Motherboard/Processor/Memory Different Kinds of SLOTS Different
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2004 Gamers' Hardware Upgrade Guide
Ace’s Hardware 2004 Gamers’ Hardware Upgrade Guide 2004 Gamers’ Hardware Upgrade Guide By Johan De Gelas – January 2004 Introduction Last week, we showed you a preview of the Athlon 64 3400+. Today, we'll investigate this new CPU as an upgrade to an existing system. How much performance do you gain when upgrading? What about the other features aside from performance, such as Cool'n'Quiet and more thermal and mechanical safety? As always, we start with a base system to be upgraded. This time around, our base system is equipped with an Athlon XP 2100+, as previous polls among our readers show that the faster versions of the Athlon XP "Palomino" were very popular in the early days of 2003. Now in 2004, Palomino is getting a little long in the tooth, so it's interesting to know whether or not an upgrade may be worthwhile. Our old system also contains a GeForce Ti 4200 and 512 MB of DDR266 (PC2100) memory. We will upgrade the CPU (to the Athlon 4 3400+) and memory (to DDR400 CAS 2) and compare that upgrade with one that simply upgrades the video card. As mentioned previously, we've done this before in many of our Gamer's Upgrade Guides. However, the gaming industry is not sitting still, and we are moving from hybrid DirectX 7/8 games to DirectX 8/9 games, which - as you will see - behave quite differently. The games you'll see tested in detail today are Halo 1.03, Return to Castle Wolfenstein: Enemy Territory, and X²- The Threat. -
Titan X Amd 1.2 V4 Ig 20210319
English TITAN X_AMD 1.2 Installation Guide V4 Parts List A CPU Water Block A A-1 BPTA-CPUMS-V2-SKA ..........1 pc A-1 A-2 A-2 Backplane assembly ..............1 set B Fittings B-1 BPTA-DOTFH1622 ...............4 pcs B-2 TA-F61 ...................................2 pcs B-3 BPTA-F95 ..............................2 pcs B-4 BP-RIGOS5 ...........................2 pcs B-5 TA-F60 ..................................2 pcs B-6 TA-F40 ..................................2 pcs C Accessory C-1 Hard tube ..............................2 pcs C-2 Fitting + soft tube ....................1 pc C-3 CPU set SCM3FL20 SPRING B SCM3F6 1mm Spacer Back Pad Paste Pad Metal Backplane M3x32mm Screw B-1 B-2 B-3 B-4 B-5 B-6 C C-1 Hard Tube ※ The allowable variance in tube length is ± 2mm C-2 Fitting + soft tube Bitspower reserves the right to change the product design and interpretations. These are subject to change without notice. Product colors and accessories are based on the actual product. — 1 — I. AMD Motherboard system 54 AMD SOCKET 939 / 754 / 940 IN 48 AMD SOCKET AM4 AMD SOCKET AM3 / AM3+ AMD SOCKET AM2 / AM2+ AMD SOCKET FM1 / FM2+ Bitspower Fan and DRGB RF Remote Controller Hub (Not included) are now available at microcenter.com DRGB PIN on Motherboard or other equipment. 96 90 BPTA-RFCHUB The CPU water block has a DRGB cable, which AMD SOCKET AM4 AMD SOCKET AM3 AM3+ / AMD SOCKET AM2 AM2+ / AMD SOCKET FM1 / FM2+ can be connected to the DRGB extension cable of the radiator fans. Fan and DRGB RF Remote Motherboard Controller Hub (Not included) OUT DRGB LED Do not over-tighten the thumb screws Installation (SCM3FL20). -
Компютърна Система С Процесор Pentium Pro И MMX
ПГТТ „Христо Ботев” – гр. Смолян ДЪРЖАВЕН ИЗПИТ ПО ТЕОРИЯ НА СПЕЦИАЛНОСТТА ЗА ПРИДОБИВАНЕ НА ТРЕТА СТЕПЕН НА ПРОФЕСИОНАЛНА КВАЛИФИКАЦИЯ по професия код № 523050 Техник на компютърни системи специалност код №5230501 Компютърна техника и технологии Изпитен билет № 7 Изпитна тема: Компютърна система с процесор Pentium Pro и MMX. 1.Блокова схема на дънна платка с процесор Intel Pentium Pro, Socket 8. незадължителен Процесор Процесор Pentium Pro Pentium Pro L2 кеш L2 кеш Процесорна шина 60/66 MHz адреси/ управление данни 64 b PMC PCI Основна DBX мост и памет Ускорител на контролер на 8 MB до 1 GB шината за паметта данни PCI шина 33 MHz твърд диск/ CD-ROM EIDE PIIX3 PCI PCI-ISA-IDE устройства ускорител USB портове ISA шина 8 MHz прекъсвания I/O APIC незадължителен ISA устройства фиг. 1 Професия „Техник на компютърни системи“ специалност “Компютърна техника и технологии“ ПГТТ „Христо Ботев” – гр. Смолян 2.Chipset от серията 430хх, архитектура на Chipset. фиг. 2 Първият чипсет на Интел за Pentium е 430LX (Меркурий). Когато първият Pentium процесор дебютира през 1993 година, едновременно с него Intel представят и чипсета 430LX, както и напълно завършена дънна платка. Този чипсет се използва само с оригиналните Pentium-и, които работят на 60MHz и 66MHz. Te са 5-волтови чипове и се използват на дънни платки с процесорни цокли тип Socket 4. Чипсетът 430LX се състои от общо три чипа, образуващи северния мост. Главният от тях е системният контролер 82434LX. Той съдържа интерфейса между процесора и паметта, кеш контролера и контролера на PCI шината. Има и една двойка чипове за ускоряване на интерфейса на PCI шината, които са два еднакви 82433LX чипа. -
Super 7™ Motherboard
SY-5EH5/5EHM V1.0 Super 7Ô Motherboard ************************************************ Pentium® Class CPU supported ETEQ82C663 PCI/AGP Motherboard AT Form Factor ************************************************ User's Guide & Technical Reference NSTL “Year 2000 Test” Certification Letter September 23, 1998 Testing Date: September 23, 1998 Certification Date: September 23, 1998 Certification Number: NCY2000-980923-004 To Whom It May Concern: We are please to inform you that the “SY-5EHM/5EH5” system has passed NSTL Year 2000 certification test program. The Year 2000 test program tests a personal computer for its ability to support the year 2000. The “SY-5EHM/5EH5: system is eligible to carry the NSTL :Year 2000 Certification” seal. The Year 2000 certification test has been done under the following system configuration: Company Name : SOYO COMPUTER INC. System Model Name : SY-5EHM/5EH5 Hardware Revision : N/A CPU Model : Intel Pentium 200/66Mhz On Board Memory/L2 Cache : PC100 SDRAM DIMM 32MBx1 /1MB System BIOS : Award Modular BIOS V4.51PG, An Energy Star Ally Copyright © 1984—98, EH-1A6,07/15/1998-VP3-586B- 8669-2A5LES2AC-00 Best regards, SPORTON INTERNATIONAL INC. Declaration of Conformity According to 47 CFR, Part 2 and 15 of the FCC Rules Declaration No.: D872907 July.10 1998 The following designated product EQUIPMENT: Main Board MODEL NO.: SY-5EH Which is the Class B digital device complies with 47 CFR Parts 2 and 15 of the FCC rules. Operation is subject to the following two conditions : (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. -
User's Guide PN: 961Ć047Ć081
6950 Enterprise Gateway Server USER’S GUIDE """""""""""""""""""""""""""" PN: 961-047-091 Revision D September 1999 " NOTICE The information contained herein is proprietary and is provided solely for the purpose of allowing customers to operate and service Intermec manufactured equipment and is not to be released, reproduced, or used for any other purpose without written permission of Intermec. Disclaimer of Warranties. The sample source code included in this document is presented for reference only. The code does not necessarily represent complete, tested programs. The code is provided AS IS WITH ALL FAULTS." ALL WARRANTIES ARE EXPRESSLY DISCLAIMED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. We welcome your comments concerning this publication. Although every effort has been made to keep it free of errors, some may occur. When reporting a specific problem, please describe it briefly and include the book title and part number, as well as the paragraph or figure number and the page number. Send your comments to: Intermec Technologies Corporation Publications Department 550 Second Street SE Cedar Rapids, IA 52401 INTERMEC and NORAND are registered trademarks and ENTERPRISE WIRELESS LAN, UAP, and UNIVERSAL ACCESS POINT are trademarks of Intermec Technologies Corporation. 1996 Intermec Technologies Corporation. All rights reserved. Acknowledgments AS/400 and IBM are registered trademarks of International Business Machines Corporation. DEC, VAX, and VT220 are registered trademarks of Digital Equipment Corporation. UNIX is a registered trademark of UNIX System Laboratories, Inc. B CAUTION: Intermec Technologies Corporation suggests you buy cables from us to connect with other devices. Our cables are safe, meet FCC rules, and suit our products. -
HDAMA Rev.G User's Guide
HDAMA rev.G HDAMA User’s Guide Release Date:Jul.2005 3.02 Version: Appendix BIOS Hardware Overview Setup Install Arima ServerBoard Manual COPYRIGHTS AND DISCLAIMERS ..........................................C-I ATTENTION: READ FIRST! ...................................... C-II Overview GENERAL SAFETY PRECAUTIONS .......................................C-2 ESD PRECAUTIONS ........................................................C-2 OPERATING PRECAUTIONS ................................................C-2 ABOUT THIS USER'S MANUAL ...........................................C-3 GETTING HELP ...............................................................C-3 SERVERBOARD SPECIFICATIONS ........................................C-5 SERVERBOARD LAYOUT ...................................................C-6 SERVERBOARD MAP .......................................................C-7 I/O PORT ARRAY ............................................................C-7 Hardware Installation MAP OF JUMPERS ...........................................................C-9 JUMPER SETTINGS ........................................................C-10 INSTALLING MEMORY .....................................................C-11 RECOMMENDED MEMORY CONFIGURATIONS .......................C-13 INSTALLING THE PROCESSOR AND HEATSINK ......................C-14 MAP OF SERVERBOARD CABLE CONNECTORS ...................C-16 ATX POWER CONNECTORS ............................................C-17 FLOPPY DISK DRIVE CONNECTOR ...................................C-18 PRIMARY IDE CONNECTORS ............................................C-18 -
System Management BIOS (SMBIOS) Reference 6 Specification
1 2 Document Number: DSP0134 3 Date: 2011-01-26 4 Version: 2.7.1 5 System Management BIOS (SMBIOS) Reference 6 Specification 7 Document Type: Specification 8 Document Status: DMTF Standard 9 Document Language: en-US 10 System Management BIOS (SMBIOS) Reference Specification DSP0134 11 Copyright Notice 12 Copyright © 2000, 2002, 2004–2011 Distributed Management Task Force, Inc. (DMTF). All rights 13 reserved. 14 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 15 management and interoperability. Members and non-members may reproduce DMTF specifications and 16 documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 17 time, the particular version and release date should always be noted. 18 Implementation of certain elements of this standard or proposed standard may be subject to third party 19 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 20 to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 21 or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 22 inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 23 any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 24 disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 25 incorporation -
PCSA Oct 2001
Understanding CPU Upgrades In theory, one way to t seems that every time a new software product is released the system require- ments are increased - everything from the hard drive capacity and CPU speed increase the performance of a Ito the required RAM. One of the apparently obvious ways to gain a speed PC with little effort is to increase is by upgrading the CPU. But such an upgrade isn’t always cost effective and in some cases simply increasing the available RAM can help considerably to upgrade the CPU. Surely it boost the apparent speed of the PC. Sometimes though the best (and maybe only) option is to upgrade the CPU, although this can be a more involved process than it can’t be that difficult? might at first seem due to socket/motherboard incompatibilities, differing CPU and Actually there’s lots to think RAM speed requirements, cooling problems and inevitably assorted knock-on effects causing the upgrade to be anything but cost effective. Also, it is worth about. remembering that just because the replacement CPU has, for example, double the clock rate of the old unit doesn’t necessarily mean that the new one will increase the By Phil Morris processing performance of the PC in question by anything like 100%. Technical Writer This article looks at some of the options for upgrading the CPUs in existing systems. It is extremely unlikely that recent processors like AMD’s Duron (and forthcoming Hammer) and Intel’s Pentium 4 and Itanium will require upgrading for some time, so I will omit those in the context of this article. -
Cray XT and Cray XE Y Y System Overview
Crayyy XT and Cray XE System Overview Customer Documentation and Training Overview Topics • System Overview – Cabinets, Chassis, and Blades – Compute and Service Nodes – Components of a Node Opteron Processor SeaStar ASIC • Portals API Design Gemini ASIC • System Networks • Interconnection Topologies 10/18/2010 Cray Private 2 Cray XT System 10/18/2010 Cray Private 3 System Overview Y Z GigE X 10 GigE GigE SMW Fibre Channels RAID Subsystem Compute node Login node Network node Boot /Syslog/Database nodes 10/18/2010 Cray Private I/O and Metadata nodes 4 Cabinet – The cabinet contains three chassis, a blower for cooling, a power distribution unit (PDU), a control system (CRMS), and the compute and service blades (modules) – All components of the system are air cooled A blower in the bottom of the cabinet cools the blades within the cabinet • Other rack-mounted devices within the cabinet have their own internal fans for cooling – The PDU is located behind the blower in the back of the cabinet 10/18/2010 Cray Private 5 Liquid Cooled Cabinets Heat exchanger Heat exchanger (XT5-HE LC only) (LC cabinets only) 48Vdc flexible Cage 2 buses Cage 2 Cage 1 Cage 1 Cage VRMs Cage 0 Cage 0 backplane assembly Cage ID controller Interconnect 01234567 Heat exchanger network cable Cage inlet (LC cabinets only) connection air temp sensor Airflow Heat exchanger (slot 3 rail) conditioner 48Vdc shelf 3 (XT5-HE LC only) 48Vdc shelf 2 L1 controller 48Vdc shelf 1 Blower speed controller (VFD) Blooewer PDU line filter XDP temperature XDP interface & humidity sensor -
Open Final Thesis2.Pdf
The Pennsylvania State University The Graduate School College of Engineering ARCHITECTURAL TECHNIQUES TO ENABLE RELIABLE AND HIGH PERFORMANCE MEMORY HIERARCHY IN CHIP MULTI-PROCESSORS A Dissertation in Computer Science and Engineering by Amin Jadidi © 2018 Amin Jadidi Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2018 The dissertation of Amin Jadidi was reviewed and approved∗ by the following: Chita R. Das Head of the Department of Computer Science and Engineering Dissertation Advisor, Chair of Committee Mahmut T. Kandemir Professor of Computer Science and Engineering John Sampson Assistant Professor of Computer Science and Engineering Prasenjit Mitra Professor of Information Sciences and Technology ∗Signatures are on file in the Graduate School. ii Abstract Constant technology scaling has enabled modern computing systems to achieve high degrees of thread-level parallelism, making the design of a highly scalable and dense memory hierarchy a major challenge. During the past few decades SRAM has been widely used as the dominant technology to build on-chip cache hierarchies. On the other hand, for the main memory, DRAM has been exploited to satisfy the applications demand. However, both of these two technologies face serious scalability and power consumption problems. While there has been enormous research work to address the drawbacks of these technologies, researchers have also been considering non-volatile memory technologies to replace SRAM and DRAM in future processors. Among different non-volatile technologies, Spin-Transfer Torque RAM (STT-RAM) and Phase Change Memory (PCM) are the most promising candidates to replace SRAM and DRAM technologies, respectively. Researchers believe that the memory hierarchy in future computing systems will consist of a hybrid combination of current technologies (i.e., SRAM and DRAM) and non-volatile technologies (e.g., STT-RAM, and PCM). -
VX97 User's Manual ASUS CONTACT INFORMATION Asustek COMPUTER INC
R VX97 Pentium Motherboard USER'S MANUAL USER'S NOTICE No part of this manual, including the products and softwares described in it, may be repro- duced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means, except documentation kept by the purchaser for backup pur- poses, without the express written permission of ASUSTeK COMPUTER INC. (“ASUS”). ASUS PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY OR FITNESS FOR A PAR- TICULAR PURPOSE. IN NO EVENT SHALL ASUS, ITS DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDEN- TAL, OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSI- NESS AND THE LIKE), EVEN IF ASUS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS MANUAL OR PRODUCT. Products and corporate names appearing in this manual may or may not be registered trade- marks or copyrights of their respective companies, and are used only for identification or explanation and to the owners’ benefit, without intent to infringe. • Intel, LANDesk, and Pentium are registered trademarks of Intel Corporation. • IBM and OS/2 are registered trademarks of International Business Machines. • Symbios is a registered trademark of Symbios Logic Corporation. • Windows and MS-DOS are registered trademarks of Microsoft Corporation. • Sound Blaster AWE32 and SB16 are trademarks of Creative Technology Ltd. • Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated. -
MICROPROCESSOR REPORT the INSIDERS’ GUIDE to MICROPROCESSOR HARDWARE Slot Vs
VOLUME 12, NUMBER 1 JANUARY 26, 1998 MICROPROCESSOR REPORT THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE Slot vs. Socket Battle Heats Up Intel Prepares for Transition as Competitors Boost Socket 7 A A look Look by Michael Slater ship as many parts as they hoped, especially at the highest backBack clock speeds where profits are much greater. The past year has brought a great deal The shift to 0.25-micron technology will be central to of change to the x86 microprocessor 1998’s CPU developments. Intel began shipping 0.25-micron A market, with Intel, AMD, and Cyrix processors in 3Q97; AMD followed late in 1997, IDT plans to LookA look replacing virtually their entire product join in by mid-98, and Cyrix expects to catch up in 3Q98. Ahead ahead lines with new devices. But despite high The more advanced process technology will cut power con- hopes, AMD and Cyrix struggled in vain for profits. The sumption, allowing sixth-generation CPUs to be used in financial contrast is stark: in 1997, Intel earned a record notebook systems. The smaller die sizes will enable higher $6.9 billion in net profit, while AMD lost $21 million for the production volumes and make it possible to integrate an L2 year and Cyrix lost $6 million in the six months before it was cache on the CPU chip. acquired by National. New entrant IDT added another com- The processors from Intel’s challengers have lagged in petitor to the mix but hasn’t shipped enough products to floating-point and MMX performance, which the vendors become a significant force.