Cloning Human Beings

Total Page:16

File Type:pdf, Size:1020Kb

Cloning Human Beings CLONING HUMAN BEINGS The Science of Animal Cloning Commissioned Paper by Janet Rossant, Ph.D. Samuel Lunenfield Research Institute-Mount Sinai Hospital CONTENTS What Is Cloning? B-3 The Scientific Question: Does Differentiation Involve Irreversible Changes in Genetic Content? B-4 The Stability of the Differentiated State: Our Understanding Today B-6 Nuclear Transfer in Mammals: The Early Experiments B-7 Reprogramming in the Oocyte Environment B-8 Nuclear Transfer in Mammals: The Current State of Play B-9 And Then Came Dolly B-10 Why Pursue Animal Cloning Research? B-12 1. Making Clones for Research Purposes B-12 2. Propagating Desirable Stocks B-13 3. Improved Generation and Propagation of Transgenic Livestock B-13 4. Generating Targeted Gene Alterations B-14 How Can We Use Information from Nuclear Transfer Experiments for Human Benefit? B-17 Ethical Concerns B-17 References B-18 B-1 WHAT IS CLONING? The word “clone” is used in many different contexts in biological research, but in simple terms it means a set of genetically identical individuals. Scientists talk about cloning DNA—the process of making and propagating a set of identical copies of a particular piece of genetic material, or about cloning cells—taking a single cell in culture and allowing it to multiply into a cell line. These techniques are some of the basic tools of the trade of modern biomedical research and are not currently a source of much public concern. But when we talk about cloning whole animals, especially mammals, the public rightly wants to know what is going on and why. Genetically identical copies of whole organisms—clones—are commonplace in the plant breeding world. Many valuable horticultural or agricultural strains are maintained solely by vegetative propagation from an original plant, and never by sexual reproduction. This reflects the ease with which it is possible to regenerate a complete plant from a small cutting. The ability to propagate a valuable animal strain in the same way would revolutionize the agricultural business. However, in the animal kingdom, development is much less flexible than in plants. Many simpler invertebrate species have the ability to regenerate a whole organism from a small piece, although this is not necessarily their usual mode of reproduction. Vertebrates have lost this ability entirely, although regeneration of missing limbs, organs, or tissues can occur to varying degrees. Although an adult vertebrate cannot make another adult, natural cloning does occur, in a limited way, with the formation of identical twins. These arise in humans and other mammals by chance separation of a single embryo into halves at an early stage of development. The resulting offspring will be genetically identical, deriving from one zygote—the result of the fusion of one egg and one sperm. A clone of two is not very remarkable, but it is a clone nonetheless. Experimental separation of cells from the early embryos of several mammalian species has shown that it is possible in some cases to get larger clones from one egg (Figure 1). In mice, only separated two-cell blastomeres are capable of generating entire mice (Rossant 1976), but in some domestic species, like sheep, it is possible to get separated eight-cell blastomeres to develop into viable offspring (Willadsen 1981). At best, efficiency of this technique is never 100 percent, so the number of clones is small. However, the experiments are scientifically important, because they demonstrate that the cells of the early embryo are totipotent; that is, they retain the full potential to form an entire animal. As development proceeds, cells begin to differentiate into specialized cell types and can no longer revert back to the beginning of development (Figure 1). If this stability of the differentiated state could be reverted in some way, then producing animals from later differentiated cells or even adult cells would become feasible. Nuclear transfer experiments, first performed in amphibians in the 1960s, demonstrated how this could be done. B-3 Figure 1: Preimplantation development in mammals THE SCIENTIFIC QUESTION: DOES DIFFERENTIATION INVOLVE IRREVERSIBLE CHANGES IN GENETIC CONTENT? The information for all the proteins produced in all the specialized cell types of the body is encoded in the DNA of the zygote and must be passed on intact into the next generation via the germ cells that form the eggs and sperm. However, there is no absolute requirement that the somatic cells—those cells not destined to give rise to the germ cells—retain the full genetic content in an unmodified form. A differentiated cell like a neuron must keep a set of neural-specific genes active and silence those genes specifically required to make muscle, liver, and other tissues. How does it do this? Is it an active process, in which genes are still present but repressed in some way, or is the DNA for the inactive genes lost or irreversibly inactivated in some way? In the early 1960s our understanding of the mechanisms of gene regulation was still rudimentary and this general question was extremely important. Elegant experiments in Xenopus laevis by John Gurdon, following earlier experiments in Rana temporaria by Briggs and King (1952), provided strong evidence that the genetic content of differentiated somatic cells is essentially unchanged from that of the early embryo. Nuclei from donor differentiated cells were injected into recipient eggs from which the nucleus, containing the DNA, had been inactivated (Figure 2). If the donor nucleus could direct normal development of the recipient egg, this would strongly suggest that differentiation cannot involve permanent B-4 changes in the genetic material. The first series of experiments used intestinal epithelial cells from swimming tadpoles (Gurdon 1962), and adult frogs were produced, albeit at a very low efficiency. The intestinal cells used were highly specialized brush-border gut cells, but were not derived from the final adult frog and so might not be terminally differentiated. Gurdon and colleagues (1975) performed another carefully controlled series of experiments in which they used nuclei from adult skin cells for transfer. Over 99 percent of the cultured cells expressed keratin, a differentiated marker of skin cells, and 4 percent of the nuclei transferred eventually gave rise to fully developed tadpoles. These experiments provided the strongest evidence to date that the nuclei of terminal differentiated cells could be reactivated by the cytoplasm of the egg and redirect normal development. Figure 2: Nuclear transfer in amphibians However, no viable adult frog was ever produced from an adult differentiated nucleus and there was a strong decline in the rate of recovery of feeding tadpoles with progressive age of nuclei transferred. This left open the theoretical possibility that complete reactivation of the adult B-5 nucleus was prevented by some kind of irreversible change in the genetic material, and that there was, indeed, a progressive decline in nuclear potential with age. However, careful analysis at the time suggested that the major reason for developmental failure of transplant embryos was chromosomal abnormalities acquired as a consequence of the process of nuclear transplantation itself. The cell cycle of adult cells is much slower than the rapid pace of cell division in the early frog embryo. Expecting a transplanted nucleus to reprogram its gene expression, replicate its DNA, and enter normal embryonic cell cycles within an hour of nuclear transfer is unrealistic. The remarkable thing is that some nuclei manage to do so, rather than that so many do not. The general conclusion from the amphibian nuclear transfer experiments of Gurdon and others was that the differentiated state did not involve major irreversible changes in the DNA. This conclusion was reached in the 1960s and early 1970s and has not been challenged in the intervening years (Gurdon 1974). THE STABILITY OF THE DIFFERENTIATED STATE: OUR UNDERSTANDING TODAY As our understanding of the regulation of gene expression has grown, we have learned that most patterns of differentiated gene expression are maintained by active control mechanisms (Blau 1992), in which combinations of regulatory proteins bind to control sequences adjacent to genes and turn them on or off. The particular differentiated state of a cell depends on its particular combination of regulatory proteins. This is not the only mechanism of gene control. There are some cases in which actual rearrangements and deletions of DNA occur, as in the expression of the immunoglobulin and T-cell receptor genes in lymphocytes. Heritable modification of the DNA by methylation can also affect gene expression. However, the overwhelming evidence suggests that given the right environment, it should be possible to activate or inactivate almost any gene in a cell. This environment need not be the cytoplasm of the egg. Cell fusion experiments, in which different cell types are fused into one multinucleate cell called a heterokaryon, have demonstrated that extensive reprogramming of differentiated nuclei can occur. For example, when muscle cells are fused with non-muscle cells of various sorts, muscle-specific genes are activated in the non-muscle cells (Blau et al. 1985). Similarly, globin genes can be activated in many cell types after fusion with erythroid cells (Baron and Maniati 1986). These and other kinds of experiments have led to the isolation of specific protein factors that regulate cell differentiation, such as the myogenic factors that regulate the formation of the muscle cell lineages (Weintraub 1993). All of this information has shown that the stability of the differentiated state is not absolute and, therefore, it should be theoretically possible to reprogram adult cells to reinitiate earlier programs of differentiation. Nuclear transfer experiments pointed the way and molecular biology is continuing to define the components of the regulation of cellular differentiation. NUCLEAR TRANSFER IN MAMMALS: THE EARLY EXPERIMENTS B-6 Following success in nuclear transfer experiments in frogs, there were some attempts in the 1970s to repeat the experiments in mice, the mammal of choice for experimental manipulation.
Recommended publications
  • AIRE Is a Critical Spindle-Associated Protein in Embryonic Stem Cells Bin Gu1, Jean-Philippe Lambert2, Katie Cockburn1, Anne-Claude Gingras2,3, Janet Rossant1,3*
    RESEARCH ARTICLE AIRE is a critical spindle-associated protein in embryonic stem cells Bin Gu1, Jean-Philippe Lambert2, Katie Cockburn1, Anne-Claude Gingras2,3, Janet Rossant1,3* 1Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada; 2Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Canada; 3Department of Molecular Genetics, University of Toronto, Toronto, Canada Abstract Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator (Aire), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE’s mitotic function. Combined maternal and zygotic knockout further revealed Aire’s critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Aire mutations. DOI: 10.7554/eLife.28131.001 *For correspondence: janet. [email protected] Introduction Competing interests: The Self-renewal capability, defined as the ability of cells to proliferate while sustaining differentiation authors declare that no potential, is one of the defining features of stem cells (Martello and Smith, 2014).
    [Show full text]
  • Beacon in Developmental Biology
    NEWS Beacon in developmental biology n Cite as: CMAJ 2017 October 16;189:E1298-9. doi: 10.1503/cmaj.109-5460 Posted on cmajnews.com on September 27, 2017. he identification of Gurdon, whom some people the genes responsi- may know recently received ble for controlling the Nobel Prize for his work Tcellular fate and embryonic cloning frogs; undertaking development in mice has research that demonstrates made Dr. Janet Rossant a that all of development is beacon in the field of written in our genes, and all developmental biology. of our cells contain DNA that Her work pioneered tech- has that information, yet niques that allowed genes somehow during develop- to be altered within ment, different genes are embryos. It also acceler- turned on and differentiation ated avenues in the fields occurs. That’s what really of stem cell biology and turned me on to the underly- regenerative medicine. ing problem of ‘how do we She was awarded the get from a fertilized egg to an 2015 Canada Gairdner organism?’ John is the per- Wightman Award, pre- son who really turned me on sented annually to a Cana- to that question and he has dian who has demon- been pursuing it ever since strated outstanding and so have I.” leadership in medicine and medical science. Rossant For the diverse audience was recognized “for her who read CMAJ, can you outstanding contributions explain what stem cells to developmental biology are? and for her exceptional “Stem cells are cells that international leadership in have the ability to self- stem cell biology and pol- renew, make endless copies icy-making, and in advanc- of themselves and yet also ing research programs for retain the potential to differ- children’s illnesses.” Courtesy of Dr.
    [Show full text]
  • Annual Report Fy 2018 Human Frontier Science Program Organization
    APRIL 2017 APRIL 2018 — MARCH 2019 ANNUAL REPORT FY 2018 HUMAN FRONTIER SCIENCE PROGRAM ORGANIZATION The Human Frontier Science Program Organization (HFSPO) is unique, supporting international collaboration to undertake innovative, risky, basic research at the frontier of the life sciences. Special emphasis is given to the support and training of independent young investigators, beginning at the postdoctoral level. The Program is implemented by an international organisation, supported financially by Australia, Canada, France, Germany, India, Italy, Japan, the Republic of Korea, New Zealand, Norway, Singapore, Switzerland, the United Kingdom of Great Britain and Nothern Ireland, the United States of America, and the European Commission. Since 1990, over 7000 researchers from more than 70 countries have been supported. Of these, 28 HFSP awardees have gone on to receive the Nobel Prize. 2 The following documents are available on the HFSP website www.hfsp.org: Joint Communiqués (Tokyo 1992, Washington 1997, Berlin 2002, Bern 2004, Ottawa 2007, Canberra 2010, Brussels 2013, London 2016): https://www.hfsp.org/about/governance/membership Statutes of the International Human Frontier Science Program Organization: https://www.hfsp.org/about/governance/hfspo-statutes Guidelines for the participation of new members in HFSPO: https://www.hfsp.org/about/governance/membership General reviews of the HFSP (1996, 2001, 2006-2007, 2010, 2018): https://www.hfsp.org/about/strategy/reviews Updated and previous lists of awards, including titles and abstracts:
    [Show full text]
  • Balancing Potency and Differentiation in Mouse Embryo-Derived Stem Cells and in Vivo
    Balancing potency and differentiation in mouse embryo-derived stem cells and in vivo By Anne Christine Helness A thesis submitted to Imperial College London for the degree of Doctor of Philosophy Department of Surgery and Oncology Imperial College London September 2011 1 Abstract An inherent challenge for developing organisms is to maintain a critical balance between cell potency and differentiation. This is most obvious in embryonic stem (ES) cells where genetic, epigenetic and cell signalling pathways support ES cell ability to self-renew and to generate all embryonic lineages. Recently, a series of reports revealed how Polycomb-mediated repression might buffer the precocious expression of somatic lineage regulators in ES cells. Notably, these genes carry bivalent chromatin enriched in both repressive (H3K27me3) and permissive (H3K4me2) histone marks. They are targeted by the Polycomb repressive complexes PRC1 (Ring1B) and PRC2, which mediates H3K27me3 and assemble poised RNA polymerase II (RNAP II), conferring silencing of loci primed for future activation (or repression) upon ES cell differentiation. During early development the transition from morula to blastocyst is the starting point for lineage segregation into the inner cell mass (ICM) and trophectoderm (TE). ES cells are derived from the ICM and are pluripotent. By contrast, TE-derived trophoblast stem (TS) cells are multipotent and contribute solely to placenta formation in vivo. To address whether ES cells epigenetic features are unique attributes of pluripotent cells in the early embryo, we compared the epigenetic status of key developmental genes in blastocyst-derived stem cells and in vivo. We provide direct evidence that bivalent histone markings operate in vivo from the eight-cell up to the blastocyst stage.
    [Show full text]
  • EMBO Encounters Issue43.Pdf
    WINTER 2019/2020 ISSUE 43 Nine group leaders selected Meet the first EMBO Global Investigators PAGE 6 Accelerating scientific publishing EMBO publishing costs Review Commons Making our journals’ platform announced finances public PAGE 3 PAGES 10 – 11 Welcome, Young Investigators! Contract replaces stipend Marking ten years 27 group leaders join the programme EMBO Postdoctoral Fellowships EMBO Molecular Medicine receive an update celebrates anniversary PAGES 4 – 5 PAGE 7 PAGE 13 www.embo.org TABLE OF CONTENTS EMBO NEWS EMBO news Review Commons: accelerating publishing Page 3 EMBO Molecular Medicine turns ten © Marietta Schupp, EMBL Photolab Marietta Schupp, © Page 13 Editorial MBO was founded by scientists for Introducing 27 new Young Investigators scientists. This philosophy remains at Pages 4-5 Ethe heart of our organization until today. EMBO Members are vital in the running of our Meet the first EMBO Global programmes and activities: they screen appli- Accelerating scientific publishing 17 journals on board Investigators cations, interview candidates, decide on fund- Review Commons will manage the transfer of ing, and provide strategic direction. On pages EMBO and ASAPbio announced pre-journal portable review platform the manuscript, reviews, and responses to affili- Page 6 8-9 four members describe why they chose to ate journals. A consortium of seventeen journals New members meet in Heidelberg dedicate their time to an EMBO Committee across six publishers (see box) have joined the Fellowships: from stipends to contracts Pages 14 – 15 and what they took away from the experience. n December 2019, EMBO, in partnership with decide to submit their work to a journal, it will project by committing to use the Review Commons Page 7 When EMBO was created, the focus lay ASAPbio, launched Review Commons, a multi- allow editors to make efficient editorial decisions referee reports for their independent editorial deci- specifically on fostering cross-border inter- Ipublisher partnership which aims to stream- based on existing referee comments.
    [Show full text]
  • Dr. Janet Rossant ANDREW F. HOLMES DEAN of MEDICINE DISTINCTION LECTURES
    Dr. Janet Rossant ANDREW F. HOLMES DEAN OF MEDICINE DISTINCTION LECTURES Dr. Janet Rossant, PhD, FRS, FRSC Chief of Research, SickKids Senior Scientist, Developmental & Stem Cell Biology, SickKids Lombard Insurance Chair in Pediatric Research University Professor, Department of Molecular Genetics, Obstetrics and Gynecology, University of Toronto Title Stem cells and early lineage development When Friday, October 18, 2013 11:30 a.m. – 1:00 p.m. Where CP Leblond Amphitheatre Strathcona Anatomy and Dentistry Building 3640 rue University Montreal, QC H3G 1Y6 Dr. Janet Rossant, SickKids Chief of Research and a world-renowned expert in developmental biology, is the definition of a trailblazer. Widely known for her studies of the genes that control embryonic development in the mouse, Dr. Rossant has pioneered techniques for following cell fate and altering genes in embryos. This work continues to resonate in medical genetic research. Her current research focuses on stem cell development and cell differentiation in the developing embryo, important areas for the study of birth defects as well as regenerative medicine. Firmly planted on the front lines of technological change, Dr. Rossant has established SickKids as a global forerunner in genetic research. Janet Rossant was born in Chatham, UK, and trained at the Universities of Oxford and Cambridge, United Kingdom. In 1977, Dr. Rossant moved to Canada and joined the faculty at Brock University. From 1985 to 2005, she was a leading researcher at the Samuel Lunenfeld Research Institute at Mount Sinai Hospital in Toronto. She joined SickKids in 2005 and became Chief of Research of the Research Institute. She is also a University Professor at the University of Toronto.
    [Show full text]
  • Web Conference with Dr. Janet Rossant
    Web Conference with Dr. Janet Rossant - 00:00 Thank you for taking the time to speak with us, so obviously we'd like to ask you some questions about your work and your research, but can you tell us about yourself and your research, how you got into stem cells in the first place? - 00:16 Okay, so I've been interested in early development for a very long time, sort of all my research career. I started as a graduate student at the University of Cambridge with Richard Gardner who was one of the first people who developed techniques to inject cells into blastocysts to make chimeras, and so I was always interested in how an egg develops into a complex organism, and over the years I've worked on the cell lineage in the early embryo. We've then been able to move in and identify some of the genes and pathways that specifies cell fate in the early embryo, and of course along the way, stem cells come into the picture because it's from the early mammalian embryo, the blastocysts, that you can derive embryonic stem cells, and it's really the work that I and my colleagues did early on in the embryo showing that there was a subset of cells that were pluripotent that gave people the idea that maybe you could capture that pluripotency and derive permanent cell lines from those cells and grow them in cultures. So we've worked on mouse embryonic stem cells, but we also have been able to show that we can derive stem cells from the other two types of the blastocysts, the trophoblast and the primitive endoderm, so in the mouse you can have three stem cell lines from the blastocysts, each of which replicates the properties of those lineages in vivo.
    [Show full text]
  • Pnas11052ackreviewers 5098..5136
    Acknowledgment of Reviewers, 2013 The PNAS editors would like to thank all the individuals who dedicated their considerable time and expertise to the journal by serving as reviewers in 2013. Their generous contribution is deeply appreciated. A Harald Ade Takaaki Akaike Heather Allen Ariel Amir Scott Aaronson Karen Adelman Katerina Akassoglou Icarus Allen Ido Amit Stuart Aaronson Zach Adelman Arne Akbar John Allen Angelika Amon Adam Abate Pia Adelroth Erol Akcay Karen Allen Hubert Amrein Abul Abbas David Adelson Mark Akeson Lisa Allen Serge Amselem Tarek Abbas Alan Aderem Anna Akhmanova Nicola Allen Derk Amsen Jonathan Abbatt Neil Adger Shizuo Akira Paul Allen Esther Amstad Shahal Abbo Noam Adir Ramesh Akkina Philip Allen I. Jonathan Amster Patrick Abbot Jess Adkins Klaus Aktories Toby Allen Ronald Amundson Albert Abbott Elizabeth Adkins-Regan Muhammad Alam James Allison Katrin Amunts Geoff Abbott Roee Admon Eric Alani Mead Allison Myron Amusia Larry Abbott Walter Adriani Pietro Alano Isabel Allona Gynheung An Nicholas Abbott Ruedi Aebersold Cedric Alaux Robin Allshire Zhiqiang An Rasha Abdel Rahman Ueli Aebi Maher Alayyoubi Abigail Allwood Ranjit Anand Zalfa Abdel-Malek Martin Aeschlimann Richard Alba Julian Allwood Beau Ances Minori Abe Ruslan Afasizhev Salim Al-Babili Eric Alm David Andelman Kathryn Abel Markus Affolter Salvatore Albani Benjamin Alman John Anderies Asa Abeliovich Dritan Agalliu Silas Alben Steven Almo Gregor Anderluh John Aber David Agard Mark Alber Douglas Almond Bogi Andersen Geoff Abers Aneel Aggarwal Reka Albert Genevieve Almouzni George Andersen Rohan Abeyaratne Anurag Agrawal R. Craig Albertson Noga Alon Gregers Andersen Susan Abmayr Arun Agrawal Roy Alcalay Uri Alon Ken Andersen Ehab Abouheif Paul Agris Antonio Alcami Claudio Alonso Olaf Andersen Soman Abraham H.
    [Show full text]
  • Final Program
    FINAL PROGRAM TRANSLATING REPRODUCTIVE SCIENCE TO THE BEDSIDE Vancouver Convention Centre East 999 Canada Pl Vancouver, BC, Canada V6C 3C1 SRI-1019-633 The SRI 67th Annual Scientific Meeting is an Accredited Group Learning Activity (Section 1) as defined by the Maintenance of Certification Program of the Royal College of Physicians and Surgeons of Canada, and approved by Society of Obstetricians and Gynaecologists of Canada. VANCOUVER MARCH 10-14, 2020 - Vancouver Convention Centre East 1 Table of Contents Message from the SRI President . 1 SRI Membership Recognition Program Ads . 2 SRI Mentor Hall of Fame . 5 2020 Program Committee . 6 General Meeting Information . 7 Meeting Attendance Code of Conduct Policy . 8 Schedule-at-a-Glance . 9 Social Events . 10 Exhibitors . 11 Vancouver Convention Centre East and Host Hotels Map . 12 Vancouver Convention Centre East Level 1 Map . 13 Vancouver Convention Centre East Level 2 Map . 14 Continuing Medical Education Information . 15 Scientific Program . 16 Thank You to Our 2020 Poster Judges . 60 SRI Grant Opportunities . .61 2020 Awards . 62 About SRI…………………………… . 64 2019 – 2020 Annual Report . 66 SRI Council & Staff . 68 Poster Guide . 69 Oral and Poster Abstract Author Index . 108 Notes . 131 Thank You to Our 2020 Supporters . Inside. Back Cover Save the Date: SRI 2021 Annual Meeting . Back Cover SRI 67th Annual Scientific Meeting Venue Vancouver Convention Centre East 999 Canada Pl Vancouver, BC V6C 3C1 Canada SRI 67th Annual Scientific Host Hotels Pan Pacific Hotel Vancouver • 300-999 Canada
    [Show full text]
  • Isscr 2013 Program Book
    11TH ANNUAL MEEtiNG, BostoN, MA USA ™ BD LSRFortessa X-20 with BD reagents Dear Colleagues: A brilliant new approach to multicolor cell analysis on the benchtop. On behalf of the International Society for Stem Cell Research, we are delighted to welcome you to our 11th Annual Meeting, the largest forum for stem cell and regenerative medicine professionals from around the world. It is also a pleasure to be back in Boston, a historic city that played a key role in the ISSCR’s development, and which features a vibrant stem cell research, biotech, and life science research community. The primary goal of our annual meeting is to provide you with an unparalleled array of opportunities to learn from and interact with your peers, and this year you’ll have more ways to do that than ever before. Additional Poster Session We enjoyed a record number of submitted poster abstracts for 2013. In response to past attendees’ requests for additional time to view and discuss poster presentations, we’ve added a third poster session, giving you a quick and efficient way to keep abreast of the latest scientific advances. “Poster Teasers” and New “Poster Briefs” In 2011, we introduced “poster teasers,” which gave delegates time to share their findings in plenary sessions via 1-minute discussions. They’ve proved so popular with attendees that this year, we’re adding “poster briefs,” 3-minute mini-presentations that give authors of the most highly-rated poster abstracts an opportunity to discuss their work during the concurrent sessions. The burgeoning interest in stem cell research is reflected in our record number of exhibitors this year, 26% of whom are new.
    [Show full text]
  • STEMCELLNETWORK.CA the Mission of the Stem Cell
    STEM CELL NETWORK SUMMER 2006 VOLUME 5, NUMBER 1 FATHERS OF THE FIELD How two quiet Canadians changed the course of history in biological research. CRITICAL MASS AHEAD OF THE CURVE A CANADIAN A pioneering past and a culture of Finding the way inside the ‘black box’ COMES HOME collaboration combine to make Toronto of cancer, Dr. John Dick has changed One of America’s leading researchers a world leader in stem cell science. our understanding of how to fight takes up a new challenge in the city the deadly disease. where he began his brilliant career. WWW.STEMCELLNETWORK.CA The mission of the Stem Cell Network is to be a catalyst for realizing the full potential of stem cell research for Canadians. STEM CELL NETWORK Frank Gleeson, Chair, Board of Directors Dr. Michael Rudnicki, Scientific Director Dr. Janet Rossant, Deputy Scientific Director Drew Lyall, Executive Director Cathy Campbell, SCN Communications Lori Barron, SCN Communications Joe Sornberger, Writer CONTACT US AT: 451 Smyth Road, Ottawa, ON K1H 8M5 Tel: (613)562.5696 Fax: (613)562.5631 Website: www.stemcellnetwork.ca Publication Mail Agreement Number 40664504 The contents of this publication may be reprinted or used in radio or television without permission. However, a credit is requested. In print, please send a copy to the Stem Cell Network. STEM CELL NETWORK TABLE OF CONTENTS Welcome to Toronto - Dr. Michael Rudnicki .......................................1 Critical Mass .................................................................................2 The Fathers of the Field .................................................................8 A Canadian comes home - Interview with Dr. Gordon Keller ...............14 The world’s best feel right at home ..............................................15 On the Cover: Ahead of the curve - Interview with Dr.
    [Show full text]
  • Annual Report 20 15
    ANNUAL REPORT 2015 HUMAN FRONTIER SCIENCE PROGRAM The Human Frontier Science Program is unique, supporting international collaboration to undertake innovative, risky, basic research at the frontier of the life sciences. Special emphasis is given to the support and training of independent young investigators, beginning at the postdoctoral level. The Program is implemented by an international organization, supported financially by Australia, Canada, France, Germany, India, Italy, Japan, the Republic of Korea, New Zealand, Norway, Singapore, Switzerland, the United Kingdom, the United States of America, and the European Union. Since 1990, over 7000 awards have been made to researchers from more than 70 countries. Of these, 26 HFSP awardees have gone on to receive the Nobel Prize. APRIL 2015 - MARCH 2016 ANNUAL REPORT — 3 — The following documents are available on the HFSP website www.hfsp.org: Joint Communiqués (Tokyo 1992, Washington 1997, Berlin 2002, Bern 2004, Ottawa 2007, Canberra 2010, Brussels 2013, London 2016): http://www.hfsp.org/about-us/governance/intergovernmental-conference Statutes of the International Human Frontier Science Program Organization : http://www.hfsp.org/about-us/governance/statutes Guidelines for the participation of new members in HFSPO : http://www.hfsp.org/about-us/new-membership General reviews of the HFSP (1996, 2001, 2006-2007, 2010): http://www.hfsp.org/about-us/reviews-hfsp Updated and previous lists of awards, including titles and abstracts: http://www.hfsp.org/awardees — 4 — Table of contents INTRODUCTION
    [Show full text]