Wind-Driven Snow Conditions Control the Occurrence Of

Total Page:16

File Type:pdf, Size:1020Kb

Wind-Driven Snow Conditions Control the Occurrence Of The Cryosphere, 11, 1351–1370, 2017 https://doi.org/10.5194/tc-11-1351-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Wind-driven snow conditions control the occurrence of contemporary marginal mountain permafrost in the Chic-Choc Mountains, south-eastern Canada: a case study from Mont Jacques-Cartier Gautier Davesne1,2, Daniel Fortier1,2, Florent Domine2,3, and James T. Gray1 1Cold Regions Geomorphology and Geotechnical Laboratory, Département de géographie, Université de Montréal, Montréal, Canada 2Centre for Northern Studies, Université Laval, Québec, Canada 3Takuvik Joint International Laboratory, Université Laval and Centre National de Recherche Scientifique, and Département de chimie, Université Laval, Québec, Canada Correspondence to: Gautier Davesne ([email protected]) Received: 13 September 2016 – Discussion started: 18 October 2016 Revised: 9 March 2017 – Accepted: 9 March 2017 – Published: 9 June 2017 Abstract. We present data on the distribution and thermo- the summit characterized by a sporadic herbaceous cover. In physical properties of snow collected sporadically over 4 contrast, for the gentle slopes covered with stunted spruce decades along with recent data of ground surface tempera- (krummholz), and for the steep leeward slope to the south- ture from Mont Jacques-Cartier (1268 m a.s.l.), the highest east of the summit, the MAGST was around 3 ◦C in 2013 summit in the Appalachians of south-eastern Canada. We and 2014. The study concludes that the permafrost on Mont demonstrate that the occurrence of contemporary permafrost Jacques-Cartier, most widely in the Chic-Choc Mountains is necessarily associated with a very thin and wind-packed and by extension in the southern highest summits of the Ap- winter snow cover which brings local azonal topo-climatic palachians, is therefore likely limited to the barren wind- conditions on the dome-shaped summit. The aims of this exposed surface of the summit where the low air tempera- study were (i) to understand the snow distribution pattern ture, the thin snowpack and the wind action bring local cold and snow thermophysical properties on the Mont Jacques- surface conditions favourable to permafrost development. Cartier summit and (ii) to investigate the impact of snow on the spatial distribution of the ground surface temperature (GST) using temperature sensors deployed over the summit. Results showed that above the local treeline, the summit is 1 Introduction characterized by a snow cover typically less than 30 cm thick which is explained by the strong westerly winds interacting The thermal impact of the seasonal snow cover is well-known with the local surface roughness created by the physiogra- as being one of the most critical factors for the spatial distri- phy and surficial geomorphology of the site. The snowpack bution of permafrost, especially in mountainous areas. Sev- structure is fairly similar to that observed on windy Arctic eral studies have been undertaken on this topic in Euro- − tundra with a top dense wind slab (300 to 450 kg m 3/ of pean mountains (Haeberli, 1973; Grüber and Hoelzle, 2001; high thermal conductivity, which facilitates heat transfer be- Luetschg et al., 2008; Farbrot et al., 2011, 2013; Hasler et tween the ground surface and the atmosphere. The mean an- al., 2011; Pogliotti, 2011; Gisnås et al., 2014; Ardelean et nual ground surface temperature (MAGST) below this thin al., 2015; Magnin et al., 2016; Beniston et al., 2017), in Japan ◦ and wind-packed snow cover was about −1 C in 2013 and (Ishikawa, 2003; Ishikawa and Hirakawa, 2000), in the Cana- 2014, for the higher, exposed, blockfield-covered sector of dian Rocky Mountains (Harris, 1981; Lewkowicz and Ednie, Published by Copernicus Publications on behalf of the European Geosciences Union. 1352 G. Davesne et al.: Wind, snow and permafrost in the Chic-Choc Mountains Table 1. Abbreviations used in this paper. (Howe, 1971; Walegur and Nelson, 2003); the second be- neath the 1268 m high summit of Mont Jacques-Cartier, the Abbrev. Definition highest point in south-eastern Canada situated in the Chic- DDFs sum of freezing degree days at the ground surface Choc Mountains (Fig. 1) (Gray and Brown, 1979, 1982). DDFa sum of freezing degree days of the air The latter site, with a well-documented record of geother- DDTs sum of thawing degree days at the ground surface mal data, is the location for the present study on the influ- DDTa sum of freezing degree days of the air ence of the snow regime on marginal permafrost. Given its GST ground surface temperature present ground temperature close to 0 ◦C (Gray et al., 2016), MAAT mean annual air temperature the occurrence and the spatial extent of this mountain per- MAGST mean annual ground surface temperature mafrost body is thought to depend fundamentally on the ex- MGSTw mean winter ground surface temperature MGSTs mean summer ground surface temperature istence of favourable azonal topo-climatic conditions on the nf freezing n factor dome-shaped summit. Similar exposed bedrock or mountain- SD standard deviation top detritus summits where a permafrost body is marginally WeqT winter equilibrium temperature preserved have been reported in Scandinavia (e.g. Farbrot et al., 2011, 2013; Isaksen et al., 2011; Gisnås et al., 2013) and in Japan (Ishikawa and Hirakawa, 2000; Ishikawa and Sawa- gaki, 2001). 2004; Lewkowicz et al., 2012; Bonnaventure et al., 2012; This study deals with the impact of the snowpack on the Hasler et al., 2015), and most recently in the Andes (Apaloo ground surface thermal regime and on the permafrost distri- et al. 2012). The snow cover acts as a buffer layer controlling bution on the Mont Jacques-Cartier summit, with implica- heat loss at the ground interface. It provides either a cooling tions on the potential presence of permafrost for the high- (negative surface thermal offset) or warming (positive sur- est summits of the Appalachians. In order to address this face thermal offset) effect on the ground surface temperature question, it was necessary (i) to develop a qualitative and (GST; see Table 1 for abbreviations used throughout this pa- quantitative characterization of the snow distribution over the per) whose magnitude depends on its depth, duration, tim- summit of Mont Jacques-Cartier and (ii) to quantify the sur- ing, and its thermophysical and optical properties (Brown, face thermal offset induced by the snow on the mean annual 1979; Goodrich, 1982; Zhang, 2005; Ishikawa, 2003; Ling ground surface temperature (MAGST). The experimental de- and Zhang, 2003; Smith and Riseborough, 2002, Hasler et sign included snow thickness sounding, excavation of snow al., 2011; Domine et al., 2015). All these snowpack char- pits for observations of snow stratigraphy and measurement acteristics – and the key parameters that control them, such of density and temperature variations over the vertical pro- as micro-relief, landforms, vegetation, and micro-climate – file, and GST monitoring based on the installation of tem- are strongly variable in space and time (Elder et al., 1991; perature data loggers. The hypothesis tested in this study is Li and Pomeroy, 1997; Mott et al., 2010). The close link that wind-driven, almost-snow-free conditions on the summit between snowpack thickness and ground thermal conditions of Mont Jacques-Cartier explain the occurrence of this con- was used to develop a map to predict the presence or ab- temporary permafrost body due to intense ground heat loss sence of permafrost based on snow–ground interface temper- in winter. Some studies have already mentioned the proba- ature. The measurement of the bottom temperature of snow ble link between the near-snow-free winter conditions of the (BTS) is the most widespread technique used to predict per- rounded summits and the occurrence of permafrost bodies in mafrost in mountain areas. It is well adapted to snowy envi- the Appalachian Mountains (Gray and Brown, 1979, 1982; ronments, such as the Alps where it was developed, because Schmidlin, 1988; Walegur and Nelson, 2003), but the con- a late-winter snowpack more than 80 to 100 cm thick is re- trol induced by the snowpack and its feedback mechanisms quired to consider that the BTS values reflect the ground ther- on the winter GST over the summits of the Appalachians has mal condition and are decoupled from the atmosphere tem- not been quantified so far. The research reported in this pa- perature (Haeberli, 1973; Hoelzle, 1992; Grüber and Hoel- per is the first to have investigated this link in detail for one zle, 2001; Bonnaventure and Lewkowicz, 2008). In environ- such summit dome and to have quantified the multiple influ- ments with thin snowpack, the BTS technique is not applica- ences of the seasonal snowpack on the ground surface ther- ble, which led to the development of new techniques to pre- mal regime. If our hypothesis can be confirmed, it will allow dict permafrost occurrence such as the continuous monitor- the prediction of favourable and unfavourable zones for per- ing of GST using temperature loggers (Hoelzle et al., 1999; mafrost occurrence over the entire dome-shaped summit of Ishikawa and Hirakawa, 2000; Ishikawa, 2003; Gray et al., Mont Jacques-Cartier and on other high Appalachians sum- 2016). mits from fine-scale spatial snow distribution patterns. New In the Appalachian region of eastern North America, the knowledge on the distribution of snow on the highest sum- existence of at least two bodies of contemporary permafrost mits in south-eastern North America is an important prelim- are known with certainty: one of these occurs beneath the inary step in modelling the regional spatial distribution of 1606 m high summit of Mount Washington in New England permafrost, the evolution of the ground thermal regime, and The Cryosphere, 11, 1351–1370, 2017 www.the-cryosphere.net/11/1351/2017/ G.
Recommended publications
  • A Winter Forecasting Handbook Winter Storm Information That Is Useful to the Public
    A Winter Forecasting Handbook Winter storm information that is useful to the public: 1) The time of onset of dangerous winter weather conditions 2) The time that dangerous winter weather conditions will abate 3) The type of winter weather to be expected: a) Snow b) Sleet c) Freezing rain d) Transitions between these three 7) The intensity of the precipitation 8) The total amount of precipitation that will accumulate 9) The temperatures during the storm (particularly if they are dangerously low) 7) The winds and wind chill temperature (particularly if winds cause blizzard conditions where visibility is reduced). 8) The uncertainty in the forecast. Some problems facing meteorologists: Winter precipitation occurs on the mesoscale The type and intensity of winter precipitation varies over short distances. Forecast products are not well tailored to winter Subtle features, such as variations in the wet bulb temperature, orography, urban heat islands, warm layers aloft, dry layers, small variations in cyclone track, surface temperature, and others all can influence the severity and character of a winter storm event. FORECASTING WINTER WEATHER Important factors: 1. Forcing a) Frontal forcing (at surface and aloft) b) Jetstream forcing c) Location where forcing will occur 2. Quantitative precipitation forecasts from models 3. Thermal structure where forcing and precipitation are expected 4. Moisture distribution in region where forcing and precipitation are expected. 5. Consideration of microphysical processes Forecasting winter precipitation in 0-48 hour time range: You must have a good understanding of the current state of the Atmosphere BEFORE you try to forecast a future state! 1. Examine current data to identify positions of cyclones and anticyclones and the location and types of fronts.
    [Show full text]
  • Mesoproterozoic Frost Action at the Base of the Svinsaga Formation 291
    NORWEGIAN JOURNAL OF GEOLOGY Mesoproterozoic frost action at the base of the Svinsaga Formation 291 Mesoproterozoic frost action at the base of the Svinsaga Formation, central Telemark, South Norway Juha Köykkä & Kauko Laajoki Köykkä, J. & Laajoki, K. 2009: Mesoproterozoic frost action ath the base of the Svinsaga Formation, central telemark, South Norway. Norwegain Journal of Geology, vol 89, pp 291-303. Trondheim 2009, ISSN 029-196X. The Mesoproterozoic Svinsaga Formation (SF) in central Telemark, South Norway, was unconformably deposited after ca. 1.347 Ga on the quartz arenite of the upper member of the Brattefjell Formation (UB), which is part of the Vindeggen Group. The unconformity is marked by a fracture zone a few meters thick developed in the UB quartz arenite. The lower part of the fracture zone, which contains sparse and closed fractures, and microfractures, grades upwards into a system of wider and mostly random oriented fractures and fracture patterns. The fractures are filled with mudstone. The fracture zone is overlain by several meters of in situ SF breccia, in which the fragments consist solely of the UB quartz arenite. The in situ breccia gradually grades into a basal breccia and clast- or matrix-supported conglomerates. The SF conglomerate beds contain solitary quartz arenite fragments and blocks up to 9.0 m3 that were derived from the UB. The fractures, fracture patterns, and microfractures in the UB quartz arenite and shattered quartz arenite fragments in the in situ SF breccia are ascribed to in situ fracturing, brecciation, and the accumulation of slightly moved blocks in a cold climate.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Sess Report 2018
    SESS REPORT 2018 The State of Environmental Science in Svalbard – an annual report Xxx 1 SESS report 2018 The State of Environmental Science in Svalbard – an annual report ISSN 2535-6321 ISBN 978-82-691528-0-7 Publisher: Svalbard Integrated Arctic Earth Observing System (SIOS) Editors: Elizabeth Orr, Georg Hansen, Hanna Lappalainen, Christiane Hübner, Heikki Lihavainen Editor popular science summaries: Janet Holmén Layout: Melkeveien designkontor, Oslo Citation: Orr et al (eds) 2019: SESS report 2018, Longyearbyen, Svalbard Integrated Arctic Earth Observing System The report is published as electronic document, available from SIOS web site www.sios-svalbard.org/SESSreport Contents Foreword .................................................................................................................................................4 Authors from following institutions contributed to this report ...................................................6 Summaries for stakeholders ................................................................................................................8 Permafrost thermal snapshot and active-layer thickness in Svalbard 2016–2017 .................................................................................................................... 26 Microbial activity monitoring by the Integrated Arctic Earth Observing System (MamSIOS) .................................................................................. 48 Snow research in Svalbard: current status and knowledge gaps ............................................
    [Show full text]
  • A Meteorological and Blowing Snow Data Set (2000–2016) from a High-Elevation Alpine Site (Col Du Lac Blanc, France, 2720 M A.S.L.)
    Earth Syst. Sci. Data, 11, 57–69, 2019 https://doi.org/10.5194/essd-11-57-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. A meteorological and blowing snow data set (2000–2016) from a high-elevation alpine site (Col du Lac Blanc, France, 2720 m a.s.l.) Gilbert Guyomarc’h1,5, Hervé Bellot2, Vincent Vionnet1,3, Florence Naaim-Bouvet2, Yannick Déliot1, Firmin Fontaine2, Philippe Puglièse1, Kouichi Nishimura4, Yves Durand1, and Mohamed Naaim2 1Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etudes de la Neige, Grenoble, France 2Univ. Grenoble Alpes, IRSTEA, UR ETNA, 38042 St-Martin-d’Hères, France 3Centre for Hydrology, University of Saskatchewan, Saskatoon, SK, Canada 4Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan 5Météo France, DIRAG, Point à Pitre, Guadeloupe, France Correspondence: Florence Naaim-Bouvet (fl[email protected]) Received: 12 June 2018 – Discussion started: 25 June 2018 Revised: 8 October 2018 – Accepted: 9 November 2018 – Published: 11 January 2019 Abstract. A meteorological and blowing snow data set from the high-elevation experimental site of Col du Lac Blanc (2720 m a.s.l., Grandes Rousses mountain range, French Alps) is presented and detailed in this pa- per. Emphasis is placed on data relevant to the observations and modelling of wind-induced snow transport in alpine terrain. This process strongly influences the spatial distribution of snow cover in mountainous terrain with consequences for snowpack, hydrological and avalanche hazard forecasting. In situ data consist of wind (speed and direction), snow depth and air temperature measurements (recorded at four automatic weather stations), a database of blowing snow occurrence and measurements of blowing snow fluxes obtained from a vertical pro- file of snow particle counters (2010–2016).
    [Show full text]
  • Chemical Properties of Snow Cover As an Impact Indicator for Local Air Pollution Sources
    INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS No IV/2/2017, POLISH ACADEMY OF SCIENCES, Cracow Branch, pp. 1591–1607 Commission of Technical Rural Infrastructure DOI: http://dx.medra.org/10.14597/infraeco.2017.4.2.120 CHEMICAL PROPERTIES OF SNOW COVER AS AN IMPACT INDICATOR FOR LOCAL AIR POLLUTION SOURCES Krzysztof Jarzyna, Rafał Kozłowski, Mirosław Szwed Jan Kochanowski University Abstract In this article, selected physical and chemical properties of water originating from melted snow collected in the area of the city of Ostrowiec Świętokrzyski (Poland) in January 2017 were determined. The analysed samples of snow were collected at 18 measurement sites located along the axis of cardinal directions of the world and with a central point in the urban area of Ostrowiec Świętokrzyski in January 2017. Chemical com- position was determined using the Dionex ICS 3000 Ion Chromatograph at the Environmental Research Laboratory of the Chair of Environmental Protection and Modelling at the Jan Kochanowski University in Kielce. The obtained results indicated a substantial contribution of pollutants pro- duced by a local steelworks in the chemical composition of melted snow. Keywords: precipitation chemistry, anthropopressure, snow cover INTRODUCTION The use of snow cover as an indicator for the magnitude of deposition of atmospheric air pollutants has already had several decades of tradition in Poland and Europe (Engelhard et al. 2007, Kozłowski et al. 2012, Siudek et al. 2015, Stachnik et al. 2010,). The snow cover proves itself as an efficient collector of airborne pollutants which allows for quick and efficient estimation of airborne pollution concentrations over the entire period of lingering snow cover occur- This is an open access article under the Creative Commons BY-NC-ND license (http://creativecommons.org/licences/by-nc-nd/4.0/) 1591 Krzysztof Jarzyna, Rafał Kozłowski, Mirosław Szwed rence.
    [Show full text]
  • Quaternary Deposits and Landscape Evolution of the Central Blue Ridge of Virginia
    Geomorphology 56 (2003) 139–154 www.elsevier.com/locate/geomorph Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia L. Scott Eatona,*, Benjamin A. Morganb, R. Craig Kochelc, Alan D. Howardd a Department of Geology and Environmental Science, James Madison University, Harrisonburg, VA 22807, USA b U.S. Geological Survey, Reston, VA 20192, USA c Department of Geology, Bucknell University, Lewisburg, PA 17837, USA d Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA Received 30 August 2002; received in revised form 15 December 2002; accepted 15 January 2003 Abstract A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains. The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene–late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles.
    [Show full text]
  • Snow to Water Ratios 88
    Snow to Water Ratios 88 The amount of snow from a storm can look impressive when it covers your house and cars, but if you melted the snow you would discover that very little water is actually involved. The 'snow to ice ratio' or Snow Ratio expresses how much volume of snow you get for a given volume of water. Typically a ratio of 10:1 (ten to one) means that every 10 inches of snowfall equals one inch of liquid water. Problem 1 - During a winter storm called 'Snowmageddon' in 2010, the Washington DC region received about 24 inches of snow fall. If this was dry, uncompacted snow, about how many inches of rain would this equal if the Snow Ratio was 10:1 ? Problem 2 - The Snow Ratio depends on the temperature of the air as shown in the table below: o o o o o o Temp (F) 30 25 18 12 5 -10 Ratio 10:1 15:1 20:1 30:1 40:1 50:1 o If 30 inches of snow fell in Calgary, Alberta at 18 F, and 25 inches of snow fell in o Denver, Colorado where the temperature was 25 F, at which location would the most water have fallen? Space Math http://spacemath.gsfc.nasa.gov Answer Key 88 Problem 1 - During a winter storm called 'Snowmageddon' in 2010, the Washington DC region received about 24 inches of snow fall. If this was dry, uncompacted snow, about how many inches of rain would this equal if the Snow Ratio was 10:1 ? Answer: 24 inches of snow x (1 inch water/10 inches of snow) = 2.4 inches of water.
    [Show full text]
  • Snow Removal Brochure
    LEHI CITY SNOW REMOVAL A Guide to Managing Winter Storms THE LEHI CITY STREETS DIVISION’S PRIORITY IS TO PROVIDE THE SAFEST POSSIBLE DRIVING CONDITIONS. SNOW REMOVAL IS DEPENDENT ON A NUMBER OF FACTORS, INCLUDING THE TIMING AND DURATION OF A SNOWSTORM AND THE DENSITY OF THE SNOW. THIS GUIDE PROVIDES RESIDENTS WITH INFORMATION ABOUT THE SNOW REMOVAL PROGRAM AND SETS EXPECTATIONS DURING AND AFTER A STORM. SNOW CONDITIONS The Lehi City Streets Division makes it a priority to be responsive during and immediately after a storm. Response time to individual streets and neighborhoods will depend on several factors, including timing and duration of the storm. TIMING Crews will make every effort to keep major streets clear of snow and ice. Heavily traveled roads and bus routes will receive top priority to ensure everyone’s safety. Once major commuter roads have been deemed safe for travel, secondary and side streets will be cleared. During evening and early morning storms, crews should have ample time to prepare for commuting hours. Plows will continue to clean, treat, and widen roadways until reasonably safe conditions are met. DURATION The duration of a storm plays an important role in snow plowing operations. Storms of extended duration require all available resources to keep roads open over an extended period of time. A snow storm of four inches over a 24-hour period will require more time and man hours than a storm of six inches over an 8-hour period. Please keep in mind that plows are still hard at work well after the snow has stopped falling.
    [Show full text]
  • Storms Are Thunderstorms That Produce Tornadoes, Large Hail Or Are Accompanied by High Winds
    From February 17 to 19, a severe storm blasted the Lebanese coast with 100- kilometer (60-mile) winds and dropped as much as 2 meters (7 feet) of snow on parts of the country, news sources said. Temperatures dropped to near freezing along the coast, while snowplows struggled to clear the main roadway between Beirut and Damascus. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on February 20, 2012. Snow covers much of Lebanon, and extends across the border with Syria. Another expanse of snow occurs just north of the Syria-Jordan border. Snow in Lebanon is not uncommon, and the country is home to ski resorts. Still, this fierce storm may have been part of a larger pattern of cold weather in Europe and North Africa. References The Daily Star. (2012, February 18). Lebanon hit by extreme weather conditions. Accessed February 21, 2012. Naharnet. (2012, February 19). Storm subsides after coating Lebanon in snow. Accessed February 21, 2012. NASA image courtesy LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS Flooding is the most common of all natural hazards. Each year, more deaths are caused by flooding than any other thunderstorm related hazard. We think this is because people tend to underestimate the force and power of water. Six inches of fast-moving water can knock you off your feet. Water 24 inches deep can carry away most automobiles. Nearly half of all flash flood deaths occur in automobiles as they are swept downstream.
    [Show full text]
  • Hazard Mitigation Plan – Dutchess County, New York 5.4.1-1 December 2015 Section 5.4.1: Risk Assessment – Coastal Hazards
    Section 5.4.1: Risk Assessment – Coastal Hazards 5.4.1 Coastal Hazards 7KH IROORZLQJ VHFWLRQ SURYLGHV WKH KD]DUG SURILOH KD]DUG GHVFULSWLRQ ORFDWLRQ H[WHQW SUHYLRXV RFFXUUHQFHV DQG ORVVHV SUREDELOLW\ RI IXWXUH RFFXUUHQFHV DQG LPSDFW RI FOLPDWH FKDQJH DQG YXOQHUDELOLW\ DVVHVVPHQW IRU WKH FRDVWDO KD]DUGV LQ 'XWFKHVV &RXQW\ 3URILOH +D]DUG 'HVFULSWLRQ $ WURSLFDO F\FORQH LV D URWDWLQJ RUJDQL]HG V\VWHP RI FORXGV DQG WKXQGHUVWRUPV WKDW RULJLQDWHV RYHU WURSLFDO RU VXEWURSLFDO ZDWHUV DQG KDV D FORVHG ORZOHYHO FLUFXODWLRQ 7URSLFDO GHSUHVVLRQV WURSLFDO VWRUPV DQG KXUULFDQHV DUH DOO FRQVLGHUHG WURSLFDO F\FORQHV 7KHVH VWRUPV URWDWH FRXQWHUFORFNZLVH DURXQG WKH FHQWHU LQ WKH QRUWKHUQ KHPLVSKHUH DQG DUH DFFRPSDQLHG E\ KHDY\ UDLQ DQG VWURQJ ZLQGV 1:6 $OPRVW DOO WURSLFDO VWRUPV DQG KXUULFDQHV LQ WKH $WODQWLF EDVLQ ZKLFK LQFOXGHV WKH *XOI RI 0H[LFR DQG &DULEEHDQ 6HD IRUP EHWZHHQ -XQH DQG 1RYHPEHU KXUULFDQH VHDVRQ $XJXVW DQG 6HSWHPEHU DUH SHDN PRQWKV IRU KXUULFDQH GHYHORSPHQW 12$$ D 2YHU D WZR\HDU SHULRG WKH 86 FRDVWOLQH LV VWUXFN E\ DQ DYHUDJH RI WKUHH KXUULFDQHV RQH RI ZKLFK LV FODVVLILHG DV D PDMRU KXUULFDQH +XUULFDQHV WURSLFDO VWRUPV DQG WURSLFDO GHSUHVVLRQV SRVH D WKUHDW WR OLIH DQG SURSHUW\ 7KHVH VWRUPV EULQJ KHDY\ UDLQ VWRUP VXUJH DQG IORRGLQJ 12$$ E )RU WKH SXUSRVH RI WKLV +03 DQG DV GHHPHG DSSURSULDWHG E\ WKH 'XWFKHVV &RXQW\ 6WHHULQJ DQG 3ODQQLQJ &RPPLWWHHV FRDVWDO KD]DUGV LQ WKH &RXQW\ LQFOXGH KXUULFDQHVWURSLFDO VWRUPV VWRUP VXUJH FRDVWDO HURVLRQ DQG 1RU (DVWHUV ZKLFK DUH GHILQHG EHORZ Hurricanes/Tropical Storms $ KXUULFDQH LV D WURSLFDO
    [Show full text]
  • Colluvial Deposit
    Encyclopedia of Planetary Landforms DOI 10.1007/978-1-4614-9213-9_55-1 # Springer Science+Business Media New York 2014 Colluvial Deposit Susan W. S. Millar* Department of Geography, Syracuse University, Syracuse, NY, USA Synonyms Colluvial depositional system; Colluvial mantle; Colluvial soil; Colluvium; Debris slope; Hillslope (or hillside) deposits; Scree (UK); Slope mantle; Slope-waste deposits; Talus (US) Definition A sedimentary deposit composed of surface mantle that has accumulated toward the base of a slope as a result of transport by gravity and non-channelized flow. Description The International Geomorphological Association recognizes colluvium as a hillslope deposit resulting from two general nonexclusive processes (Goudie 2004). Rainwash, sheetwash, or creep can generate sediment accumulations at the base of gentle slopes; or non-channelized flow can initiate sheet erosion and toe-slope sediment accumulation. The term “colluvium” is frequently applied broadly to include mass wasting deposits in a variety of topographic and climatic settings. For example, Blikra and Nemec (1998) describe colluvium as any “clastic slope-waste material, typically coarse grained and immature, deposited in the lower part and foot zone of a mountain slope or other topographic escarpment, and brought there chiefly by sediment-gravity processes.” Lang and Honscheidt (1999) describe colluvium as “slope wash and tillage sediments, resulting from soil erosion....” The composition of a colluvial deposit can therefore be coarse-grained, eroded bedrock, with an open-work structure and several meters thick (Blikra and Nemec 1998), to fine-grained soil, ranging from a few millimeters to meters in thickness (e.g., Lang and Hönscheidt 1999). Some deposits may exhibit distinct macro- and micro-fabric development, bedding structures, and evi- dence of distinct periods of accumulation (e.g., Bertran et al.
    [Show full text]