Earth Surf. Dynam., 2, 383–401, 2014 www.earth-surf-dynam.net/2/383/2014/ doi:10.5194/esurf-2-383-2014 © Author(s) 2014. CC Attribution 3.0 License. Arctic–alpine blockfields in the northern Swedish Scandes: late Quaternary – not Neogene B. W. Goodfellow1,2, A. P. Stroeven1, D. Fabel3, O. Fredin4,5, M.-H. Derron5,6, R. Bintanja7, and M. W. Caffee8 1Department of Physical Geography and Quaternary Geology, and Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden 2Department of Geology, Lund University, 22362 Lund, Sweden 3Department of Geographical and Earth Sciences, East Quadrangle, University Avenue, University of Glasgow, Glasgow G12 8QQ, UK 4Department of Geography, Norwegian University of Science and Technology (NTNU),7491, Trondheim, Norway 5Geological Survey of Norway, Leiv Eirikssons vei 39, 7491 Trondheim, Norway 6Institute of Geomatics and Risk Analysis, University of Lausanne, 1015 Lausanne, Switzerland 7Royal Netherlands Meteorological Institute, Wilhelminalaan 10, 3732 GK De Bilt, the Netherlands 8Department of Physics, Purdue University, West Lafayette, Indiana, USA Correspondence to: B. W. Goodfellow (
[email protected]) Received: 22 January 2014 – Published in Earth Surf. Dynam. Discuss.: 10 February 2014 Revised: 9 June 2014 – Accepted: 24 June 2014 – Published: 21 July 2014 Abstract. Autochthonous blockfield mantles may indicate alpine surfaces that have not been glacially eroded. These surfaces may therefore serve as markers against which to determine Quaternary erosion volumes in ad- jacent glacially eroded sectors. To explore these potential utilities, chemical weathering features, erosion rates, and regolith residence durations of mountain blockfields are investigated in the northern Swedish Scandes. This is done, firstly, by assessing the intensity of regolith chemical weathering along altitudinal transects descend- ing from three blockfield-mantled summits.