Free-Living Copepods of the Arabian Sea: Distributions and Research Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

Free-Living Copepods of the Arabian Sea: Distributions and Research Perspectives Indian Journal of Marine Sciences Vol. 28, June 1999, pp. 146-149 Free-living copepods of the Arabian Sea: Distributions and research perspectives M. Madhupratap National Institute of Oceanography, Dona-Paula, Goa 403 004, India Received 5 December 1997; revised 29 January /999 The subclass Copepoda consisL<; of 10 orders and exhibit great diversity in morphology as well as the habitats they occupy. Within the orders themselves, there are sometimes overlaps-some are free living or could be parasitic. There are approximately 11500 known species in this subclass. This paper briefly outlines the distribution, abundances and general feeding habitats of free-living copepods from the Arabian Sea. The role of taxonomy in biodiversity studies, estimates of grazing and production rates of copepods, diap'ause and carbon fluxes through vertical migration and defecation are some problems which need to be addressed from this region. The· members of the subclass Copepoda Milne­ important in fi sheries (as food), maintaining Edwards 1840 (Superclass Crustacea Pennant 1777) regenerated primary production, carbon flux and are one of the most abundant among zooplankton mosquito control. This paper will address the groups. They are the most plentiful multicellular distribution of free-living copepods from the Arabian animals on earth, outnumbering insects, which has Sea and adjacent areas. Some of the future research more species but fewer individuals '·2 . It consists of problems are also briefly discussed. 10 orders viz. Calanoida, Harpacticoida, Cyclopoida, Poecilostomatoida, Siphonostomatoida, Distribution and abundance Monstrilloida, Misophrioida, Mormonilloida, Poecilostomatoida-This order although pre­ Platycopioida and Gelyelloida}·5. They are diverse, dominantly parasitic, have five famjlies (Corycaeida, occurring in marine, esq.larine and freshwater areas. Oncaeidae Paralubbokiidae, Sapphrinidae and They also live in interstitial, subterranean and deep­ Urocopiidae) which are free-living. They are common sea hydrothermal vent habitats ( Table I). in the Arabian Sea7 and may account up to 40% of the The antiquity of modem copepods date back to the total copepods in the upper 2000 m water column. Cretaceous and beyond6. At present there are Many new or unrecorded species were overlooked approximately I 1500 known species of copepods earlier because of the larger mesh size usually belonging to 198 families and 1600 genera2. About employed to collect zooplankton and al so due to one-third of marine copepod species are parasites or paucity of deep-water sampling. Bottger-Schnack7 associated with invertebrate hosts. They mainly found nearly 70 species from the famil y Oncaeidae belong to the orders Monstrilloida, Poecilostomatoida alone from the Arabian Sea as compared to earlier and Siphonostomatoida and may have a partial listings of 4-5 species. Poecilostomatoida are planKtonic life. Species belonging to the famjlies ubiquitous in coastal and offshore waters and the Calanoida, Platycopioida, Gelyelloida, free-living forms appear to be carnivorous. Mormonilloida, Misophrioida, Harpacticoida and Cyclopoida-Cyclopoids are common in marine Cyclopoida are free-living although the last two and estuarine waters and are often dominant in contain a few parasitic species as well5 (similarly freshwater habitat. In the Arabian Sea they may Poecilostomatoida has some free-living species as sometime form up to 20% of the copepods in surface well). layers7.8 and are generally considered as carnivores9 . From an economic point of view, copepods are The order consists of 7 farrulies and about 500 species'o of which the farrulies Cyclopidae (most ly. NIO Contribution No. 2620 freshwater), Cycloipiniuae (coastal) and Oithoind :!~ MADHUPRATAP: FREE LIVING COPEPODS 147 Table I-Evolutionary diversity in some orders of Copepoda5. Names of some of the orders are abbreviated. Calanoida Harpecti- Miso- Monstril- Cyclo- Poecilo- Siphono- coida phrioda loida poida stom stom Habitat Marine P P P P P P P Freshwater R P A A P R P Interstitial A p A A P A A Subre'ITanean R P P A P A A Pelagic P R P P P A R Free-living P P P A P A A Parasi tic or associated A R A P R P P Hyperparasitic A A A A A P P Drought-resistant eggs A P A A P A A Dee- sea+vent R P P A R P P Adaptatiolls to special life cycle Pigmy males, parasitic A A A A A P P _ 4 on females Great sexual dimorphism A A A P A P P Great range in body size A A A A R R P of females Using intermediate host A A A P A R P More than 1 type of male A A A A P A A Only I ovisac A P A A P P P Totals 3P 8P 5P 5P 9P 7P l OP 3R 2R 3R 3R lR A = Absent in the group, P = Present in the group, R = Rare in the group (coastal and oceanic) are free living. In the Arabian exclusively freshwater whereas Acartiidae and Sea, the genera Oithona and Paraoithona are Pseudodiaptomidae are generally specialists in common7 . The species O. oculata seems to be estuarine environment. Madhupratap & Haridasl 'i li sts confined to the atolls of the Lakshdweep8 and is 198 species of calanoids from the epipelagic realms associated with coral reefs elsewhere in the world as of the northern Indian Ocean. Some more are well.· epibenthic forms . Most of them are herbivores Harpacticoida-Members of this order occupy although a few genera I ike Euchaeta and Labidocera diverse niches (interstitial, epibenthic, subterranean, are carnivores. The latter genus seems to be specially deep-sea vent) and a few are pelagic or parasitic5 . adapted to a neustonic life. From the western Indian Th:y also h i ,,' ·J. nges from marine to freshwater and Ocean information on bathypelagic calanoids is the m o :, ~ <lLun dant forms are associated with confined to a Single study 16 . The study identified 3 10 sediments. 111 the pelagics of the Arabian Sea, their species with one new genus. 17 new species, 8 num ers :1 rc usually 10WII , but may form up to 6% of previously unknown males and 1 previously unknown copepod populations l2 . Haridas & Rao l3 listed five female with 78 new records from the Indian Ocean. genera (Macrose{clla, Microsetella, Miracia, M isophrioidn- T here does not seem to be any Clytemnestra and Acgisthus) to be common in the information on this order from the Arabian Sea. This epipelagic Arabian Sea. In addition, the genera group is bel ie ved to have originated in deep-sea Loll gipedia, EuterpinQ , Metis and Distioculus also hyperbenthic habitat and rad iated to colonise ~h allow occur in surface layers while Bathyidia and Tisbe neritic water' and bathypclagic zone of the ocean". It occupy th e bathypelagic zone7• The inbenthic consists of a ~ ill g le fa mil y Misophriidae. harpacti coids from this region need further attention. PlJ-lIycopioidn- This urder is also represented onlY Calalloida-Calanoids are arguably the most by one fami ly (Platycopiidae) and three g~ n e ra and common and abundant planktonic copepods anywhere one of th em is foun d in hyperbenthic environment in in the world oceans and al "o in estuarine and shall ow nerit I e waters 17 The other I wn inhabi t freshwater habitats. It Cl' nsis!s of II superfamilies anchi al ine caves. T herv is no record of this order and 38 families i4 . The family Di aptomidae are from the Arabian Sea. 148 INDIAN J. MAR. SCI. VOL. 28, JUNE 1999 GeLyelloida-This consists of two congeneric may be maintained by inefficient or sloppy species (faniily Gelyellidae) and is a freshwater zooplankton feeding22 . Recent studies23 indicate that inhabitant of subterranean water in Europe17. feeding on some diatoms may actually inhibit Mormonilloida-The genus Mormonilla consists copepod fecundity or egg production. Estimates of of two species viz. minor and phasma and both occur egg production rates are also an indirect tool in in the mesopelagic depths of the Arabian Sea. The calculating secc ndary production24 . These rates will adult male of this genus, probably a non-feeding give us an insi6ht to exploitable fishery. It is also stage, was discovered only recentlyl8. known that many copepods feed on niicrozooplankton or even bacteria (niicrobial loop) and maintain the Research problems biomass during lean phytoplankton regimes25 . The From a taxonomical point, copepods of the mechanisms of this paradox of the Arabian Sea25 that epipelagic habitat of the Arabian Sea and adjacent mesozooplankton biomass in the niixed layer remains waters seem to be well studied, but the meso and more or less constant despite varying phytoplankton bathypelagic residents are poorly understood. The regimes are yet to be quantified. latter is also applicable to the epi or hyper benthic Other challenges which require attentions pertain habitats from where quite a number of new species to vertical distributions and carbon flux. In the have been recently described, from elsewhere in the Arabian Sea, the depths between 150 to 1000 m are world. From an ecological point of view also almost anoxic. How are zooplankton vertical epibenthic forms are important since it was recently migrations affected by this? These mesopelagic demonstrated 19 that zooplankton (mainly depths, however, sustain a turnover of about 100 harpacticoids) densities may exceed 100,000 million tons/year of myctophid (lantern) fishes26 . organisms/ m2 in the sandy bottoms of the lagoons of These fishes exclusively feed on zooplankton and we the Lakshadweep and 80% migrate into the water do not know how such a large biomass is sustained. column at night. The role of taxonomy as a tool in They seem to be specially adapted to the low oxygen biodiversity studies is also evident when we consider concentrations and this may be of evolutionary that 37% of species of copepods were described in significance in escaping from predators.
Recommended publications
  • Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
    Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD.
    [Show full text]
  • Twenty Thousand Parasites Under The
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles.
    [Show full text]
  • Reported Siphonostomatoid Copepods Parasitic on Marine Fishes of Southern Africa
    REPORTED SIPHONOSTOMATOID COPEPODS PARASITIC ON MARINE FISHES OF SOUTHERN AFRICA BY SUSAN M. DIPPENAAR1) School of Molecular and Life Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa ABSTRACT Worldwide there are more than 12000 species of copepods known, of which 4224 are symbiotic. Most of the symbiotic species belong to two orders, Poecilostomatoida (1771 species) and Siphonos- tomatoida (1840 species). The order Siphonostomatoida currently consists of 40 families that are mostly marine and infect invertebrates as well as vertebrates. In a report on the status of the marine biodiversity of South Africa, parasitic invertebrates were highlighted as taxa about which very little is known. A list was compiled of all the records of siphonostomatoids of marine fishes from southern African waters (from northern Angola along the Atlantic Ocean to northern Mozambique along the Indian Ocean, including the west coast of Madagascar and the Mozambique channel). Quite a few controversial reports exist that are discussed. The number of species recorded from southern African waters comprises a mere 9% of the known species. RÉSUMÉ Dans le monde, il y a plus de 12000 espèces de Copépodes connus, dont 4224 sont des symbiotes. La plupart de ces espèces symbiotes appartiennent à deux ordres, les Poecilostomatoida (1771 espèces) et les Siphonostomatoida (1840 espèces). L’ordre des Siphonostomatoida comprend actuellement 40 familles, qui sont pour la plupart marines, et qui infectent des invertébrés aussi bien que des vertébrés. Dans un rapport sur l’état de la biodiversité marine en Afrique du Sud, les invertébrés parasites ont été remarqués comme étant très peu connus.
    [Show full text]
  • The Salmon Louse Genome: Copepod Features and Parasitic Adaptations
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435234; this version posted March 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The salmon louse genome: copepod features and parasitic adaptations. Supplementary files are available here: DOI: 10.5281/zenodo.4600850 Rasmus Skern-Mauritzen§a,1, Ketil Malde*1,2, Christiane Eichner*2, Michael Dondrup*3, Tomasz Furmanek1, Francois Besnier1, Anna Zofia Komisarczuk2, Michael Nuhn4, Sussie Dalvin1, Rolf B. Edvardsen1, Sindre Grotmol2, Egil Karlsbakk2, Paul Kersey4,5, Jong S. Leong6, Kevin A. Glover1, Sigbjørn Lien7, Inge Jonassen3, Ben F. Koop6, and Frank Nilsen§b,1,2. §Corresponding authors: [email protected]§a, [email protected]§b *Equally contributing authors 1Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway 2University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway 3Computational Biology Unit, Department of Informatics, University of Bergen 4EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK 5 Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK 6 Department of Biology, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada 7 Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, 1433, Ås, Norway 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435234; this version posted March 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Fecundity and Survival of the Calanoid Copepod <I>Acartia Tonsa
    The University of Southern Mississippi The Aquila Digital Community Master's Theses Spring 5-2007 Fecundity and Survival of the Calanoid Copepod Acartia tonsa Fed Isochrysis galeana (Tahitian Strain) and Chaetoceros mulleri Angelos Apeitos University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/masters_theses Part of the Aquaculture and Fisheries Commons, and the Marine Biology Commons Recommended Citation Apeitos, Angelos, "Fecundity and Survival of the Calanoid Copepod Acartia tonsa Fed Isochrysis galeana (Tahitian Strain) and Chaetoceros mulleri" (2007). Master's Theses. 276. https://aquila.usm.edu/masters_theses/276 This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi FECUNDITY AND SURVIVAL OF THE CALANOID COPEPOD ACARTIA TONSA FED ISOCHRYSIS GALEANA (TAHITIAN STRAIN) AND CHAETOCEROS MULLER! by Angelos Apeitos A Thesis Submitted to the Graduate Studies Office of the University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Master of Science May2007 ABS1RACT FECUNDITY AND SURVIVAL OF THE CALANOID COPEPOD ACARTIA TONSA FED ISOCHRYSIS GALEANA (TAHITIAN STRAIN) AND CHAETOCEROS MULLER! Historically, red snapper (Lutjanus campechanus) larviculture at the Gulf Coast Research Lab (GCRL) used 25 ppt artificial salt water and mixed, wild zooplankton composed primarily of Acartia tonsa, a calanoid copepod. Acartia tonsa was collected from the estuarine waters of Davis Bayou and bloomed in outdoor tanks from which it was harvested and fed to red sapper larvae.
    [Show full text]
  • A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 6-1-2010 A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off orF t Lauderdale, Florida Jessica L. Bostock Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Jessica L. Bostock. 2010. A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (92) https://nsuworks.nova.edu/occ_stuetd/92. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Nova Southeastern University Oceanographic Center A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current off Fort Lauderdale, Florida By Jessica L. Bostock Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University June 2010 1 Thesis of Jessica L. Bostock Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science: Marine Biology Nova Southeastern University Oceanographic Center June 2010 Approved: Thesis Committee Major Professor :______________________________ Amy C. Hirons, Ph.D. Committee Member :___________________________ Alexander Soloviev, Ph.D.
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • A New Species of Monstrillopsis (Crustacea, Copepoda, Monstrilloida) from the Lower Northwest Passage of the Canadian Arctic
    A peer-reviewed open-access journal ZooKeys 709: 1–16 A(2017) new species of Monstrillopsis (Crustacea, Copepoda, Monstrilloida)... 1 doi: 10.3897/zookeys.708.20181 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Monstrillopsis (Crustacea, Copepoda, Monstrilloida) from the lower Northwest Passage of the Canadian Arctic Aurélie Delaforge1, Eduardo Suárez-Morales2, Wojciech Walkusz3, Karley Campbell1, C. J. Mundy1 1 Centre for Earth Observation Science (CEOS), Faculty of Environment, Earth and Resources, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 2 El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal. P.O. Box 424. Chetumal, Quintana Roo 77014. Mexico 3 Department of Fisheries and Oceans, Winnipeg, Manitoba, Canada R3T 2N6 Corresponding author: Eduardo Suárez-Morales ([email protected]) Academic editor: D. Defaye | Received 21 August 2017 | Accepted 4 October 2017 | Published 18 October 2017 http://zoobank.org/FC4FADA8-EDDD-41CF-AB6B-2FE812BC8452 Citation: Delaforge A, Suárez-Morales E, Walkusz W, Campbell K, Mundy CJ (2017) A new species of Monstrillopsis (Crustacea, Copepoda, Monstrilloida) from the lower Northwest Passage of the Canadian Arctic. ZooKeys 709: 1–16. https://doi.org/10.3897/zookeys.709.20181 Abstract A new species of monstrilloid copepod, Monstrillopsis planifrons sp. n., is described from an adult female that was collected beneath snow-covered sea ice during the 2014 Ice Covered Ecosystem – CAMbridge bay Process Study (ICE-CAMPS) in Dease Strait
    [Show full text]
  • Feeding Behavior of Nauplii of the Genus Eucalanus (Copepoda, Calanoida)
    MARINE ECOLOGY PROGRESS SERIES Vol. 57: 129-136. 1989 Published October 5 Mar. Ecol. Prog. Ser. Feeding behavior of nauplii of the genus Eucalanus (Copepoda, Calanoida) Gustav-Adolf Paffenhofer, Kellie D. Lewis Skidaway Institute of Oceanography, PO Box 13687, Savannah, Georgia 31416, USA ABSTRACT: The goals of this and following studies were to describe how nauplii of related calanoid copepods gather and ingest phytoplankton cells, and to compare their feeding behavior with that of copepodids and adult females of the same species. Nauplii of the calanoids Eucalanus pileatus and E. crassus draw particles towards themselves creating a feeding current. They actively capture diatoms > 10 pm width with oriented movements of their second antennae and mandibles. The cells are displaced toward the median posterior of the mouth and then are moved anteriorly for ingestion. The nauplii gather, actively capture, and ingest particles using 2 pairs of appendages, whereas copepodids and females use at least 4 of their 5 pairs of appendages (second antennae, maxillipeds, first and second maxillae) to accomplish the same task. These nauplii are not able to passively capture small cells efficiently like copepodids and females because they lack a fixture similar to the second maxillae. Gathering and ingestion by late nauplii of E. crassus and E. pileatus require together an average of 183 ms for a cell of Thalassiosira weissflogii (l2 pm width) and 1.17 S fox Rhizosolenia alata (150 to 500 pm length). Although na.uplii of related species show little difference in appendage morphology, they differ markedly in feeding and swimming behavior. Their behavior is partly reflected in the behavior of copepodids and adult females.
    [Show full text]
  • Development and Application of Real-Time PCR for Specific Detection of Lepeophtheirus Salmonis and Caligus Elongatus Larvae in Scottish Plankton Samples
    DISEASES OF AQUATIC ORGANISMS Vol. 73: 141–150, 2006 Published December 14 Dis Aquat Org Development and application of real-time PCR for specific detection of Lepeophtheirus salmonis and Caligus elongatus larvae in Scottish plankton samples Alastair J. A. McBeath*, Michael J. Penston, Michael Snow, Paul F. Cook, Ian R. Bricknell, Carey O. Cunningham FRS Marine Laboratory, PO Box 101, Victoria Road, Aberdeen AB11 9DB, UK ABSTRACT: Lepeophtheirus salmonis and Caligus elongatus are important parasites of wild and cul- tured salmonids in the Northern Hemisphere. These species, generically referred to as sea lice, are estimated to cost the Scottish aquaculture industry in excess of £25 million per annum. There is great interest in countries such as Ireland, Scotland, Norway and Canada to sample sea lice larvae in their natural environment in order to understand lice larvae distribution and improve parasite control. Microscopy is currently relied on for use in the routine identification of sea lice larvae in plankton samples. This method is, however, limited by its time-consuming nature and requirement for highly skilled personnel. The development of alternative methods for the detection of sea lice larvae which might be used to complement and support microscopic examinations of environmental samples is thus desirable. In this study, a genetic method utilising a real-time PCR Taqman®-MGB probe-based assay targeting the mitochondrial cytochrome oxidase I (mtCOI) gene was developed, which allowed species-specific detection of L. salmonis and C. elongatus larvae from unsorted natural and spiked plankton samples. Real-time PCR is a rapid, sensitive, highly specific and potentially quantitative technique.
    [Show full text]
  • A Synthesis Tree of the Copepoda: Integrating Phylogenetic and Taxonomic Data Reveals Multiple Origins of Parasitism
    A synthesis tree of the Copepoda: integrating phylogenetic and taxonomic data reveals multiple origins of parasitism James P. Bernot1,2, Geoffrey A. Boxshall3 and Keith A. Crandall1,2 1 Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC, United States of America 2 Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America 3 Department of Life Sciences, Natural History Museum, London, United Kingdom ABSTRACT The Copepoda is a clade of pancrustaceans containing 14,485 species that are extremely varied in their morphology and lifestyle. Not only do copepods dominate marine plank- ton and sediment communities and make up a sizeable component of the freshwater plankton, but over 6,000 species are symbiotically associated with every major phylum of marine metazoans, mostly as parasites. Unfortunately, our understanding of copepod evolutionary relationships is relatively limited in part because of their extremely divergent morphology, sparse taxon sampling in molecular phylogenetic analyses, a reliance on only a handful of molecular markers, and little taxonomic overlap between phylogenetic studies. Here, a synthesis tree method is used to integrate published phylogenies into a more comprehensive tree of copepods by leveraging phylogenetic and taxonomic data. A literature review in this study finds fewer than 500 species of copepods have been sampled in molecular phylogenetic studies. Using the Open Tree of Life platform, those taxa that have been sampled in previous phylogenetic studies are grafted together and combined with the underlying copepod taxonomic hierarchy from the Open Tree of Life Taxonomy to make a synthesis phylogeny of all copepod species.
    [Show full text]
  • Effects of Salmon Lice on Sea Trout
    1044 Effects of salmon lice on sea trout - a literature review Eva B. Thorstad, Christopher D. Todd, Pål Arne Bjørn, Patrick G. Gargan, Knut Wiik Vollset, Elina Halttunen, Steinar Kålås, Ingebrigt Uglem, Marius Berg & Bengt Finstad NINA Publications NINA Report (NINA Rapport) This is a electronic series beginning in 2005, which replaces the earlier series of NINA commis- sioned reports and NINA project reports. This will be NINA’s usual form of reporting completed re- search, monitoring or review work to clients. In addition, the series will include much of the insti- tute’s other reporting, for example from seminars and conferences, results of internal research and review work and literature studies, etc. NINA reports may also be issued in a second language where appropriate. NINA Special Report (NINA Temahefte) As the name suggests, special reports deal with special subjects. Special reports are produced as required and the series ranges widely: from systematic identification keys to information on im- portant problem areas in society. NINA special reports are usually given a popular scientific form with more weight on illustrations than a NINA report. NINA Factsheet (NINA Fakta) Factsheets have as their goal to make NINA’s research results quickly and easily accessible to the general public. The are sent to the press, civil society organisations, nature management at all lev- els, politicians, and other special interests. Fact sheets give a short presentation of some of our most important research themes. Other publishing In addition to reporting in NINA’s own series, the institute’s employees publish a large proportion of their scientific results in international journals, popular science books and magazines.
    [Show full text]