A Non-Canonical Role for the EDC4 Decapping Factor in Regulating
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integrative Analysis of Phenomic, Genomic, and Transcriptomic To
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.29.392167; this version posted November 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Integrative Analysis of Phenomic, Genomic, and Transcriptomic to Identify Potential Functional Genes of Yaks in Plain and Plateau Jiabo Wang1,2, §, Jiuqiang Guan3, §, Kangzhu Yixi1,2,Tao Shu1, Zhixin Chai1,2, Jikun Wang1,2, Hui Wang1,2, Zhijuan Wu1,2, Xin Cai1,2, Jincheng Zhong1,2*,Xiaolin Luo3* 1. Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education,Chengdu, Sichuan, China; 2. Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, Sichuan, China; 3. Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China; §These authors contributed equally to this work. *Correspondences should be addressed to JZ ([email protected]) and XL ([email protected]) bioRxiv preprint doi: https://doi.org/10.1101/2020.11.29.392167; this version posted November 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Background: The yak is an important source of livelihood for the people living in the Qinghai-Tibet Plateau. Most genetics detection studies have focused on the comparison between different tissues of different breeds, both living in the Plateau and in the plains. The genetic background and complex regulatory relationship have frequently puzzled researchers. In this study, we divided a population of 10 yaks into two subgroups, namely Plateau (living in the Plateau) and Plain (living in the plains). -
Mutations in DCPS and EDC3 in Autosomal Recessive Intellectual
Human Molecular Genetics, 2015, Vol. 24, No. 11 3172–3180 doi: 10.1093/hmg/ddv069 Advance Access Publication Date: 20 February 2015 Original Article Downloaded from ORIGINAL ARTICLE Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA http://hmg.oxfordjournals.org/ decapping in neurodevelopment Iltaf Ahmed1,2,†, Rebecca Buchert3,†, Mi Zhou5,†, Xinfu Jiao5,†, Kirti Mittal1, Taimoor I. Sheikh1, Ute Scheller3, Nasim Vasli1, Muhammad Arshad Rafiq1, 6 1 7 2 M. Qasim Brohi , Anna Mikhailov , Muhammad Ayaz , Attya Bhatti , at Universitaet Erlangen-Nuernberg, Wirtschafts- und Sozialwissenschaftliche Z on August 15, 2016 Heinrich Sticht4, Tanveer Nasr8,9, Melissa T. Carter10, Steffen Uebe3, André Reis3, Muhammad Ayub7,11, Peter John2, Megerditch Kiledjian5,*, John B. Vincent1,12,13,* and Rami Abou Jamra3,* 1Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8, 2Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan, 3Institute of Human Genetics and 4Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany, 5Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA, 6Sir Cowasji Jehangir Institute of Psychiatry, Hyderabad, Sindh 71000, Pakistan, 7Lahore Institute of Research and Development, -
Role of DCP1-DCP2 Complex Regulated by Viral and Host Micrornas in DNA Virus Infection T
Fish and Shellfish Immunology 92 (2019) 21–30 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Role of DCP1-DCP2 complex regulated by viral and host microRNAs in DNA virus infection T ∗ Yuechao Sun, Xiaobo Zhang College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China ARTICLE INFO ABSTRACT Keywords: The DCP1-DCP2 complex can regulate the antiviral immunity of animals by the decapping of retrovirus RNAs DCP1-DCP2 complex and the suppression of RNAi during RNA virus infection. However, the influence of DCP1-DCP2 complex on DNA miRNA virus infection and the regulation of DCP1-DCP2 complex by microRNAs (miRNAs) remain unclear. In this study, DNA virus infection the role of miRNA-regulated DCP1-DCP2 complex in DNA virus infection was characterized. Our results showed that the DCP1-DCP2 complex played a positive role in the infection of white spot syndrome virus (WSSV), a DNA virus of shrimp. In the DCP1-DCP2 complex, the N-terminal regulatory domain of DCP2 was interacted with the EVH1 domain of DCP1. Furthermore, shrimp miRNA miR-87 inhibited WSSV infection by targeting the host DCP2 gene and viral miRNA WSSV-miR-N46 took a negative effect on WSSV replication by targeting the host DCP1 gene. Therefore, our study provided novel insights into the underlying mechanism of DCP1-DCP2 complex and its regulation by miRNAs in virus-host interactions. Importance: During RNA virus infection, the DCP1-DCP2 complex can play important roles in the animal anti- viral immunity by decapping retrovirus RNAs and suppressing RNAi. -
Atxn2-CAG100-Knockin Mouse Spinal Cord Shows Progressive TDP43
bioRxiv preprint doi: https://doi.org/10.1101/838177; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression Júlia Canet-Pons1§, Nesli-Ece Sen1,2§, Aleksandar Arsovic1, Luis-Enrique Almaguer-Mederos1,3, Melanie V. Halbach1, Jana Key1,2, Claudia Döring4, Anja Kerksiek5, Gina Picchiarelli6, Raphaelle Cassel6, Frédérique René6, Stéphane Dieterlé6, Nina Hein-Fuchs7, Renate König7, Luc Dupuis6, Dieter Lütjohann5, Suzana Gispert1, Georg Auburger1# 1 Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; 2 Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; 3 Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba; 4 Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; 5 Institute for Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany; 6 UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; 7 Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany. § Joint first authorship # Correspondence to: [email protected], Tel: +49-69-6301-7428, FAX: +49-69-6301-7142 Acknowledgements: 1 bioRxiv preprint doi: https://doi.org/10.1101/838177; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
1 AGING Supplementary Table 2
SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21. -
Epigenetic Loss of the RNA Decapping Enzyme NUDT16 Mediates C-MYC Activation in T-Cell Acute Lymphoblastic Leukemia
OPEN Leukemia (2017) 31, 1622–1657 www.nature.com/leu LETTERS TO THE EDITOR Epigenetic loss of the RNA decapping enzyme NUDT16 mediates C-MYC activation in T-cell acute lymphoblastic leukemia Leukemia (2017) 31, 1622–1625; doi:10.1038/leu.2017.99 Having found the aforementioned NUDT16 CpG island methy- lation profiles, we studied in greater detail their association with the possible transcriptional inactivation of the NUDT16 gene at the RNA and protein levels in leukemia cell lines. We first It is possible that the occurrence of intrinsic defects in RNA performed bisulfite genomic sequencing of mutiple clones in the – processing pathways, such as RNA decapping,1 3 contribute to the T-cell Acute Lymphoblastic Leukemia (T-ALL) cell lines CCRF-CEM, distorted RNA landscapes of cancer cells. After transcription by Jurkat, MOLT-4 and MOLT-16 using primers that encompassed the RNA polymerase II, RNA molecules are equipped with a 5´-end transcription start site-associated CpG island and confirmed the N7-methyl guanosine (m7G)-cap. This m7G-cap is essential for hypermethylated status of the 5′-end region of NUDT16 in translation, stabilizing the RNA molecule and protecting it from comparison to normal T lymphocytes (Figure 1b), validating the – exonucleolytic breakdown.1 3 For RNA decay to occur the DNA methylation patterns obtained by the microarray approach m7G-cap first needs to be removed. This process is known as (Supplementary Figure S2). In contrast, normal T lymphocytes, the – decapping.1 3 The decapping mRNA 2 (DCP2) enzyme,4 also T-ALL cell lines KOPN-8, REH and RS4;11 and the leukemia cell known as the nucleoside diphosphate-linked moiety X motif lines HL-60 and K562 derived from myeloid lineage were all found 20 (NUDT20), was originally thought to be the only mammalian to be unmethylated (Figure 1b; Supplementary Figure S2). -
The Reaction Mechanism of Cellular U Snrnp Assembly
The Reaction Mechanism of Cellular U snRNP Assembly Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Ashwin Chari Aus Bangalore (Indien) Würzburg 2009 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. M. Müller 1. Gutachter: Prof. Dr. U. Fischer 2. Gutachter: Prof. Dr. U. Scheer Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Erklärung Erklärung gemäss §4 Absatz 3 der Promotionsordnung der Fakultät für Biologie der Bayerischen Julius-Maximilians-Universität Würzburg vom 15. März 1999 1. Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. 2. Ich erkläre, dass die vorliegende Dissertation weder in gleicher noch in ähnlicher Form bereits in einem Prüfungsverfahren vorgelegen hat. 3. Ich erkläre, dass ich ausser den mit dem Zulassungsantrag urkundlich vorgelegten Graden keine weiteren akademischen Grade erworben oder zu erwerben versucht habe. Würzburg, 2009 Ashwin Chari Table of Contents 1. Summary 1 2. Zusammenfassung 5 3. Introduction 9 3.1 Principles Governing Macromolecular Complex Assembly in Vivo 9 3.2 Pre-mRNA Splicing 12 3.3 Architecture of Spliceosomal U snRNPs 14 3.4 The Cell Biology of U snRNP Biogenesis 16 3.5 U snRNP Assembly in Vivo is an Active, Factor-Mediated Process 19 3.6 References 22 4. Goals of this Thesis 29 5. Results 31 5.1 Taking an Inventory of the Subunits of the Human SMN-Complex 31 5.2 Definition of the Basic Architecture of the Human SMN-Complex 49 5.3 Mechanistic Aspects of Cellular U snRNP Assembly 65 5.4 Evolution of the SMN-Complex 115 6. -
Lorena Novoa-Aponte
A Strain: fl/fl ∆hep Strain: fl/fl ∆hep AnalysisAAV: ofLuc the ironLuc chaperonePCBP1-WT PCBP1PCBP1-∆Fe interactome:PCBP1-∆RNA PCBP1 variant intersection of DNA repair and iron traffickingAAV: Luc Luc WT ∆Fe ∆RNA PCBP1 −40 Lorena Novoa-Aponte a*, Sarju J. Patel a, Olga Protchenko a, James Wohlschlegel b, Caroline C. Philpott a −40 PCBP1, IHC PCBP1, GAPDH - a Genetics and Metabolism Section,a NIDDK, NIH, Bethesda, MD, USA. b Department of Biological Chemistry, UCLA, Los Angeles, CA, USA C.C. Philpott, et al. *[email protected] 80 B P = 0.0262 60 40 1. Iron is essential but toxic 2. Increased DNA damage in cells lacking PCBP1 ns H&E ? + 20 C.C. Philpott, et al. Iron is used as an essential cofactor by several enzymes involved in DNA ⦿ Increased TUNEL in cells and tissue livers from mice lacking PCBP1. ? replication and repair. However, unchaperoned iron promotes redox ⦿ PCBP1 binds both, iron and single-stranded nucleicTG, nmol/mg protein 0 acids. stress that may affect DNA stability. Strain: Δhep Δhep Δhep ? ⦿ The iron binding activity of PCBP1 controls suppressionAAV: of DNA damage C WT ∆Fe ∆RNA PCBP1 variant ? Iron storage HEK293 cells Mouse Liver ? A 8 siNT+P1var 100 ? A 8 var siPCBP1 2 ? Mammals use the iron siNT+P1 ns var Fe-S cluster assembly 6 siPCBP1+P1siPCBP1 80 ADI1 TUNEL chaperone PCBP1 to var ? 6 siPCBP1+P1 metalate several iron- 60 = 0.0468 = 0.0354 = 0.0465 cell / mm population P P P population + dependent enzymes + 4 + 4 ? 40 Degradation of HIF1α Fig. 3. Iron chaperone-mediated handling of cytosolic labile iron pool. -
Identification of Edc3p As an Enhancer of Mrna Decapping In
Copyright 2004 by the Genetics Society of America Identification of Edc3p as an Enhancer of mRNA Decapping in Saccharomyces cerevisiae Meenakshi Kshirsagar and Roy Parker1 Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona 85721-0106 Manuscript received July 8, 2003 Accepted for publication October 27, 2003 ABSTRACT The major pathway of mRNA decay in yeast initiates with deadenylation, followed by mRNA decapping and 5Ј–3Ј exonuclease digestion. An in silico approach was used to identify new proteins involved in the mRNA decay pathway. One such protein, Edc3p, was identified as a conserved protein of unknown function having extensive two-hybrid interactions with several proteins involved in mRNA decapping and 5Ј–3Ј degradation including Dcp1p, Dcp2p, Dhh1p, Lsm1p, and the 5Ј–3Ј exonuclease, Xrn1p. We show that Edc3p can stimulate mRNA decapping of both unstable and stable mRNAs in yeast when the decapping enzyme is compromised by temperature-sensitive alleles of either the DCP1 or the DCP2 genes. In these cases, deletion of EDC3 caused a synergistic mRNA-decapping defect at the permissive temperatures. The edc3⌬ had no effect when combined with the lsm1⌬, dhh1⌬,orpat1⌬ mutations, which appear to affect an early step in the decapping pathway. This suggests that Edc3p specifically affects the function of the decapping enzyme per se. Consistent with a functional role in decapping, GFP-tagged Edc3p localizes to cytoplasmic foci involved in mRNA decapping referred to as P-bodies. These results identify Edc3p as a new protein involved in the decapping reaction. N eukaryotic cells, mRNA turnover and its regulation al. -
Phosphorylation of Mrna Decapping Protein Dcp1a by the ERK Signaling Pathway During Early Differentiation of 3T3-L1 Preadipocytes
Phosphorylation of mRNA Decapping Protein Dcp1a by the ERK Signaling Pathway during Early Differentiation of 3T3-L1 Preadipocytes Pei-Yu Chiang1., Yu-Fang Shen1., Yu-Lun Su1, Ching-Han Kao1, Nien-Yi Lin2, Pang-Hung Hsu3, Ming- Daw Tsai1,2,4, Shun-Chang Wang2, Geen-Dong Chang1, Sheng-Chung Lee2,5, Ching-Jin Chang1,2* 1 Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, 2 Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, 3 Department of Life Science, Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, 4 Genomic Research Center, Academia Sinica, Taipei, Taiwan, 5 Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan Abstract Background: Turnover of mRNA is a critical step in the regulation of gene expression, and an important step in mRNA decay is removal of the 59 cap. We previously demonstrated that the expression of some immediate early gene mRNAs is controlled by RNA stability during early differentiation of 3T3-L1 preadipocytes. Methodology/Principal Findings: Here we show that the mouse decapping protein Dcp1a is phosphorylated via the ERK signaling pathway during early differentiation of preadipocytes. Mass spectrometry analysis and site-directed mutagenesis combined with a kinase assay identified ERK pathway–mediated dual phosphorylation at Ser 315 and Ser 319 of Dcp1a. To understand the functional effects of Dcp1a phosphorylation, we examined protein-protein interactions between Dcp1a and other decapping components with co-immunoprecipitation. Dcp1a interacted with Ddx6 and Edc3 through its proline-rich C-terminal extension, whereas the conserved EVH1 (enabled vasodilator-stimulated protein homology 1) domain in the N terminus of Dcp1a showed a stronger interaction with Dcp2. -
Host Cell Factors Necessary for Influenza a Infection: Meta-Analysis of Genome Wide Studies
Host Cell Factors Necessary for Influenza A Infection: Meta-Analysis of Genome Wide Studies Juliana S. Capitanio and Richard W. Wozniak Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta Abstract: The Influenza A virus belongs to the Orthomyxoviridae family. Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus today, behind HIV. Recently, several genome-wide RNA interference studies have focused on identifying host molecules that participate in Influen- za infection. We used nine of these studies for this meta-analysis. Even though the overlap among genes identified in multiple screens was small, network analysis indicates that similar protein complexes and biological functions of the host were present. As a result, several host gene complexes important for the Influenza virus life cycle were identified. The biological function and the relevance of each identified protein complex in the Influenza virus life cycle is further detailed in this paper. Background and PA bound to the viral genome via nucleoprotein (NP). The viral core is enveloped by a lipid membrane derived from Influenza virus the host cell. The viral protein M1 underlies the membrane and anchors NEP/NS2. Hemagglutinin (HA), neuraminidase Viruses are the simplest life form on earth. They parasite host (NA), and M2 proteins are inserted into the envelope, facing organisms and subvert the host cellular machinery for differ- the viral exterior.