Three Neglected Numbers in the CBC: the RDW, MPV, and NRBC Count

Total Page:16

File Type:pdf, Size:1020Kb

Three Neglected Numbers in the CBC: the RDW, MPV, and NRBC Count REVIEW JORI E. MAY, MD MARISA B. MARQUES, MD VISHNU V.B. REDDY, MD RADHIKA GANGARAJU, MD Department of Medicine, Department of Pathology, Department of Pathology, Department of Medicine, University of University of Alabama, University of Alabama, Birmingham University of Alabama, Birmingham Alabama, Birmingham Birmingham Three neglected numbers in the CBC: The RDW, MPV, and NRBC count ABSTRACT he complete blood cell count (CBC) T is one of the most frequently ordered lab- The complete blood cell count (CBC) is one of the most oratory tests in both the inpatient and outpa- frequently ordered laboratory tests, but some values tient settings. Not long ago, the CBC required included in the test may be overlooked. This brief re- peering through a microscope and counting view discusses 3 potentially underutilized components the red blood cells, white blood cells, and of the CBC: the red blood cell distribution width (RDW), platelets. These 3 numbers are still the primary the mean platelet volume (MPV), and the nucleated purpose of the test. red blood cell (NRBC) count. These results have unique Now, with automated counters, the CBC diagnostic applications and prognostic implications that report also contains other numbers that delin- can be incorporated into clinical practice. By understand- eate characteristics of each cell type. For ex- ing all components of the CBC, providers can learn more ample: about the patient’s condition. The mean corpuscular volume is the aver- age volume of red blood cells. Providers use it KEY POINTS to classify anemia as either microcytic, normo- The RDW can help differentiate the cause of anemia: eg, cytic, or macrocytic, each with its own differ- a high RDW suggests iron-defi ciency anemia, while a nor- ential diagnosis. mal RDW suggests thalassemia. Studies also suggest that The differential white blood cell count a high RDW may be associated with an increased rate of provides absolute counts and relative percent- all-cause mortality and may predict a poor prognosis in ages of each type of leukocyte. For example, several cardiac diseases. the absolute neutrophil count is an important measure of immunocompetence. But other values in the CBC may be over- The MPV can be used in the evaluation of thrombocy- looked, even though they can provide im- topenia. Furthermore, emerging evidence suggests that portant information. Here, we highlight 3 of high MPV is associated with worse outcomes in cardio- them: vascular disorders. • The red blood cell distribution width (RDW) An elevated NRBC count may predict poor outcomes in • The mean platelet volume (MPV) a number of critical care settings. It can also indicate a • The nucleated red blood cell (NRBC) serious underlying hematologic disorder. count. In addition to describing their diagnostic utility, we also discuss emerging evidence of their potential prognostic signifi cance in he- matologic and nonhematologic disorders. By incorporating an awareness of their value in clinical practice, providers can maximize the doi:10.3949/ccjm.86a.18072 usefulness of the CBC. CLEVELAND CLINIC JOURNAL OF MEDICINE VOLUME 86 • NUMBER 3 MARCH 2019 167 INTERPRETING THE CBC Figure 1. A: Example of a normal red blood cell distribution width (RDW) of 13.5% (red line) in a patient with a normal complete blood cell count. B: Example of an increased RDW of 28.8% in a patient with iron defi ciency shortly after initiation of iron supplemen- tation. ■ RED BLOOD CELL DISTRIBUTION WIDTH hemorrhage or rapid hemolysis, as the acute The RDW is a measure of variation (anisocy- drop in hemoglobin results in increased pro- tosis) in the size of the circulating red cells. duction of reticulocytes, which are larger than The RDW The term “width” is misleading, as the value mature erythrocytes. Because a range of disorders can elevate is not derived from the width of the red blood measures the RDW, reviewing the peripheral blood cell, but rather from the width of the distribu- smear is an important next step in the di- variation tion curve of the corpuscular volume (Figure agnostic evaluation, specifi cally looking for in size, 1). Therefore, a normal RDW means that the reticulocytes, microspherocytes, and other not size itself cells are all about the same size, while a high abnormal red blood cells contributing to the RDW means they vary widely in size. RDW elevation. The RDW can be calculated either as a A normal RDW is less diagnostically use- coeffi cient of variation, with a reference range ful. It indicates the red blood cells are of uni- of 11% to 16% depending on the laboratory, form size, but they may be uniformly small or or, less often, as a standard deviation, with a large depending on how long the anemia has reference range of 39 to 46 fL. persisted. Since red cells circulate for only The RDW can differentiate about 120 days, patients who have severe between causes of anemia iron-defi ciency anemia for months to years are A high RDW is often found in nutritional de- expected to have a normal rather than a high RDW, as their red cells of normal size have all fi ciencies of iron, vitamin B12, and folate. This information is helpful in differentiating the been replaced by microcytes. A low RDW is not consistently associated cause of microcytic anemia, as a high RDW with any hematologic disorder. suggests iron-defi ciency anemia while a nor- mal RDW suggests thalassemia.1 In iron defi - RDW may have prognostic value ciency, the RDW often rises before the mean Emerging data suggest that the RDW may also corpuscular volume falls, serving as an early have prognostic value in nonhematologic dis- diagnostic clue. eases. In a retrospective study of 15,852 adult The RDW can also be high after recent participants in the Third National Health and 168 CLEVELAND CLINIC JOURNAL OF MEDICINE VOLUME 86 • NUMBER 3 MARCH 2019 MAY AND COLLEAGUES Nutrition Examination Survey (1988–1994), a higher RDW was associated with a higher risk of death, with the all-cause mortality rate increasing by 23% for every 1% increment in RDW.2 This correlation is particularly prominent in cardiac disorders. In 2 large retrospective studies of patients with symptomatic heart failure, a higher RDW was a strong predictor of morbidity and death (hazard ratio 1.17 per 1-standard deviation increase, P < .001), even stronger than more commonly used variables such as ejection fraction, New York Heart As- sociation functional class, and renal function.3 In a retrospective analysis of 4,111 pa- Figure 2. Giant platelets (thin arrows), nor- tients with myocardial infarction, the degree mal sized platelets (dotted arrows), and a of RDW elevation correlated with the risk of nucleated red blood cell (thick arrow) in a repeat nonfatal myocardial infarction, coro- patient with myelofi brosis and extensive extramedullary hematopoiesis. nary death, new symptomatic heart failure, and stroke.4 It is hypothesized that high RDW may In contrast, the MPV is low in patients refl ect poor cell membrane integrity from al- with thrombocytopenia due to megakaryocyte tered cholesterol content, which in turn has hypoplasia, as malfunctioning megakaryocytes deleterious effects on multiple organ systems cannot maintain the total platelet mass, and and is therefore associated with adverse out- any platelets produced remain small. This dis- comes.5 tinction can be obscured in the setting of sple- Currently, using the RDW to assess prog- nomegaly, as larger platelets are more easily nosis remains investigational, and how best to sequestered in the spleen and the MPV may In anemia, interpret it in daily practice requires further therefore be low or normal. a high RDW study. The MPV can also be used to differenti- ate congenital thrombocytopenic disorders, suggests iron ■ MEAN PLATELET VOLUME which can be characterized by either a high defi ciency, The MPV, ie, the average size of platelets, is MPV (eg, gray platelet syndrome, Bernard- while a normal reported in femtoliters (fL). Because the MPV Soulier syndrome) or a low MPV (eg, Wis- varies depending on the instrument used, kott-Aldrich syndrome) (Figure 2). RDW suggests each laboratory has a unique reference range, MPV may have prognostic value thalassemia usually about 8 to 12 fL. The MPV must be Evidence suggests that the MPV also has po- interpreted in conjunction with the platelet tential prognostic value, particularly in vascu- count; the product of the MPV and platelet lar disease, as larger platelets are hypothesized count is called the total platelet mass. to have increased hemostatic potential. Using the MPV to fi nd the cause In a large meta-analysis of patients with of thrombocytopenia coronary artery disease, a high MPV was asso- The MPV can be used to help narrow the ciated with worse outcomes; the risk of death differential diagnosis of thrombocytopenia. or myocardial infarction was 17% higher in For example, it is high in thrombocytopenia those with a high MPV (the threshold ranged resulting from peripheral destruction, as in from 8.4 to 11.7 fL in the different studies) immune thrombocytopenic purpura. This is than in those with a low MPV.6 because as platelets are lost, thrombopoietin In a study of 213 patients with non-ST- production increases and new, larger platelets segment elevation myocardial infarction, the are released from healthy megakaryocytes in risk of signifi cant coronary artery disease was an attempt to increase the total platelet mass. 4.18 times higher in patients with a high MPV CLEVELAND CLINIC JOURNAL OF MEDICINE VOLUME 86 • NUMBER 3 MARCH 2019 169 INTERPRETING THE CBC and a high troponin level than in patients adults. During erythropoiesis, the common with a normal MPV and a high troponin.7 The myeloid progenitor cell fi rst differentiates into authors suggested that a high MPV may help a proerythroblast; subsequently, the chromatin identify patients at highest risk of signifi cant in the nucleus of the proerythroblast gradually coronary artery disease who would benefi t from condenses until it becomes an orthochromatic invasive studies (ie, coronary angiography).
Recommended publications
  • Markers of Carotid Atherosclerosis in Type 2 Diabetes Mellitus? Riya M Waghale, Rajashree Sanjay Khot, Prashant P Joshi Impact of Smoking and Nicotine Addiction
    2020, Vol. 9, No. 2 ISSN 2450–7458 Platelet volume indices: markers of carotid atherosclerosis in type 2 diabetes mellitus? Riya M Waghale, Rajashree Sanjay Khot, Prashant P Joshi Impact of smoking and nicotine addiction on HbA1c levels and diabetic microvascular complication Hüseyin Akkuzulu, Cenk Aypak, Ayşe Özdemir, Süleyman Görpelioğlu Sugary beverages consumption and latent autoimmune diabetes in adults: systematic review and meta-analysis Ahmed Mahmoud El-Malky, Ramachandra G Naik, Azza A Elnouman The effect of low dose glargine U 300 on uncontrolled type 2 diabetes mellitus. An observational study in Indian patients Asis Mitra, Saswati Ray, Sushma Jayan Coffee in the diet and prevention of diabetes Regina Wierzejska Editor-in-Chief Scientific Board dr hab. n. med. Leszek Czupryniak, prof. nadzw. (Poland) prof. Antionio Ceriello (Spain) prof. dr hab. n. med. Edward Franek (Poland) Deputy Editor-in-Chief prof. dr hab. n. med. Władysław Grzeszczak (Poland) prof. dr hab. n. med. Wojciech Młynarski (Poland) prof. Martin Haluzík (Czech Republic) prof. dr hab. n. med. Krzysztof Strojek (Poland) prof. dr hab. n. med. Przemysława Jarosz-Chobot (Poland) prof. Nebojsa Lalic (Serbia and Montenegro) Editorial Board prof. Pierre Lefebvre (Belgium) prof. dr hab. n. med. Katarzyna Cypryk (Poland) prof. dr hab. n. med. Maciej Małecki (Poland) prof. Larisa Danilova (Belarus) prof. dr hab. n. med. Andrzej Milewicz (Poland) prof. dr hab. n. med. Janusz Gumprecht (Poland) prof. dr hab. n. med. Dariusz Moczulski (Poland) prof. dr hab. n. med. Krzysztof Narkiewicz (Poland) prof. dr hab. n. med. Irina Kowalska (Poland) dr Katherine Owen (United Kingdom) prof. dr hab. n. med.
    [Show full text]
  • Interpreting Your Child's Lab Results
    www.ComplexChild.com Interpreting Your Child’s Lab Results When you get a list of labs back from your doctor or hospital, your eye is drawn immediately to the starred or highlighted results that came back abnormal. Knowing that any of your child’s results have come back abnormal can be disconcerting. Much of the time, however, there is no need to worry. But how do you know when abnormal results indicate a little problem, a big problem, or not a problem at all? Reference Ranges The first thing you need to do is look at the reference ranges that are given along with the results. Each lab has its own equipment that is calibrated uniquely, and results vary depending on the lab. While most tests have similar reference ranges from lab to lab, there are some, such as the test for Lipase, that use different testing systems with very different reference ranges. Results from one lab may not be equivalent to results at another lab. The Slightly High or Low Result In many cases, the abnormal result is ever so slightly high or low. Since reference ranges usually represent two standard deviations above or below the average mean value in healthy people, it is still normal for about five percent of the population to be ever so slightly higher or lower than the reference range. Keeping this in mind, a slightly low or high result is rarely concerning. Tests may also be slightly off due to illness, food or drink consumed, or many other factors. Many doctors will advise repeating the tests at a later time to see if the value has normalized, remains the same, or is trending upward or downward.
    [Show full text]
  • Blood, Lymph, and Immunity Joann Colville
    Blood, Lymph, and Immunity Joann Colville CHAPTER OUTLINE .»: BLOOD Function Introduction Lymphatic Structures Plasma THE IMMUNE SYSTEM Cellular Components of Blood Function Red Blood Cells Immune Reactions Platelets Immunization: Protection Against Disease White Blood Cells THE LYMPHATICSYSTEM Lymph Formation Characteristics LEARNING OBJECTIVES • List and describe the functions of blood • List the functions of the lymphatic system • Describe the composition of blood plasma • Describe the structure and functions of the lymph nodes, • Describe the characteristics of mature erythrocytes spleen, thymus, tonsils, and GALT Describe the structure of the hemoglobin molecule and • List the functions of the immune system explain the fate of hemoglobin following intravascular and • Differentiate between specific and nonspecific immune extravascular hemolysis reactions • Give the origin of thrombocytes and describe their • Differentiate between cell-mediated and humoral immunity characteristics and functions • List the components involved in cell-mediated immunity • Listthe types of leukocytes and describe the functions of each and explain the role of each • Describe the formation of lymph fluid and its circulation List and describe the classes of immunoglobulins through the lymphatic system • Differentiate between active and passive immunity BLOOD vessels of the cardiovascular system. It has three main func- tions: transportation, regulation, and defense. INTRODUCTION Blood. Say the word, and some people cringe, others faint, Function and if you believe authors Bram Stoker, Stephen King, and 1. Blood is a transport system. Christopher Moore (all authors of vampire books), others • It carries oxygen, nutrients, and other essential com- drool. But no matter what you think about blood, animals pounds to every living cell in the body.
    [Show full text]
  • The Diagnosis of Paroxysmal Nocturnal Hemoglobinuria: Role of Flow Cytometry
    THE DIAGNOSIS OF PAROXYSMAL NOCTURNAL HEMOGLOBINURIA: ROLE OF FLOW CYTOMETRY Alberto Orfao Department of Medicine, Cancer Research Centre (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain Paroxysmal nocturnal hemoglobinuria (PNH) on one or multiple populations of peripheral blood is an acquired clonal disorder typically affecting red cells and/or leucocytes of PNH patients, this young adults, which involves the phosphatidylino- translating into a new diagnostic test. Because sitol glycan anchor biosynthesis class A gene of this flow cytometry became an essential tool (PIGA) coded in chromosome X, in virtually every in the diagnosis of PNH. In turn, it could be also case. The altered gene encodes for a defective pro- demonstrated that investigation of the presence of tein product, the pig-a enzyme which is involved GPI-deficient cells among circulating mature neu- in the early steps of the synthesis of glycosylphos- trophils and monocytes, increases the sensitivity phatidylinositol (GPI). This later molecule (GPI) of red blood cell screening because of the shorter acts as an anchor of a wide range of proteins to lifetime of both populations of leucocytes. Despite the cell surface. At present a large number of GPI- all the above, routine assessment of CD55 and anchor associated proteins have been described CD59 is also associated with several limitations which are expressed by one or multiple distinct due to distinct patterns of expression among dif- compartments of hematopoietic cells. The altered ferent cell populations, dim and heterogeneous PIGA gene leads to an altered GPI anchor which expression among normal individuals and the lack leads to defective expression of GPI-AP on the of experience in many labs as regards the normal cytoplasmic membrane, on the cell surface.
    [Show full text]
  • Chapter 06 Lecture Outline
    Chapter 06 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © 2016 McGraw-Hill Education. Permission required for reproduction or display. 1 Cardiovascular System: Blood © SPL/Science Source, (inset) © Andrew Syred/Science Source 2 Points to ponder • What type of tissue is blood and what are its components? • What is found in plasma? • Name the three formed elements in blood and their functions. • How does the structure of red blood cells relate to their function? • Describe the structure and function of each white blood cell. • What are disorders of red blood cells, white blood cells, and platelets? • What do you need to know before donating blood? • What are antigens and antibodies? • How are ABO blood types determined? • What blood types are compatible for blood transfusions? • What is the Rh factor and how is this important to pregnancy? • How does the cardiovascular system interact with other systems to maintain homeostasis? 3 6.1 Blood: An Overview What are the functions of blood? • Transportation: oxygen, nutrients, wastes, carbon dioxide, and hormones • Defense: against invasion by pathogens • Regulatory functions: body temperature, water- salt balance, and body pH 4 6.1 Blood: An Overview What is the composition of blood? • Remember: blood is a fluid connective tissue. • Formed elements are produced in red bone marrow. – Red blood cells/erythrocytes (RBCs) – White blood cells/leukocytes (WBCs) – Platelets/thrombocytes 5 6.1 Blood: An Overview What is the composition of blood? • Plasma – It consists of 91% water and 9% salts (ions) and organic molecules. – Plasma proteins are the most abundant organic molecules.
    [Show full text]
  • Understanding Your Blood Test Lab Results
    Understanding Your Blood Test Lab Results A comprehensive "Health Panel" has been designed specifically to screen for general abnormalities in the blood. This panel includes: General Chemistry Screen or (SMAC), Complete Blood Count or (CBC), and Lipid examination. A 12 hour fast from all food and drink (water is allowed) is required to facilitate accurate results for some of the tests in this panel. Below, is a breakdown of all the components and a brief explanation of each test. Abnormal results do not necessarily indicate the presence of disease. However, it is very important that these results are interpreted by your doctor so that he/she can accurately interpret the findings in conjunction with your medical history and order any follow-up testing if needed. The Bernards Township Health Department and the testing laboratory cannot interpret these results for you. You must speak to your doctor! 262 South Finley Avenue Basking Ridge, NJ 07920 www.bernardshealth.org Phone: 908-204-2520 Fax: 908-204-3075 1 Chemistry Screen Components Albumin: A major protein of the blood, albumin plays an important role in maintaining the osmotic pressure spleen or water in the blood vessels. It is made in the liver and is an indicator of liver disease and nutritional status. A/G Ratio: A calculated ratio of the levels of Albumin and Globulin, 2 serum proteins. Low A/G ratios can be associated with certain liver diseases, kidney disease, myeloma and other disorders. ALT: Also know as SGPT, ALT is an enzyme produced by the liver and is useful in detecting liver disorders.
    [Show full text]
  • Important Information for Female Platelet Donors
    Important Information for Female Platelet Donors We are grateful for the support you provide our community blood program and especially appreciate your willingness to help save lives as a volunteer platelet donor. We also take our responsibility to provide a safe and adequate blood supply very seriously and need to share the following information regarding a change to our donor eligibility criteria for female platelet donors. We recently began performing a Human Leukocyte Antigen (HLA) antibody test on each of our current female platelet donors who have ever been pregnant. In addition, we modified our Medical History Questionnaire to ask donors whether they have been pregnant since their last donation. Platelet donors who respond yes to that question will be screened for HLA antibodies. Platelet donors will also be retested after every subsequent pregnancy. These adjustments are being made as part of our effort to reduce occurrences of Transfusion-Related Acute Lung Injury (TRALI). TRALI is a rare but serious complication of blood transfusions most commonly thought to be caused by a reaction to HLA antibodies present in the donor’s plasma. When transfused, these antibodies can sometimes cause plasma to leak into the patient’s lungs, creating fluid accumulation — a condition referred to as acute pulmonary edema. Female donors who have been pregnant are more likely than others to have these HLA antibodies in their plasma. Once the antibodies develop, they are present forever. The antibodies could be harmful if transfused into certain patients. The antibodies are present in plasma — and platelet donations contain a high volume of plasma, so our current efforts are directed at screening blood samples from female platelet donors to test for the HLA antibody.
    [Show full text]
  • Hematology Unit Lab 1 Review Material
    Hematology Unit Lab 1 Review Material Objectives Laboratory instructors: 1. Facilitate lab discussion and answer questions Students: 1. Review the introductory material below 2. Study and review the assigned cases and questions in small groups before the Lab. This includes the pathological material using Virtual Microscopy 3. Be prepared to present your cases, questions and answers to the rest of your Lab class during the Lab Erythropoiesis: The process of red blood cell (RBC) production • Characterized by: − Increasing hemoglobin synthesis Erythroid maturation stages (Below): − Decreasing cell size - Average of 4 cell divisions during maturation − Decreasing cytoplasmic basophilia [One pronormoblast gives rise to 16 red cells] (increasing pink color) - pronormoblast → reticulocyte = 7 days − Progressive chromatin condensation of the - reticulocytes → mature RBC =1-2 days nuclei − Extrusion of nucleus (orthochromatic stage) − Extruded nuclei are subsequently phagocytized − Loss of mitotic capability after the early stage of polychromatophilic normoblast • Picture below: Erythroid progenitors (normoblasts) cluster around macrophages (arrows) in the bone marrow and spleen • Macrophages store iron • Iron is transferred from macrophages to erythroid precursor cells • Iron is used by normoblasts for hemoglobin synthesis aka nucleated rbc aka reticulocyte 1 Mature Red Blood Cell 7-8 microns; round / ovoid biconcave disc with orange-red cytoplasm, no RNA, no nucleus; survives ~120 days in circulation Classification of Anemia by Morphology 1.
    [Show full text]
  • CD59: a Long-Known Complement Inhibitor Has Advanced to a Blood Group System
    B LOOD G ROUP R EVIEW CD59: A long-known complement inhibitor has advanced to a blood group system C. Weinstock, M. Anliker, and I. von Zabern The blood group system number 35 is based on CD59, a 20-kDa by Zalman et al.1 from the group of H.J. Muller-Eberhard in La membrane glycoprotein present on a large number of different Jolla, California, and in 1988 by Schönermark et al. from the cells, including erythrocytes. The major function of CD59 is to group of G.M. Hänsch in Heidelberg (Germany).2 This inhibitor protect cells from complement attack. CD59 binds to complement components C8 and C9 and prevents the polymerization of C9, was published under the designations “HRF (homologous which is required for the formation of the membrane attack restriction factor)” and “C8bp (C8 binding protein),” complex (MAC). Other functions of CD59 in cellular immunity respectively, to describe its properties.1,2 “C8bp” indicates the are less well defined. CD59 is inserted into the membrane by a glycosylphosphatidylinositol (GPI) anchor. A defect of this anchor binding capacity for C8. The name “HRF” points to a species causes lack of this protein from the cell membrane, which leads to incompatibility of this “factor” that provides protection from an enhanced sensitivity towards complement attack. Patients with complement attack more effectively in a homologous (e.g., paroxysmal nocturnal hemoglobinuria (PNH) harbor a varying human erythrocytes as a target of human complement) than in percentage of red blood cell clones with a defect in GPI-anchored proteins, including CD59. The most characteristic symptoms of a heterologous system (e.g., human erythrocytes as a target of this disease are episodes of hemolysis and thromboses.
    [Show full text]
  • The Use of Mean Corpuscular Volume (MCV) to Classify the Anemia As
    The Frequency of Iron Deficiency Anemia and Thalassemia Trait among Children: Experience at Prince Rashed Bin Al- Hassan Military Hospital Zuhair Nusair MD*, Abdelrazzaq Al-Wraikat MD**, Nazih Abu Al-Shiekh MD**, Sameer Kofahi MD^, Mohammad Zoubi MD^ ABSTRACT Objectives: To determine the frequency of iron deficiency anemia and thalassemia trait among children attending the Pediatric Department at Prince Rashed Bin Al-Hassan Military Hospital in the North of Jordan. Methods: This hospital based study was conducted in the year 2008 on 1,012 children aged 6 months to 14 years who attended the Pediatric Department at Prince Rashed Bin Al-Hassan Military Hospital in North of Jordan using fully automated blood count of the mean corpuscular volume, serum ferritin level and high performance liquid chromography, or genotyping. None of the subjects included in the study had been on any hematinic in the previous six months, had infection in the past one month or had a chronic disease. The diagnosis of iron deficiency anemia was defined as mean corpuscular volume ≤ mean – 1 standard deviation corrected for age, with a ferritin level < 7 ng/ml of the serum (normal reference range 7 – 140 ng/ml). The diagnosis of thalassemia trait, for subjects with normal or high serum ferritin and those whose mean corpuscular volume was non-compliant to iron therapy, was obtained by high performance liquid chromography or polymerase chain reaction, which was performed at Princess Eman Research and Laboratory Science Center. Results: The frequency of iron deficiency anemia and thalassemia trait was 13.3% and 5.8% respectively. They were equally frequent among males and females.
    [Show full text]
  • Nucleated Red Blood Cell Count in Term and Preterm Newborns: Reference
    F174 Arch Dis Child Fetal Neonatal Ed: first published as 10.1136/adc.2004.051326 on 21 February 2005. Downloaded from SHORT REPORT Nucleated red blood cell count in term and preterm newborns: reference values at birth S Perrone, P Vezzosi, M Longini, B Marzocchi, D Tanganelli, M Testa, T Santilli, G Buonocore, on behalf of the Gruppo di Studio di Ematologia Neonatale della Societa`Italiana di Neonatologia ............................................................................................................................... Arch Dis Child Fetal Neonatal Ed 2005;90:F174–F175. doi: 10.1136/adc.2004.051326 discrepancy, neonatal Dubowitz evaluation was used. All The prognostic value of nucleated red blood cell count at babies with congenital malformation, haematopoietic birth in relation to neonatal outcome has been established. anomalies, Rh and/or ABO incompatibility, inborn error of However, reference values were needed to usefully interpret metabolism, sepsis, a mother with diabetes, multiple gesta- this variable. The normal range of reference values for tion, smoking, drug abuse, anaemia, placenta previa, abrup- absolute nucleated red blood cell count in 695 preterm and tion, or infarcts were excluded from the study to eliminate term newborns is reported. risks that could affect the number of circulating NRBCs. We also prospectively collected specific neonatal data: Apgar score at five minutes, birth weight, cord pH. After excluding neonates documented to have a five minute Apgar ucleated red blood cells (NRBCs) are immature score ,6, cord pH,7.2, birth weight more than 2 SDs below erythrocytes, commonly found in the peripheral blood the mean, according to the growth chart of Yudkin et al,5 we of newborns at birth.
    [Show full text]
  • Essential Thrombocythemia Facts No
    Essential Thrombocythemia Facts No. 12 in a series providing the latest information for patients, caregivers and healthcare professionals www.LLS.org • Information Specialist: 800.955.4572 Introduction Highlights Essential thrombocythemia (ET) is one of several l Essential thrombocythemia (ET) is one of a related “myeloproliferative neoplasms” (MPNs), a group of closely group of blood cancers known as “myeloproliferative related blood cancers that share several features, notably the neoplasms” (MPNs) in which cells in the bone “clonal” overproduction of one or more blood cell lines. marrow that produce the blood cells develop and All clonal disorders begin with one or more changes function abnormally. (mutations) to the DNA in a single cell; the altered cells in l ET begins with one or more acquired changes the marrow and the blood are the offspring of that one (mutations) to the DNA of a single blood-forming mutant cell. Other MPNs include polycythemia vera and cell. This results in the overproduction of blood cells, myelofibrosis. especially platelets, in the bone marrow. The effects of ET result from uncontrolled blood cell l About half of individuals with ET have a mutation production, notably of platelets. Because the disease arises of the JAK2 (Janus kinase 2) gene. The role that this from a change to an early blood-forming cell that has the mutation plays in the development of the disease, capacity to form red cells, white cells and platelets, any and the potential implications for new treatments, combination of these three cell lines may be affected – and are being investigated. usually each cell line is affected to some degree.
    [Show full text]