Chapter 4. Butterflies in Many Patches

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4. Butterflies in Many Patches Assessing the conservation status of the Sinai Baton Blue butterfly (Pseudophilotes sinaicus) Katy Thompson, BSc. (Hons) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy July 2013 Abstract Arid environments are resource-limited, with scarcity of water the key limiting factor for plants and their associated fauna. Consequentially bottom-up forces often control food webs, influencing the whole system through high levels of competition. The Sinai Baton Blue butterfly, Pseudophilotes sinaicus, is Critically Endangered, with a tiny endemic distribution in the St Katherine Protectorate, South Sinai, an arid environment. Its range is restricted to that of its sole host plant, the near- endemic endangered Sinai Thyme, Thymus decussatus, leaving the butterfly in a highly fragmented distribution. This study looks into the spatio-temporal variations in quality and abundance of the host plant and its implications for the Sinai Baton Blue. Over the past decade the butterfly has exhibited severe population cycles, with the causes still unclear; it could be due to the fluctuating resource levels with large temporal variation in the quality of thyme and density of inflorescences. The number of flowers significantly influences the larval distribution, indicating that resources play a key role in offspring survivorship. Population viability analysis has also highlighted the importance of management techniques aimed at increasing the butterfly's survivorship. The butterfly population sizes are positively correlated with the total resource area and the number of host plants but not the distance between habitat patches. Population viability analysis also suggests that habitat area is more influential than connectivity in this system driving current dynamics. Overall this project has highlighted the urgent need for conservation focused on improving plant quality within patches in order to save this fragile species. i Acknowledgments There are so many people to thank for all their help and support throughout this project. Firstly and foremost I would like to thank my supervisor, Dr Francis Gilbert for his constant enthusiasm and support during this project. I am indebted to Amy Shepherd, Oliver Masters and Haithem Zalat for their help in the field collecting data along with my other colleagues from the University of Nottingham who were also working in Sinai. In particular I want to thank Olivia Norfolk and Stine Simensen; we all went majnoona together, João Pedro Pio for his never-ending antics and also Andrew Power and Lisa Gecchele for the hafla baflas. I also want to thank everyone in the B135 for moral support when time seemed to move either too slow or far too fast. I thank the Egyptian Environmental Affairs Agency and Mr Mohamed Qotb, manager of the St Katherine Protectorate, for permission to do the research; and Mr Mohamed Qotb and the staff of the St Katherine Protectorate for their help and advice during this work. Whilst working in St Katherine I was privileged to meet so many incredible Bedouin who welcomed me into their lives with such generosity and kindness. I thank my guides in the field, particularly Nasr Mansour for his insight and incredible knowledge of the area and for being the best of the best; Farag Fox, who was essential in the practicalities behind my field work; and also my Fox Camp family, especially Hamdi Mubarak, for the endless evenings drinking shai and playing the tabla. Dr Brian Taylor has been invaluable in the identification of the ant species in Sinai and Dr Luigi Sannino for his help in the identification of Heliothis peltigera. I would like to also thank Mike James for his advice and his love for the area whilst Professor Samy Zalat is responsible for setting up the research logistics behind the field work. I could not have completed this work without the financial assistance from the Carr Scholarship and also the Mohamed bin Zayed species conservation fund - thank you very much. Finally and most crucially I am forever grateful to my family for their enduring patience and support. ii Contents Chapter 1. General introduction; a brief overview of the Sinai Baton Blue 1 References 10 Chapter 2. The response of the endangered Thymus decussatus to eight years of low rainfall in an already arid environment 13 Abstract 14 Introduction 14 Materials & Methods 17 The study system 17 Mapping of Farsh Shoeib 18 Analysis of data 19 Results 20 Discussion 22 References 32 Chapter 3. Synchronous shifts in the flowering of Thymus decussatus and the flight period of the associated Sinai Baton Blue butterfly, Pseudophilotes sinaicus 36 Abstract 37 Introduction 37 Materials & Methods 40 The study system 40 Monitoring phenological timings in Farsh Shoeib 42 Monitoring the status of the Sinai Baton Blue 42 Analysis of data 43 Results 43 Discussion 44 References 53 Chapter 4. Spatio-temporal variation in a perennial herbaceous shrub, Thymus decussatus, and the associated butterfly populations of Pseudophilotes sinaicus 58 Abstract 59 Introduction 59 iii Materials & Methods 61 The study system 61 Evaluating the quality of thyme amongst patches 62 Monitoring phenology 63 Mapping of patches upon the Mt. Sinai massif 63 Monitoring the status of the Sinai Baton Blue 64 Ant sampling 64 Analysis of data 64 Results 66 Plants 66 Butterflies 67 Ants 69 Discussion 69 Spatio-temporal variation 69 Ant community composition 72 Sinai Baton Blue distribution across the Mt. Sinai massif 73 References 85 Chapter 5. Plant quality governs the larval distribution of the Critically Endangered Sinai Baton Blue butterfly (Pseudophilotes sinaicus) 90 Abstract 91 Introduction 91 Materials & Methods 92 The study system 92 Fieldwork 94 Analysis of data 95 Results 95 Discussion 97 References 105 Chapter 6. The effects of grazing on the endangered Thymus decussatus in a hyper-arid environment 109 Abstract 110 Introduction 110 Materials & Methods 113 The study system 113 Experimental manipulations 116 iv 117 Analysis of data 119 Results 119 Experimental treatments 120 Discussion 129 References Chapter 7. Predicting the future of the World’s Smallest 136 butterfly, Pseudophilotes sinaicus 137 Abstract 137 Introduction 139 Materials & Methods 143 Results 145 Discussion 156 References 160 Chapter 8. Future directions; passing on the Baton 171 References v Chapter 1. General introduction; a brief overview of the Sinai Baton Blue 1 Chapter 1. General introduction General introduction; a brief overview of the Sinai Baton Blue The Sinai Baton Blue (Pseudophilotes sinaicus Nakumara, 1975: Lycaenidae) is the World’s smallest butterfly; the smallest recorded wingspan is 6.25 mm and the average is just 9.5 mm (James, 2006b). The butterfly is Critically Endangered, with an Extent of Occurrence less than 7 km2 and an estimated total population below 3000 in 2001 (Thompson & Gilbert, 2012). Its narrowly endemic distribution is localised to the St Katherine Protectorate, South Sinai, Egypt and it is one of two endemic butterfly species to the area, the other being the Sinai Hairstreak (Satyrium jebelia: Lycaenidae). The larvae feed exclusively upon the host plant, Sinai Thyme (Thymus decussatus Bentham, 1834: Lamiaceae), restricting the distribution to a patchy formation on mountaintops at altitudes above 1800 m (James, 2006a). The population can crash dramatically between years with a crash in 2003 reducing the peak butterfly population in one patch (Farsh Shoeib) to 12% of its size in 2002 (James, 2006c). Consequentially it is considered a top conservation priority for the local Protectorate and a flagship species for the area (Hoyle & James, 2005). Figure 1.1 is a timeline demonstrating the significant events over the past decade for the Sinai Baton Blue. The adult is univoltine with the main flight period starting at the beginning of May and finishing mid-June (James et al., 2003). Adults live for 3-6 days and females mate almost immediately, with 47% mating before their first flight (James, 2006f). Females lay approximately 26 eggs, distributed singly on inflorescences across multiple thyme plants, possibly as a bet- hedging strategy to spread the risk (Bergstrom et al., 2006, James, 2006f). Larvae hatch approximately four days after oviposition and are immobile, remaining on the inflorescences on which the eggs were laid. Little is known about the larval development, but it is presumed to take approximately 21 days with four or five instars; the first two instars feed exclusively on the buds of the Sinai Thyme, whilst later instars can also feed upon the flowers (James, 2006d,f). The larvae are myrmecophilous with facultative associations with Lepisiota obtusa and Lepisiota hirsuta ants (Shepherd, 2010); the larvae were tended 71% of the time by Lepisiota species (James 2006f) with lesser associations with Monomorium niloticum ants. The larvae produce volatile secretions to attract and alert attendant ants; in return for protection, the larvae secrete simple sugars 2 Chapter 1. General introduction and amino acids from their dorsal nectary organs (James, 2006f). Crematogaster antaris ants prey upon the larvae, reflected by the fact that no adult butterflies emerged within the foraging range of C. antaris (James, 2006f). The foraging ranges of C. antaris and Lepisiota spp. are mutually exclusive, and the distributions of the two species do not overlap (Shepherd, 2010). The larvae pupate in the soil below the plant where they remain over winter, eclosing the following year. It is unknown whether the pupae can delay emergence for multiple years if conditions are sub-optimal, a tactic known in other desert Lycaenidae (Larsen, 1990). If this occurs then it might explain the low number of adults seen during the 2003 drought, otherwise attributed to mortality (James, 2006c,f). The tactic is used by Pseudalmenus chlorinda (Lycaenidae), which can remain in its pupal state for an additional year, whilst Cupha prosopa (Nymphalidae) can delay emergence for seven months. The extension of the pupal diapause in C. prosopa has been associated with unsuitable conditions, such as low rainfall (Sands & New, 2008).
Recommended publications
  • Notes on Ants (Hymenoptera: Formicidae) from Gambia (Western Africa)
    ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 26 (online 010): 1–13 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 08.05.2018 LECH BOROWIEC1, SEBASTIAN SALATA2 Notes on ants (Hymenoptera: Formicidae) from Gambia (Western Africa) http://doi.org/10.5281/zenodo.1243767 1 Department of Biodiversity and Evolutionary Taxonomy, University of Wrocław, Przybyszewskiego 65, 51-148 Wrocław, Poland e-mail: [email protected], [email protected] Abstract: A list of 35 ant species or morphospecies collected in Gambia is presented, 9 of them are recorded for the first time from the country:Camponotus cf. vividus, Crematogaster cf. aegyptiaca, Dorylus nigricans burmeisteri SHUCKARD, 1840, Lepisiota canescens (EMERY, 1897), Monomorium cf. opacum, Monomorium cf. salomonis, Nylanderia jaegerskioeldi (MAYR, 1904), Technomyrmex pallipes (SMITH, 1876), and Trichomyrmex abyssinicus (FOREL, 1894). A checklist of 82 ant species recorded from Gambia is given. Key words: ants, faunistics, Gambia, new country records. INTRODUCTION Ants fauna of Gambia (West Africa) is poorly known. Literature data, AntWeb and other Internet resources recorded only 59 species from this country. For comparison from Senegal, which surrounds three sides of Gambia, 89 species have been recorded so far. Both of these records seem poor when compared with 654 species known from the whole western Africa (SHUCKARD 1840, ANDRÉ 1889, EMERY 1892, MENOZZI 1926, SANTSCHI 1939, LUSH 2007, ANTWIKI 2017, ANTWEB 2017, DIAMÉ et al. 2017, TAYLOR 2018). Most records from Gambia come from general web checklists of species. Unfortunately, they lack locality data, date of sampling, collector name, coordinates of the locality and notes on habitats.
    [Show full text]
  • Ecology and Biogeography of the Ground Fauna of Suez Canal Region
    CATRINA (2017), 16 (1): 01-09 © 2017 BY THE EGYPTIAN SOCIETY FOR ENVIRONMENTAL SCIENCES Ecology and Biogeography of the Ground Fauna of Suez Canal Region Esraa S. Hamdy1*, Shereen M. Elbanna2, Ahmed H. Abo Ghalia2, Ahmed A. Shabayek3 1Nature Conservation Sector, Egyptian Environmental Affairs Agency, Ministry of Environment, Egypt 2Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt 3Department of Land and Water, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt ABSTRACT Ground invertebrate fauna is the most diverse and important group to maintain the soil health. The Suez Canal region has a unique status in Egypt. Since the opening of Suez Canal for international navigation in 1869, population in the Canal region increased and green areas expanded. The expanded cities have initiated new habitats and attracted some taxa from the Nile valley to the west bank of the Suez Canal. This study is an attempt to investigate the distribution pattern of ground-macroinvertebrates in correlation with land-use along the west bank of Suez Canal in a considerable region. The faunal samples were collected using pitfall traps in 9 sites belonging to 3 stations; Abusultan, Fanara and Geneifa, with different land use practices (natural desert, agricultural areas and urbanized coast). A number of 3502 arthropod individuals belong to 129 species were recorded. The highest species richness was shown by Coleopterans, while the most abundant group was Hymenoptera. The agricultural and the urbanized coastal sites have shown significantly lower abundance of ground macro-invertebrates in comparison with the natural desert habitats. It was concluded that urbanization and agricultural practices have altered soil properties, thus they adversely affected the abundance of ground invertebrate assemblage.
    [Show full text]
  • Insecta: Hymenoptera: Formicidae): Type Specimens Deposited in the Natural History Museum Vienna (Austria) and a Preliminary Checklist
    Ann. Naturhist. Mus. Wien, B 121 9–18 Wien, Februar 2019 Notes on the ant fauna of Eritrea (Insecta: Hymenoptera: Formicidae): type specimens deposited in the Natural History Museum Vienna (Austria) and a preliminary checklist M. Madl* Abstract The ant collection of the Natural History Museum Vienna (Austria) contains syntypes of nine species described from Eritrea: Aphaenogaster clavata EMERY, 1877 (= Pheidole clavata (EMERY, 1877)), Cam- ponotus carbo EMERY, 1877, Melissotarsus beccarii EMERY, 1877, Monomorium bicolor EMERY, 1877, Pheidole rugaticeps EMERY, 1877, Pheidole speculifera EMERY, 1877, Polyrhachis antinorii EMERY, 1877 (= Polyrhachis viscosa SMITH, 1858) and Tetramorium doriae EMERY, 1881. All syntypes were collected in Eritrea except the syntype of Monomorium luteum EMERY, 1881, which was collected in Yemen. A prelimi- nary checklist of the ants of Eritrea comprises 114 species and subspecies of seven subfamilies. Zusammenfassung In der Ameisensammlung des Naturhistorischen Museums Wien (Österreich) werden Syntypen von neun Arten aufbewahrt, die aus Eritrea beschrieben worden sind: Aphaenogaster clavata EMERY, 1877 [= Phei- dole clavata (EMERY, 1877)], Camponotus carbo EMERY, 1877, Melissotarsus beccarii EMERY, 1877, Mono- morium bicolor EMERY, 1877, Pheidole rugaticeps EMERY, 1877, Pheidole speculifera EMERY, 1877, Poly- rhachis antinorii EMERY, 1877 (= Polyrhachis viscosa SMITH, 1858) und Tetramorium doriae EMERY, 1881. Alle Syntypen stammen aus Eritrea ausgenommen der Syntypus von Monomorium luteum EMERY, 1881, der in Jemen gesammelt wurde. Eine vorläufige Artenliste der Ameisen Eritreas umfasst 114 Arten und Unterarten aus sieben Unterfamilien. Key words: Formicidae, types, Camponotus, Melissotarsus, Monomorium, Pheidole, Polyrhachis, Tetra- morium, checklist, Eritrea, Yemen. Introduction The study of the ant fauna of Eritrea has been neglected for several decades.
    [Show full text]
  • Evidence from European Butterfly Sister Species
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.282962; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The Pleistocene species pump past its prime: 2 evidence from European butterfly sister species 1 1 2 3 Sam Ebdon* , Dominik R. Laetsch , Leonardo Dapporto , 3 4 5 4 Alexander Hayward , Michael G. Ritchie , Vlad Dinc˘a , Roger 6 1 5 Vila , and Konrad Lohse 1 6 Institute of Evolutionary Biology, University of Edinburgh, 7 Edinburgh, EH9 3FL, UK 2 8 ZEN lab, Dipartimento di Biologia dell'Universit`adi Firenze, 9 Firenze, Italy 3 10 Centre for Ecology and Conservation, University of Exeter, 11 Penryn Campus, Cornwall, TR10 9FE, UK 4 12 Centre for Biological Diversity, School of Biology, University of St 13 Andrews, Fife KY16 9TH, UK 5 14 Ecology and Genetics Research Unit, University of Oulu, Oulu, 15 Finland 6 16 Institut de Biologia Evolutiva (CSIC - Universitat Pompeu 17 Fabra), Passeig Mar´ıtimde la Barceloneta 37, ESP-08003 18 Barcelona, Spain 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.282962; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Annotated Checklist of Vascular Flora, Bryce
    National Park Service U.S. Department of the Interior Natural Resource Program Center Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 ON THE COVER Matted prickly-phlox (Leptodactylon caespitosum), Bryce Canyon National Park, Utah. Photograph by Walter Fertig. Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 Author Walter Fertig Moenave Botanical Consulting 1117 W. Grand Canyon Dr. Kanab, UT 84741 Sarah Topp Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 January 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientifi c community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifi cally credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resource Technical Report series is used to disseminate the peer-reviewed results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations.
    [Show full text]
  • Biodiversity Profile of Afghanistan
    NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores
    [Show full text]
  • List of Plants for Great Sand Dunes National Park and Preserve
    Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present
    [Show full text]
  • How Many Species of Mammals Are There?
    Journal of Mammalogy, 99(1):1–14, 2018 DOI:10.1093/jmammal/gyx147 INVITED PAPER How many species of mammals are there? CONNOR J. BURGIN,1 JOCELYN P. COLELLA,1 PHILIP L. KAHN, AND NATHAN S. UPHAM* Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA (CJB) Department of Biology and Museum of Southwestern Biology, University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA (JPC) Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA (PLK) Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA (NSU) Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA (NSU) 1Co-first authors. * Correspondent: [email protected] Accurate taxonomy is central to the study of biological diversity, as it provides the needed evolutionary framework for taxon sampling and interpreting results. While the number of recognized species in the class Mammalia has increased through time, tabulation of those increases has relied on the sporadic release of revisionary compendia like the Mammal Species of the World (MSW) series. Here, we present the Mammal Diversity Database (MDD), a digital, publically accessible, and updateable list of all mammalian species, now available online: https://mammaldiversity.org. The MDD will continue to be updated as manuscripts describing new species and higher taxonomic changes are released. Starting from the baseline of the 3rd edition of MSW (MSW3), we performed a review of taxonomic changes published since 2004 and digitally linked species names to their original descriptions and subsequent revisionary articles in an interactive, hierarchical database. We found 6,495 species of currently recognized mammals (96 recently extinct, 6,399 extant), compared to 5,416 in MSW3 (75 extinct, 5,341 extant)—an increase of 1,079 species in about 13 years, including 11 species newly described as having gone extinct in the last 500 years.
    [Show full text]
  • The Status and Distribution of Mediterranean Butterflies
    About IUCN IUCN is a membership Union composed of both government and civil society organisations. It harnesses the experience, resources and reach of its 1,300 Member organisations and the input of some 15,000 experts. IUCN is the global authority on the status of the natural world and the measures needed to safeguard it. www.iucn.org https://twitter.com/IUCN/ IUCN – The Species Survival Commission The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions with a global membership of more than 10,000 experts. SSC advises IUCN and its members on the wide range of technical and scientific aspects of species conservation and is dedicated to securing a future for biodiversity. SSC has significant input into the international agreements dealing with biodiversity conservation. http://www.iucn.org/theme/species/about/species-survival-commission-ssc IUCN – Global Species Programme The IUCN Species Programme supports the activities of the IUCN Species Survival Commission and individual Specialist Groups, as well as implementing global species conservation initiatives. It is an integral part of the IUCN Secretariat and is managed from IUCN’s international headquarters in Gland, Switzerland. The Species Programme includes a number of technical units covering Species Trade and Use, the IUCN Red List Unit, Freshwater Biodiversity Unit (all located in Cambridge, UK), the Global Biodiversity Assessment Initiative (located in Washington DC, USA), and the Marine Biodiversity Unit (located in Norfolk, Virginia, USA). www.iucn.org/species IUCN – Centre for Mediterranean Cooperation The Centre was opened in October 2001 with the core support of the Spanish Ministry of Agriculture, Fisheries and Environment, the regional Government of Junta de Andalucía and the Spanish Agency for International Development Cooperation (AECID).
    [Show full text]
  • Polemonium Viscosum Nutt
    Polemonium viscosum Nutt. skunk polemonium Polemoniaceae - phlox family status: State Sensitive, BLM sensitive, USFS sensitive rank: G5 / S1S2 General Description: Low perennial from a stout taproot and branched caudex, up to 2 (4) dm in height, densely glandular or hairy-glandular, with a strong skunky odor. Leaves pinnately compound, mostly basal, up to 1.5 (2) dm long, including the short petiole. Leaflets numerous, crowded, opposite, with usually 2-5 lobes cleft almost to the base, thus appearing whorled. The individual lobes are rounded, 1.5-6 mm x 1-3 mm. Floral Characteristics: Inflorescence dense, headlike, usually elongating a little in fruit. C alyx tubular, glandular, 7-12 mm long when flowering; lobes 5, narrow, pointed, and shorter than the tube. C orolla blue, funnel or tubular-funnel shaped, often conspicuously longer than wide, (13) 17-25 (30) mm long, with 5 lobes that are shorter than the tube. Flowers July to A ugust. Fruits: C aps ules . Illustration by Jeanne R. Janish, ©1959 University of Washington Press Identif ication Tips: Polemonium elegans is also strongly scented and has a corolla longer than wide. However, P. elegans is a much shorter plant (up to 15 cm tall) with a smaller corolla (12-15 mm long) and entire leaflets that do not appear whorled. Range: C oast ranges of southern B.C . to southwest A lberta, south to A Z and NM; absent from CA . Habitat/Ecology: A t high altitudes, commonly above timberline, in open rocky places, talus slopes, rock outcrops, glacial cirques, and alpine fellfields. Elevations in WA: 1900-2500 m (6350-8200 ft).
    [Show full text]
  • Appendix 1 Vernacular Names
    Appendix 1 Vernacular Names The vernacular names listed below have been collected from the literature. Few have phonetic spellings. Spelling is not helped by the difficulties of transcribing unwritten languages into European syllables and Roman script. Some languages have several names for the same species. Further complications arise from the various dialects and corruptions within a language, and use of names borrowed from other languages. Where the people are bilingual the person recording the name may fail to check which language it comes from. For example, in northern Sahel where Arabic is the lingua franca, the recorded names, supposedly Arabic, include a number from local languages. Sometimes the same name may be used for several species. For example, kiri is the Susu name for both Adansonia digitata and Drypetes afzelii. There is nothing unusual about such complications. For example, Grigson (1955) cites 52 English synonyms for the common dandelion (Taraxacum officinale) in the British Isles, and also mentions several examples of the same vernacular name applying to different species. Even Theophrastus in c. 300 BC complained that there were three plants called strykhnos, which were edible, soporific or hallucinogenic (Hort 1916). Languages and history are linked and it is hoped that understanding how lan- guages spread will lead to the discovery of the historical origins of some of the vernacular names for the baobab. The classification followed here is that of Gordon (2005) updated and edited by Blench (2005, personal communication). Alternative family names are shown in square brackets, dialects in parenthesis. Superscript Arabic numbers refer to references to the vernacular names; Roman numbers refer to further information in Section 4.
    [Show full text]
  • Reproductive Biology of Wild Blueberry (Vaccinium Angustifolium Aiton)
    agriculture Article Reproductive Biology of Wild Blueberry (Vaccinium angustifolium Aiton) Frank Drummond School of Biology and Ecology, University of Maine, Orono, ME 04469, USA; [email protected]; Tel.: +1-(207)-581-2989 Received: 7 March 2019; Accepted: 25 March 2019; Published: 30 March 2019 Abstract: Wild blueberry, Vaccinium angustifolium Aiton, is a native forest understory plant that is managed as a fruit crop. Over the past 51 years, experiments have been conducted to investigate its reproduction. A model was developed that predicts bloom to begin at 100◦ days (base 4.4 ◦C) after 1 April and to end at 500◦ days for a period of three to four weeks. Flower stigmas are only receptive to pollen deposition for eight to 10 days, and the rate of fruit set declines rapidly after four days. Placement of pollen upon receptive stigmas suggests that fruit set occurs with as little as a single pollen tetrad. Twelve tetrads result in 50% fruit set. Several years of exploratory fruit set field experiments show viable seeds per berry, which result from pollination with compatible genotype pollen, is associated with larger berry mass (g). Decomposition of the total variance in fruit set shows that stem variation explains 65% to 79% of total variance in the fruit set. To a lesser extent, the field, year, and clone also explain the percent fruit set variation. Variation between stems may be due to variation in the number of flowers. Fruit set tends to decrease as the flower density increases, possibly due to the limitation of pollinators. Keywords: hand pollination; stigma viability; phenology; fruit set; bloom prediction 1.
    [Show full text]