Introduction to Particle Physics

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Particle Physics Introduction to Particle Physics Achim Geiser, DESY Hamburg DESY summer student program, 28.-29.7.21 Scope of this lecture: Introduction to particle physics for novices rather elementary more details -> specialized lectures particle physics in general thanks to B. Foster for some of the nicest slides/animations other sources: some emphasis on DESY-related topics www pages of DESY and CERN 28.-29.7.21 A. Geiser, Particle Physics 1 What is Particle Physics? 28.-29.7.21 A. Geiser, Particle Physics 2 What is “science”? Wikipedia.org: Science (from Latin scientia , meaning "knowledge") is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe. First large scale scientific experiment: proposal: Galilei 1632 historically^ recorded realisation: Pierre Gassendi 1640 Galileo Galilei French navy Galley with M. Risch international crew of ~100 people Physik in Unserer Zeit cannon (fraction of students not reported) 38 (5) (2007) 249 ball => 5 m/s ? 28.-29.7.21 A. Geiser, Particle Physics 3 What is a „particle“? Classical view: particles = discrete objects. Mass concentrated into finite space with definite boundaries. Particles exist at a specific location. -> Newtonian mechanics Isaac Newton Modern view: (Principia 1687) Emilie du Châtelet particles = objects with discrete (1759) Niels quantum numbers, e.g. charge, mass, ... Bohr not necessarily located at a specific position (Nobel 1922) (Heisenberg uncertainty principle), can also be represented by wave functions (quantum mechanics, particle/wave duality). Louis Werner Erwin de Broglie Heisenberg Schrödinger (Nobel 1933) (Nobel 1929) (Nobel 1932) 28.-29.7.21 A. Geiser, Particle Physics 4 What is „elementary“? Greek: atomos = smallest indivisible part John Dalton 1803 (atomic model) Dmitry Ivanowitsch Mendeleyev 1868 (elements) Ernest Rutherford 1911 (nucleus) (Nobel 1908) Murray Gell-Mann 1962 (quarks) (Nobel 1969) ? 28.-29.7.21 A. Geiser, Particle Physics 5 History of basic building blocks of matter 0 − − + οο ΚΣ∆Λ+∆π − ∆− + Ω motivation: ππ∆0 + find Κ+ pΚ smallest + possible Super- number symmetry 2030? AD 28.-29.7.21 A. Geiser, Particle Physics 6 Which “interactions”? at ~ 1 GeV -2 28.-29.7.21 A. Geiser, Particle Physics 7 What we know today u c t g up charm top gluonγ Quarks s downd strange bottomb photon ν ν ν e µ τ τ W e-neutrino µ-neutrino -neutrino W boson e µ τ Z Leptons electron muon tau Z boson Higgs Boson 28.-29.7.21 A. Geiser, Particle Physics 8 The Power of Conservation Laws e.g. radioactive neutron decay: - ν not visible n p + e + e Pauli 1930: Wolfgang Emmy Noether Pauli 1919: (Nobel 1945) E,p,L conservation related to homogeneity of time+space and isotropy of space 28.-29.7.21 A. Geiser, Particle Physics 9 confirmation: neutrino detection e.g. reversed reaction: ν e+ n p + e extremely rare! Frederick Reines (absorption length ~ 3 light years Pb) (Nobel 1995) first detection: 1956 Reines and Cowan , neutrinos from nuclear reactor 28.-29.7.21 A. Geiser, Particle Physics 10 The power of symmetries: Parity Will physical processes look the same when viewed through a mirror? In everyday life: violation of parity symmetry is common „natural“: our heart is on the left „spontaneous“: cars drive on the right Eugene (on the continent) Wigner What about basic interactions? (Nobel 1963) Electromagnetic and strong interactions conserve parity! 28.-29.7.21 A. Geiser, Particle Physics 11 The power of symmetries: Parity Lee & Yang 1956 : weak interactions violate Parity experimentally verified by Wu et al. 1957: Chen Ning Yang (Nobel 1957) spin Tsung -Dao consequence: Lee neutrinos are always Chieng Shiung lefthanded ! Wu (antineutrinos righthanded) 28.-29.7.21 A. Geiser, Particle Physics 12 The Power of Quantum Numbers 1948: discovery of muon Who ordered THAT ? same quantum numbers as electron, except mass (Nobel 1988) I.I. Rabi (Nobel 1944) µ- ν - ν muon decay: -> µ e e conservation of Leon M. Melvin Jack Ledermann Schwartz Steinberger electric charge -1 0 -1 0 lepton number: 1 1 1 -1 ν = ν (1955) ν ν „muon number“: 1 1 0 0 µ = e (1962) There is a distinct neutrino for each charged lepton 28.-29.7.21 A. Geiser, Particle Physics 13 The Power of Precision Precision measurements of shape and height of Z 0 resonance at LEP I (CERN 1990’s) ν number of ν ν (light) neutrino flavours = 3 Gerardus Martinus t’Hooft Veltman (Nobel 1999) e+e- -> Z 0 28.-29.7.21 A. Geiser, Particle Physics 14 Can we “see” particles? Luis Walter Alvarez (Nobel 1968) we can! bubble chamber photo Donald Arthur Glaser (Nobel 1960) 28.-29.7.21 A. Geiser, Particle Physics 15 A typical particle physics detector see e.g. ARGUS near DESY entrance more details: lecture I. Gregor 28.-29.7.21 A. Geiser, Particle Physics 16 Why do we need colliders? early discoveries in cosmic rays, but need controlled Mont Blanc conditions E V.F. Hess m = (Nobel 1936) c2 Albert Einstein CERN (Nobel 1921) need high energy to discover new heavy particles LEP/LHC colliders = microscopes (later) more details: lecture P. Castro 28.-29.7.21 A. Geiser, Particle Physics 17 The HERA ep Collider and Experiments Data taking stopped summer 2007. Data analysis continues even now at small rate. 28.-29.7.21 A. Geiser, Particle Physics 18 Particle Physics = People 28.-29.7.21 A. Geiser, Particle Physics 19 Strong Interactions: Quarks and Colour strong force in nuclear interactions = „exchange of massive pions“ between nucleons = residual Van der Waals-like interaction Hideki Yukawa (Nobel 1949) n modern view: π (Quantum Chromo-Dynamics, QCD) exchange of massless gluons p between quark constituents „similar“ to electromagnetism (Quantum Electro-Dynamics, QED) 28.-29.7.21 A. Geiser, Particle Physics 20 The Quark Model (1964) arrange quarks (known at that time) into flavour-triplet => SU(3) flavour symmetry Q=-1/3 Q=2/3 almost d v u treat all known hadrons S=0 (protons, neutrons, pions, ...) as objects composed of two or three such quarks (antiquarks) Murray S=-1 Gell-Mann s (Nobel 1969) 28.-29.7.21 A. Geiser, Particle Physics 21 The Quark Model baryons = qqq mesons = qq 28.-29.7.21 A. Geiser, Particle Physics 22 Colour Quark model very successful, but seems to violate ++ quantum numbers (Fermi statistics), e.g. ∆ =uuu ↑↑↑ => introduce new degree of freedom: q g g q q ggg g q q g g q 3 coulours -> SU(3) colour qqq = qq = white! (exact symmetry) 28.-29.7.21 A. Geiser, Particle Physics 23 Screening of Electric Charge electric charge polarises vacuum -> virtual electron positron pairs positrons partially screen electron charge effective charge/force (Nobel 1965) decreases at large distances/low energy (screening) increases at small distance/large energy 28.-29.7.21Sin-Itoro Julian Richard P. A. Geiser, Particle Physics 24 Tomonaga Schwinger Feynman Anti-Screening of Coulour Charge! quark-antiquark pairs -> screening gluons carry colour -> gg pairs -> anti-screening ! (Nobel 2004) asymptotic confinement freedom 1/r 2~E 2, 28.-29.7.21 A. Geiser, Particle Physics 25 Comparison QED / QCD electromagnetism strong interactions QED QCD 1 kind of charge (q) 3 kinds of charge ( r,g,b) force mediated by photons force mediated by gluons photons are neutral gluons are charged (eg. rg, bb, gb) α α is nearly constant s strongly depends on distance confinement limit: The underlying theories are formally almost identical! 28.-29.7.21 A. Geiser, Particle Physics 26 The effective potential for qq interactions confinement lattice asymptotic freedom gauge calculation 28.-29.7.21 A. Geiser, Particle Physics 27 Burton Heavy Quark Spectroscopy Richter Charmonium = bound system (Nobel 1976) + - of cc quark pair Positronium = bound e e system Samuel C.C. Ting 1974 28.-29.7.21 A. Geiser, Particle Physics 28 calculation of proton mass in QCD from lattice gauge theory: p spontaneous breakdown of “chiral symmetry” Yoichiro (left-right-symmetry) yields Nambu QCD “vacuum” expectation value (Nobel 2008) proton mass (~= neutron mass) , mass of the visible part of the universe ! 28.-29.7.21 A. Geiser, Particle Physics 29 How to detect Quarks and Gluons? Jets! hadrons Example of the hadron + - q production in e e e+ e- annihilation in the JADE ~1979 q detector at the PETRA e+e- collider at DESY, hadrons Germany. Georges √s energy 30 GeV. Charpak Lines of crosses - reconstructed trajectories in drift chambers (gas ionisation detectors). (Nobel 1992) Photons - dotted lines - detected by lead-glass Cerenkov counters. Two opposite jets. 28.-29.7.21 A. Geiser, Particle Physics 30 Discovery of the Gluon (1979) PETRA at DESY: look for α s Björn Wiik Paul Söding TASSO event picture Günter Wolf Sau Lan Wu (EPS prize 1995) 28.-29.7.21 A. Geiser, Particle Physics 31 Jets in ep and pp interactions LHC HERA more details: lecture H. Jung 28.-29.7.21 A. Geiser, Particle Physics 32 α Running strong coupling „constant“ s e.g. from jet production at e +e-, ep, and pp at DESY, Fermilab and CERN (HERA) (LEP, PETRA) courtesy T. Dorigo 28.-29.7.21 A. Geiser, Particle Physics 33 How to determine the „size“ of a particle? microscope: resolution ~ 10 -18 m = 1/1000 of size of a proton low resolution -> small instrument high resolution -> large instrument 28.-29.7.21 A. Geiser, Particle Physics 34 How to resolve the structure of an object? e.g. X-rays scattering image probe (Hasylab, FLASH, accelerator PETRA III, XFEL) E~ keV -> structure of a biomolecule Ada Yonath (Nobel 2009) 28.-29.7.21 A. Geiser, Particle Physics 35 Resolve the structure of the proton E ~ MeV resolve whole proton static quark model, Jerome I.
Recommended publications
  • Almanac, 03/28/78, Vol. 24, No. 25
    Lniphnee Pertormance Review Of Record: Office of ('o#nputinç' Activities Photocop ring for Educational Uses Published the of Weekly by University Pennsylvania Report of the Provost's Task Force on the Study of Ad,,,:ssions Volume 24, Number 25 March 28, 1978 Annenberg Friends Contribute Funds, Support The Annenherg Preservation Committee, a student organi/ation headed by undergraduate Ray (Ireenherg, and the Friends of the Zellerhach Theater are helping the Annenherg Center meet its $125.000 fundraising goal and ensure the continuance of a professional theater season here next year. Approximately $500 collected by the Annenherg Preservation Committee during the student sit-in March 2-6 which was in part sparked h' the proposal to limit or curtail professional theater at Annenherg was presented to Annenhcrg Center Managing Director Stephen Goff last week. The committee is now offering for sale "Save the Center" t-shirts ($3) and buttons ($I). One dollar from every sale will go to the Annenberg Center. The committee is also arranging a special Penn All-Star Revue performance in May to benefit the Center. Another group. Friends of the Zellerhach Theater, headed by Diana Dripps and trustee Robert Trescher, will sponsor a gala benefit performance of Much Ado About Nothing, which they are Book fro,n the University of Pennsylvania Press edition of calling "Much Ado About Something." Seats will sell for $50 and jacket The Gentleman. $100. and anonymous donors have agreed to match funds raised Country from the special event. "Lost" Comedy to Premiere In addition, all funds raised by both groups will he applicable to a A Country Gentleman, a comedy written and banned n 1669 and challenge grant which may be awarded by the National Endowment considered lost for more than 3(X) years will hac its world for the Arts.
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]
  • JUAN MANUEL 2016 NOBEL PEACE PRIZE RECIPIENT Culture Friendship Justice
    Friendship Volume 135, № 1 Character Culture JUAN MANUEL SANTOS 2016 NOBEL PEACE PRIZE RECIPIENT Justice LETTER FROM THE PRESIDENT Dear Brothers, It is an honor and a privilege as your president to have the challenges us and, perhaps, makes us question our own opportunity to share my message with you in each edition strongly held beliefs. But it also serves to open our minds of the Quarterly. I generally try to align my comments and our hearts to our fellow neighbor. It has to start with specific items highlighted in each publication. This with a desire to listen, to understand, and to be tolerant time, however, I want to return to the theme “living our of different points of view and a desire to be reasonable, Principles,” which I touched upon in a previous article. As patient and respectful.” you may recall, I attempted to outline and describe how Kelly concludes that it is the diversity of Southwest’s utilization of the Four Founding Principles could help people and “treating others like you would want to be undergraduates make good decisions and build better treated” that has made the organization successful. In a men. It occurred to me that the application of our values similar way, Stephen Covey’s widely read “Seven Habits of to undergraduates only is too limiting. These Principles are Highly Effective People” takes a “values-based” approach to indeed critical for each of us at this particularly turbulent organizational success. time in our society. For DU to be a successful organization, we too, must As I was flying back recently from the Delta Upsilon be able to work effectively with our varied constituents: International Fraternity Board of Directors meeting in undergraduates, parents, alumni, higher education Arizona, I glanced through the February 2017 edition professionals, etc.
    [Show full text]
  • The Story of the Reines Vista and the Art Piece
    The Story of the Reines Vista and the Art Piece The laser-cut stainless steel art piece designed by Lisa Cowden memorializing the life, family and research of her father and Nobel laureate Dr. Frederick Reines. The Story The stainless steel and wood art piece located near the corner of California Avenue and Bartok Court in University Hills is dedicated to the life, family, and research of Dr. Frederick Reines (1918 – 1998). Dr. Reines was a long-time University Hills homeowner, UC Irvine faculty member, and 1995 Nobel Laureate for the first detection of the neutrino. The prize is shared with his colleague Clyde Cowan for their joint neutrino detection in 1956 at the Los Alamos Scientific Laboratory. The Reines Vista sign, which was designed by his daughter Lisa Reines Cowden, contains graphical representations of Dr. Reines’ family, career, and interests. Along the sides of the sign are legends to some of the images, though not all. Much of the imagery is intentionally left unidentified. Users are invited by the artist to imagine what the undefined images might represent. Lisa first designed the sign as a sketch, and then with paper and scissors she personally cut out the design. She had the paper design scanned and put into CAD by an engineer friend. The CAD file was then used to guide a laser cutter to recreate the design on a sheet of stainless steel. A black locust wood frame completed the sign. Lisa Cowden dedicated the sign in a small, private ceremony on June 5th 2001. Facts • Located near the corner of Bartok Court and California Avenue in University Hills • Home builder Brookfield Homes assisted in the installation of the art piece For Further Study http://en.wikipedia.org/wiki/Frederick_Reines http://www.ps.uci.edu/physics/reinestrib.html http://content.cdlib.org/view?docId=hb1p30039g&chunk.id=div00047&brand=calisphere&doc.
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]
  • Daniele Montanino Università Del Salento & INFN
    Daniele Montanino Università del Salento & INFN Suggested readings Notice that an exterminated number of (pedagogical and technical) articles, reviews, books, internet pages… can be found on the subject of Neutrino (Astro)Physics. To avoid an “overload” of readings, here I have listed just a very few number of articles and books which (probably) are not the most representative of the subject. Pedagogical introductions on neutrino physics and oscillations: • “TASI lectures on neutrino physics”, A. de Gouvea, hep-ph/0411274 • “Celebrating the neutrino” Los Alamos Science n°25, 1997 (old but still good), http://library.lanl.gov/cgi-bin/getfile?number25.htm • Dubna lectures by V. Naumov, http://theor.jinr.ru/~vnaumov/ Recent reviews: • “Neutrino masses and mixings and…”, A. Strumia & F. Vissani, hep-ph/0606054 • “Global analysis of three-flavor neutrino masses and mixings”, G.L. Fogli et al., Prog. Part. Nucl. Phys. 57 742 (2006), hep-ph/0506083 Books: • “Massive Neutrinos in Physics and Astrophysics”, R. Mohapatra & P. Pal, World Scientific Lecture Notes in Physics - Vol. 72 • “Physics of Neutrinos”, M. Fukugita & T. Yanagida, Springer Links: • “The neutrino unbound”, by C. Giunti & M. Laveder, http://www.nu.to.infn.it/ A NEUTRINO TIMELINE 1927 Charles Drummond Ellis (along with James Chadwick and colleagues) establishes clearly that the beta decay spectrum is really continous, ending all controversies. 1930 Wolfgang Pauli hypothesizes the existence of neutrinos to account for the beta decay energy conservation crisis. 1932 Chadwick discovers the neutron. 1933 Enrico Fermi writes down the correct theory for beta decay, incorporating the neutrino. 1937 Majorana introduced the so-called Majorana neutrino hypothesis in which neutrinos and antineutrinos are considered the same particle.
    [Show full text]
  • Report and Opinion 2016;8(6) 1
    Report and Opinion 2016;8(6) http://www.sciencepub.net/report Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos Manjunath R Independent Researcher #16/1, 8 Th Main Road, Shivanagar, Rajajinagar, Bangalore: 560010, Karnataka, India [email protected], [email protected] “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” : Lord Kelvin Abstract: General public regards science as a beautiful truth. But it is absolutely-absolutely false. Science has fatal limitations. The whole the scientific community is ignorant about it. It is strange that scientists are not raising the issues. Science means truth, and scientists are proponents of the truth. But they are teaching incorrect ideas to children (upcoming scientists) in schools /colleges etc. One who will raise the issue will face unprecedented initial criticism. Anyone can read the book and find out the truth. It is open to everyone. [Manjunath R. Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos. Rep Opinion 2016;8(6):1-81]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 1. doi:10.7537/marsroj08061601. Keywords: Science; Cosmos; Equations; Dimensions; Creation; Big Bang. “But the creative principle resides in Subaltern notable – built on the work of the great mathematics. In a certain sense, therefore, I hold it astronomers Galileo Galilei, Nicolaus Copernicus true that pure thought can
    [Show full text]
  • Implementation Guide
    GREAT MINDS® SCIENCE Implementation Guide A Guide for Teachers Great Minds® Science Implementation Guide Contents Contents ........................................................................................................................................................................................... 1 Introduction ...................................................................................................................................................................................... 2 Foundations .................................................................................................................................................................................. 2 Product Components .................................................................................................................................................................... 2 Learning Design............................................................................................................................................................................. 5 Scope and Sequence ..................................................................................................................................................................... 6 Research in Action ........................................................................................................................................................................ 7 Getting Started ..............................................................................................................................................................................
    [Show full text]
  • LANL Overview Brochure
    LOS ALAMOS NATIONAL LAB: • Delivers global and national nuclear security • Fosters excellence in science and engineering • Attracts, inspires and develops world-class talent that ensures a vital workplace MISSION VISION VALUES To solve national security To deliver science and technology Service, Excellence, Integrity, challenges through that protect our nation Teamwork, Stewardship, scientific excellence and promote world stability Safety and Security YOUR INNOVATION IS INVITED lanl.jobs www.lanl.gov/careers/career-options/postdoctoral- APPLY research [email protected] @LosAlamosJobs CONNECT linkedin.com/company/los-alamos-national-laboratory facebook.com/LosAlamosNationalLab youtube.com/user/LosAlamosNationalLab DISCOVER A WORLD-CLASS SETTING FOR NATIONAL SECURITY Learn about our programs, our people and our rewards WHAT WE DO SCIENCE PILLARS: LEVERAGING OUR CAPABILITIES Areas of Operation • Accelerators and Electrodynamics • Astrophysics and Cosmology INFORMATION SCIENCE MATERIALS FOR • Bioscience, Biosecurity and Health AND TECHNOLOGY THE FUTURE • Business Operations We are leveraging advances in theory, In materials science, we are • Chemical Science algorithms and the exponential optimizing materials for national • Earth and Space Sciences Values growth of high-performance security applications by predicting computing to accelerate the and controlling their performance • Energy integrative and predictive capability and functionality through • Engineering of the scientific method. discovery science and engineering. • High-Energy-Density
    [Show full text]
  • Teoretisk Fysik
    1 Teoretisk fysik Institutionen för fysik Helsingfors Universitet 12.11. 2008 Paul Hoyer 530013 Presentation av de fysikaliska vetenskaperna (3 sp, 1 sv) Kursbeskrivning: I kursen presenteras de fysikaliska vetenskaperna med sina huvudämnen astronomi, fysik, geofysik, meteorologi samt teoretisk fysik. Den allmänna studiegången presenteras samt en inblick i arbetsmarkanden för utexaminerade fysiker ges. Kursens centrala innehåll: Kursen innehåller en presentation av de fysikaliska vetenskapernas huvudämnes uppbyggnad samt centrala forskningsobjekt. Presentationen ges av institutionens lärare samt av utomstående forskare och fysiker i industrin. Centrala färdigheter: Att kunna tillgodogöra sig en muntlig presentation sam föra en diskussion om det presenterade temat. Kommentarer: På kursen kan man även behandla speciella ämnesområden, såsom: speciella forskningsområden inom fysiken samt specifika önskemål inom studierna. 2 Bakgrund Den fortgående specialiseringen inom naturvetenskaperna ledde till att teoretisk fysik utvecklades till ett eget delområde av fysiken Professurer i teoretisk fysik år 1900: 8 i Tyskland, 2 i USA,1 i Holland, 0 i Storbritannien Professorer i teoretisk fysik år 2008: Talrika! Även forskningsinstitut för teoretisk fysik (Nordita @ Stockholm, Kavli @ Santa Barbara,...) Teoretisk fysik är egentligen en metod (jfr. experimentell och numerisk fysik) som täcker alla områden av fysiken: Kondenserad materie Optik Kärnfysik Högenergifysik,... 3 Kring nyttan av teoretisk fysik Rutherford 1910: “How can a fellow sit down at a table and calculate something that would take me, me, six months to measure in the laboratory?” 1928: Dirac realized that his equation in fact describes two spin-1/2 particles with opposite charge. He first thought the two were the electron and the proton, but it was then pointed out to him by Igor Tamm and Robert Oppenheimer that they must have the same mass, and the new particle became the anti-electron, the positron.
    [Show full text]
  • Deconstruction: Standard Model Discoveries
    deconstruction: standard model discoveries elementary types of particles form the basis for the theoretical framework known as the Sixteen Standard Model of fundamental particles and forces. J.J. Thomson discovered the electron in 1897, while scientists at Fermilab saw the first direct interaction of a tau neutrino with matter less than 10 years ago. This graphic names the 16 particle types and shows when and where they were discovered. These particles also exist in the form of antimatter particles, with the same mass and the opposite electric charge. Together, they account for about 300 subatomic particles observed in experiments so far. The Standard Model also predicts the Higgs boson, which still eludes experimental detection. Experiments at Fermilab and CERN could see the first signals for this particle in the next couple of years. Other funda- mental particles must exist, too. The Standard Model does not account for dark matter, which appears to make up 83 percent of all matter in the universe. 1968: SLAC 1974: Brookhaven & SLAC 1995: Fermilab 1979: DESY u c t g up quark charm quark top quark gluon 1968: SLAC 1947: Manchester University 1977: Fermilab 1923: Washington University* d s b γ down quark strange quark bottom quark photon 1956: Savannah River Plant 1962: Brookhaven 2000: Fermilab 1983: CERN νe νμ ντ W electron neutrino muon neutrino tau neutrino W boson 1897: Cavendish Laboratory 1937 : Caltech and Harvard 1976: SLAC 1983: CERN e μ τ Z electron muon tau Z boson *Scientists suspected for several hundred years that light consists of particles. Many experiments and theoretical explana- tions have led to the discovery of the photon, which explains both wave and particle properties of light.
    [Show full text]
  • Nobel Laureates Published In
    Nobel Laureates Published in Science has published the research of over 400 Laureates since the award’s inception in 1901! Award categories include Chemistry, Physics, and Medicine. Listed here are prize-winning authors from 1990 to the present, with the number of articles each Laureate published in Science. MEDICINE Articles CHEMISTRY Articles PHYSICS Articles 2015 2016 2014 William C. Campbell . 2 Ben Feringa —Netherlands........................5 Shuji Namakura—Japan .......................... 1 J. Fraser Stoddart—UK . 7 2014 2012 John O’Keefe—US...................................3 2015 Serge Haroche—France . 1 May-Britt Moser—Norway .......................11 Tomas Lindahl—US .................................4 David J. Wineland—US ............................12 Edvard I. Moser—Norway ........................11 Paul Modrich—US...................................4 Aziz Sancar—US.....................................7 2011 2013 Saul Perlmutter—US ............................... 1 2014 James E. Rothman—US ......................... 10 Brian P. Schmidt—US/Australia ................. 1 Eric Betzig—US ......................................9 Randy Schekman—US.............................5 Stefan W. Hell—Germany..........................6 2010 Thomas C. Südhof—Germany ..................13 William E. Moerner—US ...........................5 Andre Geim—Russia/UK..........................6 2012 Konstantin Novoselov—Russia/UK ............5 2013 Sir John B. Gurdon—UK . 1 Martin Karplas—Austria...........................4 2007 Shinya Yamanaka—Japan.........................3
    [Show full text]