrition, Tropical Plant Database. http://www.rain- Welcome to the Metropolitan Natural Park, the lungs of Panama tree.com/plist.htm. Date accessed; February 2007 City! The park was established in 1985 and contains 232 hectares. It is one of the few protected areas located within the city border. Thomson, L., & Evans, B. 2006. Terminalia catappa (tropical almond), Species Profiles for Pacific Island Agroforestry. Permanent Agriculture Resources You are about to enter an ecosystem that is nearly extinct in Latin (PAR), Elevitch, C.R. (ed.). http://www.traditionaltreeorg . Date accessed March America: the Pacific dry forests. Whether your goals for this walk 2007-04-23 are a simple walk to keep you in shape or a careful look at the forest and its inhabitants, this guide will give you information about Young, A., Myers, P., Byrne, A. 1999, 2001, 2004. Bradypus variegatus, what can be commonly seen. We want to draw your attention Megalonychidae, Atta sexdens, Animal Diversity Web. http://animaldiversity.ummz.umich.edu/site/accounts/information/Bradypus_var toward little things that may at first glance seem hidden away. Our iegatus.html. Date accessed March 2007 hope is that it will raise your curiosity and that you’ll want to learn more about the mysteries that lie within the tropical forest. ACKNOWLEDGEMENTS The contents of this book include tree identifications, introductions Text and design: Elisabeth Naud and Rudi Markgraf, McGill University, to basic ecological concepts and special facts about animals you Montreal, Canada.
    [Show full text]
  • Conserving the Hip Hoppers: Amphibian Research at Greater Manchester Universities
    REVIEW ARTICLE The Herpetological Bulletin 135, 2016: 1-3 Conserving the hip hoppers: Amphibian research at Greater Manchester Universities ROBERT JEHLE1*, RACHAEL ANTWIS1 & RICHARD PREZIOSI2 1School of Environment and Life Sciences, University of Salford, M5 4WT Salford, UK 2Faculty of Life Sciences, University of Manchester, M13 9PT Manchester, UK *Corresponding author Email: [email protected] Characterising Greater Manchester is not an easy task. As a hotbed of radical ideas, the rise of Greater Manchester during the industrial revolution was followed by a significant economic and population decline. As one of the fastest-growing regions in the United Kingdom of the 21st century, contemporary Greater Manchester is shaped by a conglomerate of different influences. The dynamic history of the area is also reflected in emerging herpetological research activities. Without a pronounced tradition in organismal herpetology, Greater Manchester has recently developed into a national hotspot for academic research on amphibian conservation. Perhaps most importantly, the emerged activities are largely shaped through efforts led by postgraduate students. The present overview summarises Figure 1. Participants of the 2015 Amphibian Conservation these developments. Research Symposium in Cambridge. The conference series A main home of amphibian research activities in Greater started in Manchester in 2012. Manchester is represented by the Manchester Amphibian Research Group (MARG, http://amphibianresearch.org), with a main goal to “advance both ex situ and in situ amphibian conservation through evidence-based research”. Table 1. Amphibian conservation-related research outputs The first MARG meeting took place at the University (indexed journal articles) produced at Greater Manchester of Manchester in 2010, and convened the principal Universities since the first MARG meeting in 2010.
    [Show full text]
  • The Journey of Life of the Tiger-Striped Leaf Frog Callimedusa Tomopterna (Cope, 1868): Notes of Sexual Behaviour, Nesting and Reproduction in the Brazilian Amazon
    Herpetology Notes, volume 11: 531-538 (2018) (published online on 25 July 2018) The journey of life of the Tiger-striped Leaf Frog Callimedusa tomopterna (Cope, 1868): Notes of sexual behaviour, nesting and reproduction in the Brazilian Amazon Thainá Najar1,2 and Lucas Ferrante2,3,* The Tiger-striped Leaf Frog Callimedusa tomopterna 2000; Venâncio & Melo-Sampaio, 2010; Downie et al, belongs to the family Phyllomedusidae, which is 2013; Dias et al. 2017). constituted by 63 described species distributed in In 1975, Lescure described the nests and development eight genera, Agalychnis, Callimedusa, Cruziohyla, of tadpoles to C. tomopterna, based only on spawns that Hylomantis, Phasmahyla, Phrynomedusa, he had found around the permanent ponds in the French Phyllomedusa, and Pithecopus (Duellman, 2016; Guiana. However, the author mentions a variation in the Frost, 2017). The reproductive aspects reported for the number of eggs for some spawns and the use of more than species of this family are marked by the uniqueness of one leaf for confection in some nests (Lescure, 1975). egg deposition, placed on green leaves hanging under The nests described by Lescure in 1975 are probably standing water, where the tadpoles will complete their from Phyllomedusa vailantii as reported by Lescure et development (Haddad & Sazima, 1992; Pombal & al. (1995). The number of eggs in the spawns reported Haddad, 1992; Haddad & Prado, 2005). However, by Lescure (1975) diverge from that described by other exist exceptions, some species in the genus Cruziohyla, authors such as Neckel-Oliveira & Wachlevski, (2004) Phasmahylas and Prhynomedusa, besides the species and Lima et al. (2012). In addition, the use of more than of the genus Agalychnis and Pithecopus of clade one leaf for confection in the nest mentioned by Lescure megacephalus that lay their eggs in lotic environments (1975), are characteristic of other species belonging to (Haddad & Prado, 2005; Faivovich et al.
    [Show full text]
  • Amphibiaweb's Illustrated Amphibians of the Earth
    AmphibiaWeb's Illustrated Amphibians of the Earth Created and Illustrated by the 2020-2021 AmphibiaWeb URAP Team: Alice Drozd, Arjun Mehta, Ash Reining, Kira Wiesinger, and Ann T. Chang This introduction to amphibians was written by University of California, Berkeley AmphibiaWeb Undergraduate Research Apprentices for people who love amphibians. Thank you to the many AmphibiaWeb apprentices over the last 21 years for their efforts. Edited by members of the AmphibiaWeb Steering Committee CC BY-NC-SA 2 Dedicated in loving memory of David B. Wake Founding Director of AmphibiaWeb (8 June 1936 - 29 April 2021) Dave Wake was a dedicated amphibian biologist who mentored and educated countless people. With the launch of AmphibiaWeb in 2000, Dave sought to bring the conservation science and basic fact-based biology of all amphibians to a single place where everyone could access the information freely. Until his last day, David remained a tirelessly dedicated scientist and ally of the amphibians of the world. 3 Table of Contents What are Amphibians? Their Characteristics ...................................................................................... 7 Orders of Amphibians.................................................................................... 7 Where are Amphibians? Where are Amphibians? ............................................................................... 9 What are Bioregions? ..................................................................................10 Conservation of Amphibians Why Save Amphibians? .............................................................................
    [Show full text]
  • AC29 Inf. 25 (English Only / Únicamente En Inglés / Seulement En Anglais)
    Original language: English AC29 Inf. 25 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA Twenty-ninth meeting of the Animals Committee Geneva (Switzerland), 18-22 July 2017 Interpretation and im plem entation m atters General com pliance and enf orcem ent Captive-bred and ranched s pecim ens GUIDANCE FOR INSPECTION OF CAPTIVE BREEDING AND RANCHING FACILITIES The attached information document has been submitted by the Species Survival Network (SSN) * in relation to agenda item 14. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC29 Inf. 25 – p. 1 The following report analyzes data contained in the CITES Trade Database for trade in captive-bred, farmed, or ranched amphibians from 2012-2015. The database provided approximately 1,500 lines of data describing the trade of almost 200,000 captive-bred (C), farmed (F), confiscated (I), pre- convention (O), or ranched (R) amphibians for all purposes. This report includes data for live specimens, as well as bodies and parts and derivatives. The data was extracted by means of comparative tabulations of reported imports and exports. Latin American countries, particularly Panama and Nicaragua, were common exporters while North American and European countries, such as Canada, the United States, and the Netherlands, were common importers.
    [Show full text]
  • Linking Environmental Drivers with Amphibian Species Diversity in Ponds from Subtropical Grasslands
    Anais da Academia Brasileira de Ciências (2015) 87(3): 1751-1762 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140471 www.scielo.br/aabc Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands DARLENE S. GONÇALVES1, LUCAS B. CRIVELLARI2 and CARLOS EDUARDO CONTE3*,4 1Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 2Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista, Rua Cristovão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, SP, Brasil 3Universidade Federal do Paraná. Departamento de Zoologia, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 4Instituto Neotropical: Pesquisa e Conservação. Rua Purus, 33, 82520-750 Curitiba, PR, Brasil Manuscript received on September 17, 2014; accepted for publication on March 2, 2015 ABSTRACT Amphibian distribution patterns are known to be influenced by habitat diversity at breeding sites. Thus, breeding sites variability and how such variability influences anuran diversity is important. Here, we examine which characteristics at breeding sites are most influential on anuran diversity in grasslands associated with Araucaria forest, southern Brazil, especially in places at risk due to anthropic activities. We evaluate the associations between habitat heterogeneity and anuran species diversity in nine body of water from September 2008 to March 2010, in 12 field campaigns in which 16 species of anurans were found. Of the seven habitat descriptors we examined, water depth, pond surface area and distance to the nearest forest fragment explained 81% of total species diversity.
    [Show full text]
  • The Tadpoles of Two Species of the Bokermannohyla Circumdata Group (Hylidae, Cophomantini)
    Zootaxa 4048 (2): 151–173 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4048.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:E3DFCE3C-F71E-4A40-9800-F7A7C2FA1D57 The tadpoles of two species of the Bokermannohyla circumdata group (Hylidae, Cophomantini) TIAGO LEITE PEZZUTI1,4, MARCUS THADEU TEIXEIRA SANTOS1, SOFIA VELASQUEZ MARTINS1, FELIPE SÁ FORTES LEITE2, PAULO CHRISTIANO ANCHIETTA GARCIA1 & JULIÁN FAIVOVICH3 1Laboratório de Herpetologia, Instituto de Ciências Biológicas, Departamento de Zoologia, Universidade Federal de Minas Gerais. Belo Horizonte, Minas Gerais, Brasil 2Universidade Federal de Viçosa, Campus Florestal, Florestal, Minas Gerais, Brasil 3División Herpetología, Museo Argentino de Ciencias Naturales-CONICET, Angel Gallardo 470, C1405DJR, Buenos Aires, Argen- tina; and Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires 4Corresponding author. E-mail: [email protected] Abstract We describe the external morphology and oral cavity of the tadpoles of Bokermannohyla caramaschii and B. diamantina respectively from the states of Espírito Santo and Bahia, Brazil. Larvae of both species are distinguished from each other by external characters such as body shape, labial tooth-row formula, number of marginal papillae, coloration and internal oral anatomy features. Some of the character states of the tadpoles of B. caramaschii and B. diamantina that are shared with all other described tadpoles of the Bokermannohyla circumdata group, such as the absence/reduction of small flaps with accessory labial teeth laterally in the oral disc, and the absence/reduction of submarginal papillae, may represent mor- phological synapomorphies of this species group, or at least of some internal clade.
    [Show full text]
  • (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers
    e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 67 (2019), No 3 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_67-3.12 The Evaluation of Genetic Relationships within Acridid Grasshoppers (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers Igor SUKHIKH , Kirill USTYANTSEV , Alexander BUGROV, Michael SERGEEV, Victor FET, and Alexander BLINOV Accepted August 20, 2019 Published online September 11, 2019 Issue online September 30, 2019 Original article SUKHIKH I., USTYANTSEV K., BUGROV A., SERGEEV M., FET V., BLINOV A. 2019. The evaluation of genetic relationships within Acridid grasshoppers (Orthoptera, Caelifera, Acrididae) on the subfamily level using molecular markers. Folia Biologica (Kraków) 67: 119-126. Over the last few decades, molecular markers have been extensively used to study phylogeny, population dynamics, and genome mapping in insects and other taxa. Phylogenetic methods using DNA markers are inexpensive, fast and simple to use, and may help greatly to resolve phylogenetic relationships in groups with problematic taxonomy. However, different markers have various levels of phylogenetic resolution, and it’s important to choose the right set of molecular markers for a studied taxonomy level. Acrididae is the most diverse family of grasshoppers. Many attempts to resolve the phylogenetic relationships within it did not result in a clear picture, partially because of the limited number of molecular markers used. We have tested a phylogenetic resolution of three sets of the most commonly utilized mitochondrial molecular markers available for Acrididae sequences in the database: (i) complete protein-coding mitochondrial sequences, (ii) concatenated mitochondrial genes COI, COII, and Cytb, and (iii) concatenated mitochondrial genes COI and COII.
    [Show full text]
  • Revista 6-1 Jan-Jun 2007 RGB NOVA.P65
    Phyllomedusa 6(1):61-68, 2007 © 2007 Departamento de Ciências Biológicas - ESALQ - USP ISSN 1519-1397 Visual and acoustic signaling in three species of Brazilian nocturnal tree frogs (Anura, Hylidae) Luís Felipe Toledo1, Olívia G. S. Araújo1, Lorena D. Guimarães2, Rodrigo Lingnau3, and Célio F. B. Haddad1 1 Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista. Caixa Postal 199, 13506-970, Rio Claro, SP, Brazil. E-mail: [email protected]. 2 Departamento de Biologia, Instituto de Biociências, Universidade Federal de Goiás. Caixa Postal 131, 74001-970, Goiânia, GO, Brazil. 3 Laboratório de Herpetologia, Museu de Ciências e Tecnologia & Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul. Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil. Abstract Visual and acoustic signaling in three species of Brazilian nocturnal tree frogs (Anura, Hylidae). Visual communication seems to be widespread among nocturnal anurans, however, reports of these behaviors in many Neotropical species are lacking. Therefore, we gathered information collected during several sporadic field expeditions in central and southern Brazil with three nocturnal tree frogs: Aplastodiscus perviridis, Hypsiboas albopunctatus and H. bischoffi. These species displayed various aggressive behaviors, both visual and acoustic, towards other males. For A. perviridis we described arm lifting and leg kicking; for H. albopunctatus we described the advertisement and territorial calls, visual signalizations, including a previously unreported behavior (short leg kicking), and male-male combat; and for H. bischoffi we described the advertisement and fighting calls, toes and fingers trembling, leg lifting, and leg kicking. We speculate about the evolution of some behaviors and concluded that the use of visual signals among Neotropical anurans may be much more common than suggested by the current knowledge.
    [Show full text]
  • Hylidae, Anura) and Description of Ocellated Treefrog Itapotihyla Langsdorffii Vocalizations
    Current knowledge on bioacoustics of the subfamily Lophyohylinae (Hylidae, Anura) and description of Ocellated treefrog Itapotihyla langsdorffii vocalizations Lucas Rodriguez Forti1, Roseli Maria Foratto1, Rafael Márquez2, Vânia Rosa Pereira3 and Luís Felipe Toledo1 1 Laboratório Multiusuário de Bioacústica (LMBio) e Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil 2 Fonoteca Zoológica, Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain 3 Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura (CEPAGRI), Universidade Estadual de Campinas, Campinas, SP, Brazil ABSTRACT Background. Anuran vocalizations, such as advertisement and release calls, are informative for taxonomy because species recognition can be based on those signals. Thus, a proper acoustic description of the calls may support taxonomic decisions and may contribute to knowledge about amphibian phylogeny. Methods. Here we present a perspective on advertisement call descriptions of the frog subfamily Lophyohylinae, through a literature review and a spatial analysis presenting bioacoustic coldspots (sites with high diversity of species lacking advertisement call descriptions) for this taxonomic group. Additionally, we describe the advertisement and release calls of the still poorly known treefrog, Itapotihyla langsdorffii. We analyzed recordings of six males using the software Raven Pro 1.4 and calculated the coefficient Submitted 24 February 2018 of variation for classifying static and dynamic acoustic properties. Accepted 30 April 2018 Results and Discussion. We found that more than half of the species within the Published 31 May 2018 subfamily do not have their vocalizations described yet. Most of these species are Corresponding author distributed in the western and northern Amazon, where recording sampling effort Lucas Rodriguez Forti, should be strengthened in order to fill these gaps.
    [Show full text]
  • Dynamics of Chromosomal Evolution in the Genus Hypsiboas (Anura: Hylidae)
    Dynamics of chromosomal evolution in the genus Hypsiboas (Anura: Hylidae) M.A. Carvalho1, M.T. Rodrigues2, S. Siqueira1 and C. Garcia1 1Laboratório de Citogenética, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brasil 2Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil Corresponding author: M.A. Carvalho E-mail: [email protected] Genet. Mol. Res. 13 (3): 7826-7838 (2014) Received August 2, 2013 Accepted January 10, 2014 Published September 26, 2014 DOI http://dx.doi.org/10.4238/2014.September.26.21 ABSTRACT. Hylidae is one of the most species-rich families of anurans, and 40% of representatives in this group occur in Brazil. In spite of such remarkable diversity, little is known about this family and its taxonomical and systematic features. Most hylids have 2n = 24, even though most of the cytogenetic data are mainly obtained based on the conventional chromosomal staining and are available for only 16% of Hypsiboas species, a genus accounting for about 10% of the hylid diversity. In this study, cytogenetic data of distinct species and populations of Hypsiboas were analyzed, and the evolutionary dynamics of chromosomal macro- and microstructure of these amphibians were discussed. Contrary to the conservativeness of 2n = 24, this genus is characterized by a high variation of chromosomal morphology with as much as 8 karyotype patterns. Differences in the number and location of nucleolus organizer regions and C-bands allowed the identification of geographical variants within nominal Genetics and Molecular Research 13 (3): 7826-7838 (2014) ©FUNPEC-RP www.funpecrp.com.br Dynamics of chromosomal evolution in the genus Hypsiboas 7827 species and cytotaxonomical chromosomal markers.
    [Show full text]
  • Amphibian Ark Number 43 Keeping Threatened Amphibian Species Afloat June 2018
    AArk Newsletter NewsletterNumber 43, June 2018 amphibian ark Number 43 Keeping threatened amphibian species afloat June 2018 In this issue... Reintroduction of the Northern Pool Frog to the UK - Progress Report, April 2018 ............... 2 ® Establishment of a captive breeding program for the Kroombit Tinkerfrog .............................. 4 In situ conservation of the Lemur Leaf Frog through habitat improvement and forest management practices in the Guayacán Rainforest Reserve in Costa Rica .................... 6 Neotropical amphibian biology, management and conservation course .................................. 8 Donation provides for equipment upgrades within the Biogeos Foundation facilities, at the Rescue of Endangered Venezuelan Amphibians program in Venezuela ................... 9 New AArk Conservation Grants program, and call for applications .................................. 10 Amphibian Advocates - José Alfredo Hernández Díaz, Africam Safari, Mexico ........ 11 Amphibian Advocates - Dr. Phil Bishop, Co-Chair IUCN SSC ASG............................... 12 AArk Newsletter - Instructions for authors ...... 13 A private donation helps the Valcheta Frog program in Argentina ...................................... 14 A rich food formula to raise tadpoles in captivity........................................................... 16 Vibicaria Conservation Program: creation of an ex situ model for a rediscovered species in Costa Rica ...................................................... 18 Reproduction of Dendropsophus padreluna at
    [Show full text]