WO 2014/202616 A2 24 December 2014 (24.12.2014) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2014/202616 A2 24 December 2014 (24.12.2014) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/202616 A2 24 December 2014 (24.12.2014) P O P C T (51) International Patent Classification: 13 172714 1 I June 2013 (19.06.2013) EP C07K 14/37 (2006.01) 13 172724 0 I June 2013 (19.06.2013) EP 13 172685 3 I June 2013 (19.06.2013) EP (21) International Application Number: 13 172686 1 I S June 2013 (19.06.2013) EP PCT/EP2014/062737 13 172683 8 I S June 2013 (19.06.2013) EP (22) International Filing Date: 13 172672 1 I S June 2013 (19.06.2013) EP 17 June 2014 (17.06.2014) 13 172673 9 I S June 2013 (19.06.2013) EP 13 172675 4 I S June 2013 (19.06.2013) EP (25) Filing Language: English 13 172677 0 I S June 2013 (19.06.2013) EP (26) Publication Lan ua e: English 13 172681 2 I S June 2013 (19.06.2013) EP 13 172837 0 I S June 2013 (19.06.2013) EP (30) Priority Data: 13 17261 1 9 I S June 2013 (19.06.2013) EP 13 172700.0 19 June 2013 (19 .06.2013) EP 13 172784 4 I S June 2013 (19.06.2013) EP 13 172812.3 19 June 2013 (19 .06.2013) EP 13 172821 4 I S June 2013 (19.06.2013) EP 13 172758.8 19 June 2013 (19 .06.2013) EP 13 172615 0 I S June 2013 (19.06.2013) EP 13 172757.0 19 June 2013 (19 .06.2013) EP 13 172624 2 I S June 2013 (19.06.2013) EP 13 172842.0 19 June 2013 (19 .06.2013) EP 13 172680 4 I S June 2013 (19.06.2013) EP 13 172756.2 19 June 2013 (19 .06.2013) EP 13 172623 4 I S June 2013 (19.06.2013) EP 13 172759.6 19 June 2013 (19 .06.2013) EP 13 172618 4 I S June 2013 (19.06.2013) EP 13 172793.5 19 June 2013 (19 .06.2013) EP 13 172718 2 I S June 2013 (19.06.2013) EP 13 172795.0 19 June 2013 (19 .06.2013) EP 13 172645 7 I S June 2013 (19.06.2013) EP 13 172797.6 19 June 2013 (19 .06.2013) EP 13 172638 2 I S June 2013 (19.06.2013) EP 13 172800.8 19 June 2013 (19 .06.2013) EP 13 172639 0 I S June 2013 (19.06.2013) EP 13 172715.8 19 June 2013 (19 .06.2013) EP 13 172649 9 I S June 2013 (19.06.2013) EP 13 172777.8 19 June 2013 (19 .06.2013) EP 13 172655 6 I S June 2013 (19.06.2013) EP 13 172805.7 19 June 2013 (19 .06.2013) EP 13 172719 0 I S June 2013 (19.06.2013) EP 13 17281 1.5 19 June 2013 (19 .06.2013) EP 13 172763 8 I S June 2013 (19.06.2013) EP 13 172830.5 19 June 2013 (19 .06.2013) EP 13 172878 4 I S June 2013 (19.06.2013) EP 13 172839.6 19 June 2013 (19 .06.2013) EP 13 172660 6 I S June 2013 (19.06.2013) EP 13 172846. 1 19 June 2013 (19 .06.2013) EP 13 172728 1 I S June 2013 (19.06.2013) EP 13 172723.2 19 June 2013 (19 .06.2013) EP 13 172665 5 I S June 2013 (19.06.2013) EP 13 172847.9 19 June 2013 (19 .06.2013) EP 13 172701 8 I S June 2013 (19.06.2013) EP 13 172684.6 19 June 2013 (19 .06.2013) EP 13 172669 7 I S June 2013 (19.06.2013) EP 13 172850.3 19 June 2013 (19 .06.2013) EP 13 172695 2 I S June 2013 (19.06.2013) EP 13 172852.9 19 June 2013 (19 .06.2013) EP 13 172761 2 I S June 2013 (19.06.2013) EP 13 172853.7 19 June 2013 (19 .06.2013) EP 13 172670 5 I S June 2013 (19.06.2013) EP 13 172856.0 19 June 2013 (19 .06.2013) EP 13 172755 4 I S June 2013 (19.06.2013) EP 13 172727.3 19 June 2013 (19 .06.2013) EP 13 172754 7 I S June 2013 (19.06.2013) EP 13 172654.9 19 June 2013 (19 .06.2013) EP 13 172752 1 I S June 2013 (19.06.2013) EP 13 172659.8 19 June 2013 (19 .06.2013) EP 13 172691 1 I S June 2013 (19.06.2013) EP 13 172667. 1 19 June 2013 (19 .06.2013) EP 13 17275 1 3 I S June 2013 (19.06.2013) EP 13 17283 1.3 19 June 2013 (19 .06.2013) EP 13 172749 7 I S June 2013 (19.06.2013) EP 13 172814.9 19 June 2013 (19 .06.2013) EP 13 172671 3 I S June 2013 (19.06.2013) EP 13 172813. 1 19 June 2013 (19 .06.2013) EP 13 172613 5 I S June 2013 (19.06.2013) EP 13 172626.7 19 June 2013 (19 .06.2013) EP 13 172735 6 I S June 2013 (19.06.2013) EP 13 172747. 1 19 June 2013 (19 .06.2013) EP 13 172734 9 I S June 2013 (19.06.2013) EP 13 172627.5 19 June 2013 (19 .06.2013) EP 13 172732 3 I S June 2013 (19.06.2013) EP 13 172740.6 19 June 2013 (19 .06.2013) EP 13 172729 9 I S June 2013 (19.06.2013) EP 13 172774.5 19 June 2013 (19 .06.2013) EP 13 172717 4 I S June 2013 (19.06.2013) EP 13 172739.8 19 June 2013 (19 .06.2013) EP 13 172823 0 I S June 2013 (19.06.2013) EP 13 172641 .6 19 June 2013 (19 .06.2013) EP 13 173072 3 20 June 2013 (20.06.2013) EP < 13 172766. 1 19 June 2013 (19 .06.2013) EP 13 172859.4 19 June 2013 (19 .06.2013) EP [Continued on nextpage] o (54) Title: RASAMSONIA GENE AND USE THEREOF (57) Abstract: The invention relates to apolypeptide which comprises (a) an amino acid sequence set out in SEQ ID NO: 20501 to o 32240; (b) an amino acid sequence encoded by the nucleic acid sequence of SEQ ID NO: 1 to 20500; (c) or a variant polypeptide, wherein the variant polypeptide (i) has at least 70% sequence identity with the sequence set out in SEQ ID NO: 20501 to 32240, or (ii) has an amino acid sequence that differs in, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 amino acids from the amino acid sequence of SEQ o ID NO: 20501 to 32240. The invention also relates to methods for using the polypeptide in industrial processes. 1 Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins. w o 2014/202616 A2 1II III II II III I IIII II 11II I III I III III i ll (71) Applicant: DSM IP ASSETS B.V. [NL/NL]; Het Over- TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, loon 1, NL-641 1 TE Heerlen (NL). VN, ZA, ZM, ZW. (72) Inventor: WU, Liang; P.O. Box 4, NL-6100 AA Echt (84) Designated States (unless otherwise indicated, for every (NL). kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (74) Agent: MATULEWICZ, Emil Rudolf Antonius; DSM UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Intellectual Property, P.O. Box 4, NL-6100 AA Echt TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (NL). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (81) Designated States (unless otherwise indicated, for every LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, kind of national protection available): AE, AG, AL, AM, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, GW, KM, ML, MR, NE, SN, TD, TG). BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, Published: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, — without international search report and to be republished KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, upon receipt of that report (Rule 48.2(g)) MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, — with sequence listing part of description (Rule 5.2(a)) NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, RASAMSONIA GENES AND USE THEREOF Field of the invention The present invention relates to DNA of Rasamsonia emersonii. This DNA contains nucleotide sequences such as genes, regulatory elements and other nucleotide sequences. The present invention also relates to polypeptides having biological activity and comprising an amino acid sequence encoded by a nucleotide sequence. Background of the invention The present invention relates to DNA of Rasamsonia emersonii. This DNA contains genes, regulatory elements and other nucleotide sequences.
Recommended publications
  • Integrative Analysis of Phenomic, Genomic, and Transcriptomic To
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.29.392167; this version posted November 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Integrative Analysis of Phenomic, Genomic, and Transcriptomic to Identify Potential Functional Genes of Yaks in Plain and Plateau Jiabo Wang1,2, §, Jiuqiang Guan3, §, Kangzhu Yixi1,2,Tao Shu1, Zhixin Chai1,2, Jikun Wang1,2, Hui Wang1,2, Zhijuan Wu1,2, Xin Cai1,2, Jincheng Zhong1,2*,Xiaolin Luo3* 1. Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education,Chengdu, Sichuan, China; 2. Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, Sichuan, China; 3. Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China; §These authors contributed equally to this work. *Correspondences should be addressed to JZ ([email protected]) and XL ([email protected]) bioRxiv preprint doi: https://doi.org/10.1101/2020.11.29.392167; this version posted November 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Background: The yak is an important source of livelihood for the people living in the Qinghai-Tibet Plateau. Most genetics detection studies have focused on the comparison between different tissues of different breeds, both living in the Plateau and in the plains. The genetic background and complex regulatory relationship have frequently puzzled researchers. In this study, we divided a population of 10 yaks into two subgroups, namely Plateau (living in the Plateau) and Plain (living in the plains).
    [Show full text]
  • Role of DCP1-DCP2 Complex Regulated by Viral and Host Micrornas in DNA Virus Infection T
    Fish and Shellfish Immunology 92 (2019) 21–30 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Role of DCP1-DCP2 complex regulated by viral and host microRNAs in DNA virus infection T ∗ Yuechao Sun, Xiaobo Zhang College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China ARTICLE INFO ABSTRACT Keywords: The DCP1-DCP2 complex can regulate the antiviral immunity of animals by the decapping of retrovirus RNAs DCP1-DCP2 complex and the suppression of RNAi during RNA virus infection. However, the influence of DCP1-DCP2 complex on DNA miRNA virus infection and the regulation of DCP1-DCP2 complex by microRNAs (miRNAs) remain unclear. In this study, DNA virus infection the role of miRNA-regulated DCP1-DCP2 complex in DNA virus infection was characterized. Our results showed that the DCP1-DCP2 complex played a positive role in the infection of white spot syndrome virus (WSSV), a DNA virus of shrimp. In the DCP1-DCP2 complex, the N-terminal regulatory domain of DCP2 was interacted with the EVH1 domain of DCP1. Furthermore, shrimp miRNA miR-87 inhibited WSSV infection by targeting the host DCP2 gene and viral miRNA WSSV-miR-N46 took a negative effect on WSSV replication by targeting the host DCP1 gene. Therefore, our study provided novel insights into the underlying mechanism of DCP1-DCP2 complex and its regulation by miRNAs in virus-host interactions. Importance: During RNA virus infection, the DCP1-DCP2 complex can play important roles in the animal anti- viral immunity by decapping retrovirus RNAs and suppressing RNAi.
    [Show full text]
  • Atxn2-CAG100-Knockin Mouse Spinal Cord Shows Progressive TDP43
    bioRxiv preprint doi: https://doi.org/10.1101/838177; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression Júlia Canet-Pons1§, Nesli-Ece Sen1,2§, Aleksandar Arsovic1, Luis-Enrique Almaguer-Mederos1,3, Melanie V. Halbach1, Jana Key1,2, Claudia Döring4, Anja Kerksiek5, Gina Picchiarelli6, Raphaelle Cassel6, Frédérique René6, Stéphane Dieterlé6, Nina Hein-Fuchs7, Renate König7, Luc Dupuis6, Dieter Lütjohann5, Suzana Gispert1, Georg Auburger1# 1 Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; 2 Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; 3 Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba; 4 Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; 5 Institute for Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany; 6 UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; 7 Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany. § Joint first authorship # Correspondence to: [email protected], Tel: +49-69-6301-7428, FAX: +49-69-6301-7142 Acknowledgements: 1 bioRxiv preprint doi: https://doi.org/10.1101/838177; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supporting Information
    Supporting Information Figure S1. The functionality of the tagged Arp6 and Swr1 was confirmed by monitoring cell growth and sensitivity to hydeoxyurea (HU). Five-fold serial dilutions of each strain were plated on YPD with or without 50 mM HU and incubated at 30°C or 37°C for 3 days. Figure S2. Localization of Arp6 and Swr1 on chromosome 3. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 3L, Tel 3R, CEN3, and the RP gene are shown under the panels. Figure S3. Localization of Arp6 and Swr1 on chromosome 4. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) in the whole chromosome region are compared. The position of Tel 4L, Tel 4R, CEN4, SWR1, and RP genes are shown under the panels. Figure S4. Localization of Arp6 and Swr1 on the region including the SWR1 gene of chromosome 4. The binding of Arp6- FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position and orientation of the SWR1 gene is shown. Figure S5. Localization of Arp6 and Swr1 on chromosome 5. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 5L, Tel 5R, CEN5, and the RP genes are shown under the panels. Figure S6. Preferential localization of Arp6 and Swr1 in the 5′ end of genes. Vertical bars represent the binding ratio of proteins in each locus.
    [Show full text]
  • Epigenetic Loss of the RNA Decapping Enzyme NUDT16 Mediates C-MYC Activation in T-Cell Acute Lymphoblastic Leukemia
    OPEN Leukemia (2017) 31, 1622–1657 www.nature.com/leu LETTERS TO THE EDITOR Epigenetic loss of the RNA decapping enzyme NUDT16 mediates C-MYC activation in T-cell acute lymphoblastic leukemia Leukemia (2017) 31, 1622–1625; doi:10.1038/leu.2017.99 Having found the aforementioned NUDT16 CpG island methy- lation profiles, we studied in greater detail their association with the possible transcriptional inactivation of the NUDT16 gene at the RNA and protein levels in leukemia cell lines. We first It is possible that the occurrence of intrinsic defects in RNA performed bisulfite genomic sequencing of mutiple clones in the – processing pathways, such as RNA decapping,1 3 contribute to the T-cell Acute Lymphoblastic Leukemia (T-ALL) cell lines CCRF-CEM, distorted RNA landscapes of cancer cells. After transcription by Jurkat, MOLT-4 and MOLT-16 using primers that encompassed the RNA polymerase II, RNA molecules are equipped with a 5´-end transcription start site-associated CpG island and confirmed the N7-methyl guanosine (m7G)-cap. This m7G-cap is essential for hypermethylated status of the 5′-end region of NUDT16 in translation, stabilizing the RNA molecule and protecting it from comparison to normal T lymphocytes (Figure 1b), validating the – exonucleolytic breakdown.1 3 For RNA decay to occur the DNA methylation patterns obtained by the microarray approach m7G-cap first needs to be removed. This process is known as (Supplementary Figure S2). In contrast, normal T lymphocytes, the – decapping.1 3 The decapping mRNA 2 (DCP2) enzyme,4 also T-ALL cell lines KOPN-8, REH and RS4;11 and the leukemia cell known as the nucleoside diphosphate-linked moiety X motif lines HL-60 and K562 derived from myeloid lineage were all found 20 (NUDT20), was originally thought to be the only mammalian to be unmethylated (Figure 1b; Supplementary Figure S2).
    [Show full text]
  • The Reaction Mechanism of Cellular U Snrnp Assembly
    The Reaction Mechanism of Cellular U snRNP Assembly Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Ashwin Chari Aus Bangalore (Indien) Würzburg 2009 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. M. Müller 1. Gutachter: Prof. Dr. U. Fischer 2. Gutachter: Prof. Dr. U. Scheer Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Erklärung Erklärung gemäss §4 Absatz 3 der Promotionsordnung der Fakultät für Biologie der Bayerischen Julius-Maximilians-Universität Würzburg vom 15. März 1999 1. Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. 2. Ich erkläre, dass die vorliegende Dissertation weder in gleicher noch in ähnlicher Form bereits in einem Prüfungsverfahren vorgelegen hat. 3. Ich erkläre, dass ich ausser den mit dem Zulassungsantrag urkundlich vorgelegten Graden keine weiteren akademischen Grade erworben oder zu erwerben versucht habe. Würzburg, 2009 Ashwin Chari Table of Contents 1. Summary 1 2. Zusammenfassung 5 3. Introduction 9 3.1 Principles Governing Macromolecular Complex Assembly in Vivo 9 3.2 Pre-mRNA Splicing 12 3.3 Architecture of Spliceosomal U snRNPs 14 3.4 The Cell Biology of U snRNP Biogenesis 16 3.5 U snRNP Assembly in Vivo is an Active, Factor-Mediated Process 19 3.6 References 22 4. Goals of this Thesis 29 5. Results 31 5.1 Taking an Inventory of the Subunits of the Human SMN-Complex 31 5.2 Definition of the Basic Architecture of the Human SMN-Complex 49 5.3 Mechanistic Aspects of Cellular U snRNP Assembly 65 5.4 Evolution of the SMN-Complex 115 6.
    [Show full text]
  • Food Microbiology Influence of Nitrogen Status in Wine Alcoholic Fermentation
    Food Microbiology 83 (2019) 71–85 Contents lists available at ScienceDirect Food Microbiology journal homepage: www.elsevier.com/locate/fm Influence of nitrogen status in wine alcoholic fermentation T ∗ Antoine Goberta, , Raphaëlle Tourdot-Maréchala, Céline Sparrowb, Christophe Morgeb, Hervé Alexandrea a UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France b SAS Sofralab, 79, Av. A.A. Thévenet, BP 1031, Magenta, France ARTICLE INFO ABSTRACT Keywords: Nitrogen is an essential nutrient for yeast during alcoholic fermentation. Nitrogen is involved in the biosynthesis Nitrogen of protein, amino acids, nucleotides, and other metabolites, including volatile compounds. However, recent Amino acids studies have called several mechanisms that regulate its role in biosynthesis into question. An initial focus on S. Ammonium cerevisiae has highlighted that the concept of “preferred” versus “non-preferred” nitrogen sources is extremely Alcoholic fermentation variable and strain-dependent. Then, the direct involvement of amino acids consumed in the formation of Yeasts proteins and volatile compounds has recently been reevaluated. Indeed, studies have highlighted the key role of Wine Volatile compounds lipids in nitrogen regulation in S. cerevisiae and their involvement in the mechanism of cell death. New wine- making strategies using non-Saccharomyces yeast strains in co- or sequential fermentation improve nitrogen management. Indeed, recent studies show that non-Saccharomyces yeasts have significant and specific needs for nitrogen. Moreover, sluggish fermentation can occur when they are associated with S. cerevisiae, necessitating nitrogen addition. In this context, we will present the consequences of nitrogen addition, discussing the sources, time of addition, transcriptome changes, and effect on volatile compound composition.
    [Show full text]
  • Lifestyle Adaptations of Rhizobium from Rhizosphere to Symbiosis
    Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis Rachel M. Wheatleya,1, Brandon L. Forda,1,LiLib,1, Samuel T. N. Aroneya, Hayley E. Knightsa, Raphael Ledermanna, Alison K. Easta, Vinoy K. Ramachandrana,2, and Philip S. Poolea,2 aDepartment of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom; and bChinese Academy of Sciences Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074 Wuhan, People’s Republic of China Edited by Éva Kondorosi, Hungarian Academy of Sciences, Biological Research Centre, Szeged, Hungary, and approved August 4, 2020 (received for review May 7, 2020) By analyzing successive lifestyle stages of a model Rhizobium– nodule cells and undergo terminal differentiation into N2-fixing legume symbiosis using mariner-based transposon insertion se- bacteroids (10). Nodules provide a protective microaerobic envi- quencing (INSeq), we have defined the genes required for rhizo- ronment to maintain oxygen-labile nitrogenase (6). In exchange + sphere growth, root colonization, bacterial infection, N2-fixing for NH4 and alanine, the legume host provides carbon sources to bacteroids, and release from legume (pea) nodules. While only 27 fuel this process, primarily as dicarboxylic acids (13, 14). genes are annotated as nif and fix in Rhizobium leguminosarum,we However, nodule infection is only one stage of the lifestyle of show 603 genetic regions (593 genes, 5 transfer RNAs, and 5 RNA rhizobia, and they spend much of their time surviving in the rhi- features) are required for the competitive ability to nodulate pea and zosphere, the zone of soil immediately surrounding roots (15).
    [Show full text]
  • A Non-Canonical Role for the EDC4 Decapping Factor in Regulating
    RESEARCH ARTICLE A non-canonical role for the EDC4 decapping factor in regulating MARF1- mediated mRNA decay William R Brothers1, Steven Hebert1, Claudia L Kleinman1,2, Marc R Fabian1,3,4* 1Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada; 2Department of Human Genetics, McGill University, Montreal, Canada; 3Department of Biochemistry, McGill University, Montreal, Canada; 4Department of Oncology, McGill University, Montreal, Canada Abstract EDC4 is a core component of processing (P)-bodies that binds the DCP2 decapping enzyme and stimulates mRNA decay. EDC4 also interacts with mammalian MARF1, a recently identified endoribonuclease that promotes oogenesis and contains a number of RNA binding domains, including two RRMs and multiple LOTUS domains. How EDC4 regulates MARF1 action and the identity of MARF1 target mRNAs is not known. Our transcriptome-wide analysis identifies bona fide MARF1 target mRNAs and indicates that MARF1 predominantly binds their 3’ UTRs via its LOTUS domains to promote their decay. We also show that a MARF1 RRM plays an essential role in enhancing its endonuclease activity. Importantly, we establish that EDC4 impairs MARF1 activity by preventing its LOTUS domains from binding target mRNAs. Thus, EDC4 not only serves as an enhancer of mRNA turnover that binds DCP2, but also as a repressor that binds MARF1 to prevent the decay of MARF1 target mRNAs. Introduction *For correspondence: The regulated decay of eukaryotic mRNA populations plays an important role in the post-transcrip- [email protected] tional control (PTC) of gene expression. These PTC programs are, in turn, critical for regulating a number of biological processes, including during early development, cell proliferation and immune Competing interests: The response.
    [Show full text]
  • Site-Directed Mutagenesis Studies of E. Coli Biotin Carboxylase Valerie Melissa Sloane Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2004 Site-directed mutagenesis studies of E. coli biotin carboxylase Valerie Melissa Sloane Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Sloane, Valerie Melissa, "Site-directed mutagenesis studies of E. coli biotin carboxylase" (2004). LSU Doctoral Dissertations. 1561. https://digitalcommons.lsu.edu/gradschool_dissertations/1561 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SITE-DIRECTED MUTAGENESIS STUDIES OF E. COLI BIOTIN CARBOXYLASE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Valerie M. Sloane B.S., University of Louisiana at Lafayette, 1995 May 2004 ACKNOWLEDGEMENTS I would like to thank Dr. Grover Waldrop, my major professor, for his invaluable guidance and helpful insights throughout this project, as well as for obtaining grants for the research. I am also indebted to Professor Simon Chang, Associate Professor Patrick DiMario, Associate Professor Jacqueline Stephens, Assistant Professor Anne Grove, and Assistant Professor Britt Thomas for serving on my committee and for a thoughtful reading of each chapter. Dr. Carol Blanchard and Tee Bordelon especially deserve my thanks for their careful tutelage in molecular biology and protein purification techniques.
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]