Notes on the Reproductive Biology of Phyllomedusa Bicolor (Anura, Phyllomedusidae) in the Amazon Forest of Northern Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Notes on the Reproductive Biology of Phyllomedusa Bicolor (Anura, Phyllomedusidae) in the Amazon Forest of Northern Brazil Herpetology Notes, volume 13: 931-935 (2020) (published online on 16 November 2020) Notes on the reproductive biology of Phyllomedusa bicolor (Anura, Phyllomedusidae) in the Amazon Forest of Northern Brazil Yuri Breno Silva e Silva1, Wirley Almeida-Santos2, Andréa Soares Araújo1, and Carlos Eduardo Costa-Campos1,* The Neotropical phyllomedusid genus Phyllomedusa P. rohdei (Wogel et al., 2005, 2006), and P. trinitatis (Wagler, 1830) currently contains 16 species (Frost, (Downie et al., 2013). 2020) and belongs to the Family Phyllomedusidae. Although two studies report reproductive biology of Most species are arboreal and usually walk slowly on P. bicolor from western (Venâncio and Melo-Sampaio, branches and leaves, rarely leaping (Caramaschi and 2010) and central Amazon (Neckel-Oliveira and Cruz, 2002). Phyllomedusa bicolor (Boddaert, 1772) Wachlevski, 2004), there is not much information on it is one of the largest Amazonian tree frogs found in the reproductive biology of this species for the eastern the forests of Brazil, Guianas, Venezuela, Colombia, Amazon. In this sense, the present study we aimed to Peru, and Bolivia (Frost, 2020). The reproductive describe the reproductive biology of the species, with mode (number 24, sensu Haddad and Prado, 2005) is emphasis on the amplexus and oviposition from eastern characterised by the oviposition in suspended leaves Brazilian Amazon, north of the Amazon River. in lentic water bodies and development of exotrophic The amplexus and oviposition were observed at the tadpoles. Parque Natural Municipal do Cancão (0.9026°N, Several species of the family Phyllomedusidae have 52.0050°W), Municipality of Serra do Navio, Amapá aspects of the reproduction described: Callimedusa State, Brazil. The study area covers 370.26 hectares of tomopterna (Neckel-Oliveira and Wachlevski, 2004; primary forest, including terra-firme rainforests, open Najar and Ferrante, 2018); Phyllomedusa bahiana areas and treefall gaps (Drummond et al. 2008; Silva (Santos-Silva et al., 2012), P. bicolor (Neckel-Oliveira e Silva and Costa-Campos, 2018). The local climate and Wachlevski, 2004; Venâncio and Melo-Sampaio, according to Köppen’s classification is Equatorial (Am) 2010), P. burmeisteri (Abrunhosa and Wogel, 2004; characterised by a rainy season from March to July, Srbek-Araujo et al., 2017), P. tarsius (Neckel-Oliveira with annual rainfall of 2,850 mm (Alvares et al., 2013). and Wachlevski, 2004); Pithecopus ayeaye (Oliveira, The mean rainfall was obtained from the Núcleo de 2017), P. azureus (Rodrigues et al., 2007; Filadelfo Hidrometeorologia e Energias Renováveis – Instituto et al., 2013; Dias et al., 2014; Oliveira et al., 2014), de Pesquisas Científicas e Tecnológicas do Estado do P. hypochondrialis (Matos et al., 2000), P. iheringii Amapá. (Dias et al., 2017), P. nordestinus (Faraulo et al., 2019), Samples were collected monthly from August to October 2013 (177 mm) and May to July 2014 (468 mm), always with three observers for four consecutive nights per month in the field, through active searches in breeding sites (Heyer et al., 1994) in the forested areas and temporary ponds in River Amapari trail (0.9008°N, 1 Departamento de Ciências Biológicas e da Saúde, 52.0135°W) in the Parque Natural Municipal do Cancão. Universidade Federal do Amapá, Rodovia Juscelino Clutches were collected, preserved in formaldehyde Kubitschek, km 02, Jardim Marco Zero, Macapá, Amapá 10% and housed in the Herpetological Collection of the 68903-419, Brazil. 2 Secretaria Municipal de Turismo de Serra do Navio, Rua A1 Universidade Federal do Amapá. 533A, Serra do Navio, Amapá 68948-000, Brazil. Phyllomedusa bicolor presents a characteristic typical * Corresponding author. E-mail: [email protected] of species of prolonged breeding, with reproduction 932 Yuri Breno Silva e Silva et al. for more than three consecutive months, asynchronic The clutches were located along a large temporary arrival of females at the breeding sites, and with males pond (maximum width: 15 m; maximum length: 50 m; defending territories (sensu Wells, 1977). The months maximum depth: 0.5 m), located near the Amapari River. with greatest reproductive activity were May to July Eggs clutches were enveloped by three (n = 4) and two 2014, coinciding with the highest recorded rainfall. In leaves (n = 4) from the angiosperm families Bignoniaceae these months heavy rainfall increases the hydroperiod of (n = 5), Cyclanthaceae (n = 1) and Heliconiaceae (n = 2) ponds, forming a suitable environment for development and the arrangement nests varied in length and closure of tadpoles. On the other hand, breeding activity of P. the leaf: partially, totally or open (Fig. 4). Tadpoles bicolor can be also explained by reproductive mode were observed at different development stages in lentic (arboreal eggs, and eggs hatching into exotrophic waters of temporary ponds. tadpoles that drop in lentic water, see Haddad and The spawning of P. bicolor consists of a gelatinous Prado, 2005) and eggs and embryos enveloped in leaves mass with a mean of 751 eggs per clutch, with a above the water protection against desiccation (Altig minimum of 241 and a maximum of 1,722 eggs (SD ± and McDiarmid, 2007). 33.9, n = 3). Mean egg diameter from all clutch means Most of the individuals were observed in the rainy was 2.6 mm (SD ± 0.2, n = 30 eggs), with minimum and season (May, n = 17 individuals, June n = 28, July, n = maximum mean values of 1.9 and 3.5 mm per clutch. 23, Fig. 1). Calling males of P. bicolor were recorded in The clutch size is similar than the data reported by the months of highest rainfall found on the vegetation close to the ground (range 1 – 4 m, n = 12). The peak of vocalisation activity of the species occurred between 20:00 and 23:00 h (Fig. 2). Male territorial behaviour was observed on two different occasions: vocalisation and physical combats to defend its territory (Fig. 3A, B). We observed Dendropsophus counani, D. leucophyllatus, Leptodactylus petersii, L. mystaceus and Chiasmocleis hudsoni calling syntopically in the same pond. We observed pairs in amplexus between 19:00 and 23:00 h (n = 8); the greatest number of the pairs (n = 6) was found at approximately 22:00 h. Pairs in amplexus were found on the ground (n = 1, Fig. 3C) and perched on edge vegetation (n = 7, Fig. 3D), although spawning Figure 1. Number of individuals (males and females) of was not observed. During the amplexus, of the cephalic Phyllomedusa bicolor observed in each month in relation to type, the male remained with the gular region on the accumulated rainfall (mm) at the Parque Natural Municipal do cephalic region of the female. Cancão, Municipality of Serra do Navio, Amapá State, Brazil, Two males of P. bicolor (amplectant male snout- between the April to October 2013 and May to July 2014. vent length [SVL] = 105 mm, intruder male SVL = 74 mm) were observed engaging in amplexus simultaneously with the same female (SVL = 116 mm) in a tree (Celastraceae, Fig. 3E) located at the margin of a temporary pond (Fig. 3F). The amplected male performed leg stretching behaviour for 15 minutes, until the intruder male gave up. The occurrence of multiple amplexus has also been observed in other species of the family Phyllomedusidae: Callimedusa tomopterna (Najar and Ferrante, 2018), Phyllomedusa bahiana (Santos-Silva et al., 2012), P. distincta (Woehl and Woehl, 2000; Prado et al., 2006), P. iheringii (Oliveira et al., 2014), Pithecopus ayeaye (Oliveira, 2017), P. azureus (Dias et al., 2012), P. megacephalus (Oliveira Figure 2. Peak of the call activity of the males of Phyllomedusa et al., 2012) and P. rohdei (Wogel et al., 2005), although bicolor in the Parque Natural Municipal do Cancão, this is the first record for P. bicolor. Municipality of Serra do Navio, Amapá State, Brazil. Notes on the reproductive biology of Phyllomedusa bicolor in Northern Brazil 933 Figure 3. Breeding biology of Phyllomedusa bicolor in Amapá State, Brazil. (A) and (B) Physical combat between to males for a female Phyllomedusa bicolor. (C) Amplexing pair on the ground. (D) Pair in amplexus perched on riparian vegetation. (E) Multiple amplexus of Phyllomedusa bicolor involving two males and one female in a tree (Celastraceae). (F) Temporary pond. Photos by Wirley Almeida-Santos (A, B, E) and Eduardo Campos (C, D, F). Neckel-Oliveira and Wachlevski (2004) and Venâncio This species is composed of deeply structured genetic and Melo-Sampaio (2010), from 895.5 – 1,202 eggs per groups, constituting more than one lineage across the clutch, respectively. Brazilian Amazonia (Mota et al., 2020). In this sense, 934 Yuri Breno Silva e Silva et al. Figure 4. Spawn of Phyllomedusa bicolor and variations in closure nests: (A) and (B) Partially closed nests (Bignoniaceae). (C) Totally enclosed nest (Heliconiaceae). (D) open nest (Celastraceae). Photos by Wirley Almeida-Santos. these data contribute to the knowledge the natural Acknowledgements. We thank Igor Kaefer for reviewing and history and reproductive biology of this species of wide suggestions to this manuscript. I would like to thank the Instituto distribution from different locations, especially for Brasileiro de Meio Ambiente e Recursos Naturais Renováveis for providing the permits for capture and collection of specimens in eastern Brazilian Amazon, north of the Amazon River. the field (Process n. 32651-2). Notes on the reproductive biology of Phyllomedusa bicolor in Northern Brazil 935 References giant monkey frog (Phyllomedusa bicolor: Phyllomedusidae). Amphibia-Reptilia 41: 1–11. Abrunhosa, P., Wogel, H. (2004): Breeding behavior of the leaf- Najar, T., Ferrante, L. (2018): The journey of life of the Tiger- frog Phyllomedusa burmeisteri (Anura: Hylidae). Amphibia- striped Leaf Frog Callimedusa tomopterna (Cope, 1868): Notes Reptilia 25: 125–135. of sexual behaviour, nesting and reproduction in the Brazilian Altig, R., McDiarmid, R.W. (2007): Morphological diversity Amazon. Herpetology Notes 11: 531–538. and evolution of egg and clutch structure in amphibians. Neckel-Oliveira, S., Wachlevski, M.
Recommended publications
  • Kambô: a Shamanic Medicine - Personal Testimonies
    Review Article JOJ Case Stud Volume 8 Issue 3 - September 2018 Copyright © All rights are reserved by Jan M Keppel Hesselink DOI: 10.19080/JOJCS.2018.08.555739 Kambô: A Shamanic Medicine - Personal Testimonies Jan M Keppel Hesselink1,2* 1Department of Health, University of Witten/Herdecke, Germany 2Institute for Neuropathic Pain, Netherlands Submission: August 24, 2017; Published: September 07, 2018 *Corresponding author: Jan M Keppel Hesselink, Department of Health, University of Witten/Herdecke, Germany & Institute for Neuropathic Pain, Bosch en Duin, Netherlands, Email: Abstract Since the beginning of this century more and more people in Europe and USA make use of a shamanic product based on the secretion of an Amazonian frog, the Phyllomedusa bicolor. This secretion contains a great number of bio-active peptides and is administered in a ritual via a fresh burn created on the skin of forearm or leg. The desired effects are related to acute intoxication and consist amongst others of nausea and vomiting, diarrhea and swelling of the face as in Quinke’s edema. These effects occur within minutes after the inoculation with the secretion and last mostly for few hours. After this intense period people feel rejuvenated and many participants of the cleansing ritual claim long lasting positive effects for their health. We present the history and context of Kambô use and some case-studies based on personal testimonies. Clearly the increasing use of a shamanic intervention as Kambô is also an expression and a signal of the dissatisfaction of consumers with the results of Western medicine. Keywords: Phyllomedusa bicolor; Shaman; Healing; Target; Side-effects Introduction Phyllomedusa bicolor is an Amazonian frog and the source of Kambô.
    [Show full text]
  • Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
    Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes.
    [Show full text]
  • The Journey of Life of the Tiger-Striped Leaf Frog Callimedusa Tomopterna (Cope, 1868): Notes of Sexual Behaviour, Nesting and Reproduction in the Brazilian Amazon
    Herpetology Notes, volume 11: 531-538 (2018) (published online on 25 July 2018) The journey of life of the Tiger-striped Leaf Frog Callimedusa tomopterna (Cope, 1868): Notes of sexual behaviour, nesting and reproduction in the Brazilian Amazon Thainá Najar1,2 and Lucas Ferrante2,3,* The Tiger-striped Leaf Frog Callimedusa tomopterna 2000; Venâncio & Melo-Sampaio, 2010; Downie et al, belongs to the family Phyllomedusidae, which is 2013; Dias et al. 2017). constituted by 63 described species distributed in In 1975, Lescure described the nests and development eight genera, Agalychnis, Callimedusa, Cruziohyla, of tadpoles to C. tomopterna, based only on spawns that Hylomantis, Phasmahyla, Phrynomedusa, he had found around the permanent ponds in the French Phyllomedusa, and Pithecopus (Duellman, 2016; Guiana. However, the author mentions a variation in the Frost, 2017). The reproductive aspects reported for the number of eggs for some spawns and the use of more than species of this family are marked by the uniqueness of one leaf for confection in some nests (Lescure, 1975). egg deposition, placed on green leaves hanging under The nests described by Lescure in 1975 are probably standing water, where the tadpoles will complete their from Phyllomedusa vailantii as reported by Lescure et development (Haddad & Sazima, 1992; Pombal & al. (1995). The number of eggs in the spawns reported Haddad, 1992; Haddad & Prado, 2005). However, by Lescure (1975) diverge from that described by other exist exceptions, some species in the genus Cruziohyla, authors such as Neckel-Oliveira & Wachlevski, (2004) Phasmahylas and Prhynomedusa, besides the species and Lima et al. (2012). In addition, the use of more than of the genus Agalychnis and Pithecopus of clade one leaf for confection in the nest mentioned by Lescure megacephalus that lay their eggs in lotic environments (1975), are characteristic of other species belonging to (Haddad & Prado, 2005; Faivovich et al.
    [Show full text]
  • Release Calls of Four Species of Phyllomedusidae (Amphibia, Anura)
    Herpetozoa 32: 77–81 (2019) DOI 10.3897/herpetozoa.32.e35729 Release calls of four species of Phyllomedusidae (Amphibia, Anura) Sarah Mângia1, Felipe Camurugi2, Elvis Almeida Pereira1,3, Priscila Carvalho1,4, David Lucas Röhr2, Henrique Folly1, Diego José Santana1 1 Mapinguari – Laboratório de Biogeografia e Sistemática de Anfíbios e Repteis, Universidade Federal de Mato Grosso do Sul, 79002-970, Campo Grande, MS, Brazil. 2 Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59072-970, Natal, RN, Brazil. 3 Programa de Pós-graduação em Biologia Animal, Laboratório de Herpetologia, Universidade Federal Rural do Rio de Janeiro, 23890-000, Seropédica, RJ, Brazil. 4 Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista (UNESP), 15054-000, São José do Rio Preto, SP, Brazil. http://zoobank.org/16679B5D-5CC3-4EF1-B192-AB4DFD314C0B Corresponding author: Sarah Mângia ([email protected]) Academic editor: Günter Gollmann ♦ Received 8 January 2019 ♦ Accepted 6 April 2019 ♦ Published 15 May 2019 Abstract Anurans emit a variety of acoustic signals in different behavioral contexts during the breeding season. The release call is a signal produced by the frog when it is inappropriately clasped by another frog. In the family Phyllomedusidae, this call type is known only for Pithecophus ayeaye. Here we describe the release call of four species: Phyllomedusa bahiana, P. sauvagii, Pithecopus rohdei, and P. nordestinus, based on recordings in the field. The release calls of these four species consist of a multipulsed note. Smaller species of the Pithecopus genus (P. ayeaye, P. rohdei and P. nordestinus), presented shorter release calls (0.022–0.070 s), with high- er dominant frequency on average (1508.8–1651.8 Hz), when compared to the bigger Phyllomedusa (P.
    [Show full text]
  • Check List and Authors Chec List Open Access | Freely Available at Journal of Species Lists and Distribution
    ISSN 1809-127X (online edition) © 2010 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution Amphibia, Anura, restinga of Baixada do Maciambu, PECIES S municipality of Palhoça, state of Santa Catarina, OF southern Brazil ISTS L Milena Wachlevski * and Carlos Frederico Duarte Rocha Universidade do Estado do Rio de Janeiro, Departamento de Ecologia. Rua São Francisco Xavier, 524. CEP 20550-019. Rio de Janeiro, RJ, Brazil. * Corresponding author. E-mail: [email protected] Abstract: Little is known about amphibian communities on Brazilian restingas (coastal sand dune scrublands). This study southern Brazil. We sampled using three methods (pitfall traps with drift fences, transect of active search, and surveys at breedingpresents asites) first fromapproximation July 2007 to Aprilthe list 2010. of anuran We recorded species 15 from species the restinga in six families, of Baixada of which do Maciambu, Hylidae was Santa represented Catarina, by the greatest number of species. Compared to other Brazilian restinga habitats, the species richness we recorded at the Baixada do Maciambu is similar to that reported for restingas of Rio de Janeiro state, but lower than that reported for restingas in São Paulo, Rio Grande do Sul and Bahia states, Brazil. Introduction Sampling methods The Restingas are coastal strips in Atlantic forest, We sampled anurans every three months from July located in coastal lowlands, formed by string of beaches and sands dunes covered by herbaceous
    [Show full text]
  • Species Diversity and Conservation Status of Amphibians in Madre De Dios, Southern Peru
    Herpetological Conservation and Biology 4(1):14-29 Submitted: 18 December 2007; Accepted: 4 August 2008 SPECIES DIVERSITY AND CONSERVATION STATUS OF AMPHIBIANS IN MADRE DE DIOS, SOUTHERN PERU 1,2 3 4,5 RUDOLF VON MAY , KAREN SIU-TING , JENNIFER M. JACOBS , MARGARITA MEDINA- 3 6 3,7 1 MÜLLER , GIUSEPPE GAGLIARDI , LILY O. RODRÍGUEZ , AND MAUREEN A. DONNELLY 1 Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE-167, Miami, Florida 33199, USA 2 Corresponding author, e-mail: [email protected] 3 Departamento de Herpetología, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Lima 11, Perú 4 Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA 5 Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, USA 6 Departamento de Herpetología, Museo de Zoología de la Universidad Nacional de la Amazonía Peruana, Pebas 5ta cuadra, Iquitos, Perú 7 Programa de Desarrollo Rural Sostenible, Cooperación Técnica Alemana – GTZ, Calle Diecisiete 355, Lima 27, Perú ABSTRACT.—This study focuses on amphibian species diversity in the lowland Amazonian rainforest of southern Peru, and on the importance of protected and non-protected areas for maintaining amphibian assemblages in this region. We compared species lists from nine sites in the Madre de Dios region, five of which are in nationally recognized protected areas and four are outside the country’s protected area system. Los Amigos, occurring outside the protected area system, is the most species-rich locality included in our comparison.
    [Show full text]
  • Polyploidy and Sex Chromosome Evolution in Amphibians
    Chapter 18 Polyploidization and Sex Chromosome Evolution in Amphibians Ben J. Evans, R. Alexander Pyron and John J. Wiens Abstract Genome duplication, including polyploid speciation and spontaneous polyploidy in diploid species, occurs more frequently in amphibians than mammals. One possible explanation is that some amphibians, unlike almost all mammals, have young sex chromosomes that carry a similar suite of genes (apart from the genetic trigger for sex determination). These species potentially can experience genome duplication without disrupting dosage stoichiometry between interacting proteins encoded by genes on the sex chromosomes and autosomalPROOF chromosomes. To explore this possibility, we performed a permutation aimed at testing whether amphibian species that experienced polyploid speciation or spontaneous polyploidy have younger sex chromosomes than other amphibians. While the most conservative permutation was not significant, the frog genera Xenopus and Leiopelma provide anecdotal support for a negative correlation between the age of sex chromosomes and a species’ propensity to undergo genome duplication. This study also points to more frequent turnover of sex chromosomes than previously proposed, and suggests a lack of statistical support for male versus female heterogamy in the most recent common ancestors of frogs, salamanders, and amphibians in general. Future advances in genomics undoubtedly will further illuminate the relationship between amphibian sex chromosome degeneration and genome duplication. B. J. Evans (CORRECTED&) Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada e-mail: [email protected] R. Alexander Pyron Department of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, USA J.
    [Show full text]
  • Download PDF (Português)
    Biota Neotrop., vol. 9, no. 2 Composição, uso de hábitat e estações reprodutivas das espécies de anuros da floresta de restinga da Estação Ecológica Juréia-Itatins, sudeste do Brasil Patrícia Narvaes1, Jaime Bertoluci2,3 & Miguel Trefaut Rodrigues1 1Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo – USP CP 11461, CEP 05422-970, São Paulo, SP, Brasil e-mails: [email protected], [email protected], http://marcus.ib.usp.br/. 2Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo – USP, Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP, Brasil. e-mail: [email protected], http://www.lcb.esalq.usp.br/ 3Autor para correspondência: Jaime Bertoluci, email: [email protected] NARVAES, P., BERTOLUCI, J. & RODRIGUES, M.T. Species composition, habitat use and breeding seasons of anurans of the restinga forest of the Estação Ecológica Juréia-Itatins, Southeastern Brazil. Biota Neotrop., 9(2): http://www.biotaneotropica.org.br/v9n2/en/abstract?article+bn02009022009. Abstract: Herein we present data on species composition, habitat use, and calling seasons of anurans from the Restinga forest of the Estação Ecológica Juréia-Itatins, Southeastern Brazil. The study site was visited monthly (3 to 4 days) between February and December 1993, a total of 28 days of field work. Three previously selected puddles were searched for anurans between 6:00 and 10:30 PM, when the number of calling males of each species was estimated and the positions of their calling sites were recorded. Anuran fauna is composed by 20 species, the highest richness ever recorded in a Brazilian restinga habitat.
    [Show full text]
  • Amphibians from the Centro Marista São José Das Paineiras, in Mendes, and Surrounding Municipalities, State of Rio De Janeiro, Brazil
    Herpetology Notes, volume 7: 489-499 (2014) (published online on 25 August 2014) Amphibians from the Centro Marista São José das Paineiras, in Mendes, and surrounding municipalities, State of Rio de Janeiro, Brazil Manuella Folly¹ *, Juliana Kirchmeyer¹, Marcia dos Reis Gomes¹, Fabio Hepp², Joice Ruggeri¹, Cyro de Luna- Dias¹, Andressa M. Bezerra¹, Lucas C. Amaral¹ and Sergio P. de Carvalho-e-Silva¹ Abstract. The amphibian fauna of Brazil is one of the richest in the world, however, there is a lack of information on its diversity and distribution. More studies are necessary to increase our understanding of amphibian ecology, microhabitat choice and use, and distribution of species along an area, thereby facilitating actions for its management and conservation. Herein, we present a list of the amphibians found in one remnant area of Atlantic Forest, at Centro Marista São José das Paineiras and surroundings. Fifty-one amphibian species belonging to twenty-five genera and eleven families were recorded: Anura - Aromobatidae (one species), Brachycephalidae (six species), Bufonidae (three species), Craugastoridae (one species), Cycloramphidae (three species), Hylidae (twenty-four species), Hylodidae (two species), Leptodactylidae (six species), Microhylidae (two species), Odontophrynidae (two species); and Gymnophiona - Siphonopidae (one species). Visits to herpetological collections were responsible for 16 species of the previous list. The most abundant species recorded in the field were Crossodactylus gaudichaudii, Hypsiboas faber, and Ischnocnema parva, whereas the species Chiasmocleis lacrimae was recorded only once. Keywords: Anura, Atlantic Forest, Biodiversity, Gymnophiona, Inventory, Check List. Introduction characteristics. The largest fragment of Atlantic Forest is located in the Serra do Mar mountain range, extending The Atlantic Forest extends along a great part of from the coast of São Paulo to the coast of Rio de Janeiro the Brazilian coast (Bergallo et al., 2000), formerly (Ribeiro et al., 2009).
    [Show full text]
  • (DGAT2): a 'Paleo-Protein'
    The Protein Journal (2019) 38:83–94 https://doi.org/10.1007/s10930-019-09814-x The Amphibian Diacylglycerol O-acyltransferase 2 (DGAT2): a ‘paleo- protein’ with Conserved Function but Unique Folding Juliana M. Sciani1 · Adriana Neves2 · Ruth C. Vassão3 · Patrick Spencer4 · Marta M. Antoniazzi3 · Carlos Jared3 · Daniel C. Pimenta1 Published online: 29 January 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Amphibians are, currently, considered the first vertebrates that had performed the aquatic to terrestrial transition during evolu- tion; therefore, water balance and dehydration control were prerequisites for such environment conquering. Among anurans, Phyllomedusa is a well-studied genus, due to its peptide-rich skin secretion. Here, we have analyzed the skin secretion of Phyllomedusa distincta targeting the proteins present in the skin secretion. The major soluble protein was chromatographi- cally isolated and utilized to immunize rabbits. Through proteomics approaches, we were able to identify such protein as being the diacylglycerol O-acyltransferase 2 (DGAT2), a crucial enzyme involved in lipid synthesis and in the skin water balance. Immunohistochemistry assays revealed the protein tissular distribution for different animal species, belonging to different branches of the phylogenetic tree. Specifically, there was positivity to the anti-DGAT2 on Amphibians’ skin, and no antibody recognition on fish and mammals’ skins. The DGAT2 multiple sequence alignment reveals some degree of conservation throughout the genera; however, there is a different cysteine pattern among them. Molecular modeling analyses corroborate that the different cysteine pattern leads to distinct 3D structures, explaining the different antibody recognition. Moreover, the protein phylogenetic analyses place the Xenopus DGAT2 (the available amphibian representative) next to the Coelacanthus enzyme, which have led the authors to term this a ‘paleo-protein’.
    [Show full text]
  • Antipredator Mechanisms of Post-Metamorphic Anurans: a Global Database and Classification System
    Utah State University DigitalCommons@USU Ecology Center Publications Ecology Center 5-1-2019 Antipredator Mechanisms of Post-Metamorphic Anurans: A Global Database and Classification System Rodrigo B. Ferreira Utah State University Ricardo Lourenço-de-Moraes Universidade Estadual de Maringá Cássio Zocca Universidade Vila Velha Charles Duca Universidade Vila Velha Karen H. Beard Utah State University Edmund D. Brodie Jr. Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/eco_pubs Part of the Ecology and Evolutionary Biology Commons Recommended Citation Ferreira, R.B., Lourenço-de-Moraes, R., Zocca, C. et al. Behav Ecol Sociobiol (2019) 73: 69. https://doi.org/ 10.1007/s00265-019-2680-1 This Article is brought to you for free and open access by the Ecology Center at DigitalCommons@USU. It has been accepted for inclusion in Ecology Center Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 1 Antipredator mechanisms of post-metamorphic anurans: a global database and 2 classification system 3 4 Rodrigo B. Ferreira1,2*, Ricardo Lourenço-de-Moraes3, Cássio Zocca1, Charles Duca1, Karen H. 5 Beard2, Edmund D. Brodie Jr.4 6 7 1 Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Vila Velha, ES, 8 Brazil 9 2 Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, United 10 States of America 11 3 Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual 12 de Maringá, Maringá, PR, Brazil 13 4 Department of Biology and the Ecology Center, Utah State University, Logan, UT, United States of 14 America 15 16 *Corresponding author: Rodrigo B.
    [Show full text]
  • Peptidomic Analysis of Skin Secretions of the Caribbean
    antibiotics Article Peptidomic Analysis of Skin Secretions of the Caribbean Frogs Leptodactylus insularum and Leptodactylus nesiotus (Leptodactylidae) Identifies an Ocellatin with Broad Spectrum Antimicrobial Activity Gervonne Barran 1, Jolanta Kolodziejek 2, Laurent Coquet 3 ,Jérôme Leprince 4 , Thierry Jouenne 3 , Norbert Nowotny 2,5 , J. Michael Conlon 6,* and Milena Mechkarska 1,* 1 Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine Campus, Trinidad and Tobago; [email protected] 2 Viral Zoonoses, Emerging and Vector-Borne Infections Group, Department of Pathobiology, Institute of Virology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria; [email protected] (J.K.); [email protected] (N.N.) 3 CNRS UMR 6270, PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76000 Rouen, France; [email protected] (L.C.); [email protected] (T.J.) 4 Inserm U1239, PRIMACEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76000 Rouen, France; [email protected] 5 Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Helathcare City, P.O. Box 505055, Dubai, UAE 6 Diabetes Research Group, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK * Correspondence: [email protected] (J.M.C.); [email protected] (M.M.) Received: 21 August 2020; Accepted: 19 October 2020; Published: 20 October 2020 Abstract: Ocellatins are peptides produced in the skins of frogs belonging to the genus Leptodactylus that generally display weak antimicrobial activity against Gram-negative bacteria only.
    [Show full text]