BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D. For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of Acanthocephala (Hemiptera: Heteroptera: Coreidae) of America North of Mexico with a Key to Species
Zootaxa 2835: 30–40 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Review of Acanthocephala (Hemiptera: Heteroptera: Coreidae) of America north of Mexico with a key to species J. E. McPHERSON1, RICHARD J. PACKAUSKAS2, ROBERT W. SITES3, STEVEN J. TAYLOR4, C. SCOTT BUNDY5, JEFFREY D. BRADSHAW6 & PAULA LEVIN MITCHELL7 1Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901, USA. E-mail: [email protected] 2Department of Biological Sciences, Fort Hays State University, Hays, Kansas 67601, USA. E-mail: [email protected] 3Enns Entomology Museum, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA. E-mail: [email protected] 4Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Illinois 61820, USA. E-mail: [email protected] 5Department of Entomology, Plant Pathology, & Weed Science, New Mexico State University, Las Cruces, New Mexico 88003, USA. E-mail: [email protected] 6Department of Entomology, University of Nebraska-Lincoln, Panhandle Research & Extension Center, Scottsbluff, Nebraska 69361, USA. E-mail: [email protected] 7Department of Biology, Winthrop University, Rock Hill, South Carolina 29733, USA. E-mail: [email protected] Abstract A review of Acanthocephala of America north of Mexico is presented with an updated key to species. A. confraterna is considered a junior synonym of A. terminalis, thus reducing the number of known species in this region from five to four. New state and country records are presented. Key words: Coreidae, Coreinae, Acanthocephalini, Acanthocephala, North America, review, synonymy, key, distribution Introduction The genus Acanthocephala Laporte currently is represented in America north of Mexico by five species: Acan- thocephala (Acanthocephala) declivis (Say), A. -
Platyhelminthes, Nemertea, and "Aschelminthes" - A
BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. -
A Taxonomic Revision of Rhododendron L. Section Pentanthera G
A TAXONOMIC REVISION OF RHODODENDRON L. SECTION PENTANTHERA G. DON (ERICACEAE) BY KATHLEEN ANNE KRON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1987 , ACKNOWLEDGMENTS I gratefully acknowledge the supervision and encouragement given to me by Dr. Walter S. Judd. I thoroughly enjoyed my work under his direction. I would also like to thank the members of my advisory committee, Dr. Bijan Dehgan, Dr. Dana G. Griffin, III, Dr. James W. Kimbrough, Dr. Jonathon Reiskind, Dr. William Louis Stern, and Dr. Norris H. Williams for their critical comments and suggestions. The National Science Foundation generously supported this project in the form of a Doctoral Dissertation Improvement Grant;* field work in 1985 was supported by a grant from the Highlands Biological Station, Highlands, North Carolina. I thank the curators of the following herbaria for the loan of their material: A, AUA, BHA, DUKE, E, FSU, GA, GH, ISTE, JEPS , KW, KY, LAF, LE NCSC, NCU, NLU NO, OSC, PE, PH, LSU , M, MAK, MOAR, NA, , RSA/POM, SMU, SZ, TENN, TEX, TI, UARK, UC, UNA, USF, VDB, VPI, W, WA, WVA. My appreciation also is offered to the illustrators, Gerald Masters, Elizabeth Hall, Rosa Lee, Lisa Modola, and Virginia Tomat. I thank Dr. R. Howard * BSR-8601236 ii Berg for the scanning electron micrographs. Mr. Bart Schutzman graciously made available his computer program to plot the results of the principal components analyses. The herbarium staff, especially Mr. Kent D. Perkins, was always helpful and their service is greatly appreciated. -
Listing a Species As a Threatened Or Endangered Species Section 4 of the Endangered Species Act
U.S. Fish & Wildlife Service Listing a Species as a Threatened or Endangered Species Section 4 of the Endangered Species Act The Endangered Species Act of 1973, as amended, is one of the most far- reaching wildlife conservation laws ever enacted by any nation. Congress, on behalf of the American people, passed the ESA to prevent extinctions facing many species of fish, wildlife and plants. The purpose of the ESA is to conserve endangered and threatened species and the ecosystems on which they depend as key components of America’s heritage. To implement the ESA, the U.S. Fish and Wildlife Service works in cooperation with the National Marine Fisheries Service (NMFS), other Federal, State, and local USFWS Susanne Miller, agencies, Tribes, non-governmental Listed in 2008 as threatened because of the decline in sea ice habitat, the polar bear may organizations, and private citizens. spend time on land during fall months, waiting for ice to return. Before a plant or animal species can receive the protection provided by What are the criteria for deciding whether refer to these species as “candidates” the ESA, it must first be added to to add a species to the list? for listing. Through notices of review, the Federal lists of threatened and A species is added to the list when it we seek biological information that will endangered wildlife and plants. The is determined to be an endangered or help us to complete the status reviews List of Endangered and Threatened threatened species because of any of for these candidate species. We publish Wildlife (50 CFR 17.11) and the List the following factors: notices in the Federal Register, a daily of Endangered and Threatened Plants n the present or threatened Federal Government publication. -
Helminth Parasites (Trematoda, Cestoda, Nematoda, Acanthocephala) of Herpetofauna from Southeastern Oklahoma: New Host and Geographic Records
125 Helminth Parasites (Trematoda, Cestoda, Nematoda, Acanthocephala) of Herpetofauna from Southeastern Oklahoma: New Host and Geographic Records Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 Charles R. Bursey Department of Biology, Pennsylvania State University-Shenango, Sharon, PA 16146 Matthew B. Connior Life Sciences, Northwest Arkansas Community College, Bentonville, AR 72712 Abstract: Between May 2013 and September 2015, two amphibian and eight reptilian species/ subspecies were collected from Atoka (n = 1) and McCurtain (n = 31) counties, Oklahoma, and examined for helminth parasites. Twelve helminths, including a monogenean, six digeneans, a cestode, three nematodes and two acanthocephalans was found to be infecting these hosts. We document nine new host and three new distributional records for these helminths. Although we provide new records, additional surveys are needed for some of the 257 species of amphibians and reptiles of the state, particularly those in the western and panhandle regions who remain to be examined for helminths. ©2015 Oklahoma Academy of Science Introduction Methods In the last two decades, several papers from Between May 2013 and September 2015, our laboratories have appeared in the literature 11 Sequoyah slimy salamander (Plethodon that has helped increase our knowledge of sequoyah), nine Blanchard’s cricket frog the helminth parasites of Oklahoma’s diverse (Acris blanchardii), two eastern cooter herpetofauna (McAllister and Bursey 2004, (Pseudemys concinna concinna), two common 2007, 2012; McAllister et al. 1995, 2002, snapping turtle (Chelydra serpentina), two 2005, 2010, 2011, 2013, 2014a, b, c; Bonett Mississippi mud turtle (Kinosternon subrubrum et al. 2011). However, there still remains a hippocrepis), two western cottonmouth lack of information on helminths of some of (Agkistrodon piscivorus leucostoma), one the 257 species of amphibians and reptiles southern black racer (Coluber constrictor of the state (Sievert and Sievert 2011). -
Activity 3: Six Kingdoms Brochure
Activity 3: Six Kingdoms Brochure Objective: You will demonstrate your knowledge of the six kingdoms of organisms by gathering information (from your class notes, the internet, and the biology textook) and creating a brochure on the six kingdoms in which scientists classify organisms. Your brochure will be organized as follows: 1. Making the Brochure- the brochure is made of one piece of paper. Fold the paper into thirds. 2. Cover- your cover should have a picture and an appropriate title. Your name should be written in the bottom right corner of the cover. 3. Inside the Brochure- inside your brochure, you should have one section for each of six kingdoms. Use the front and back of the paper. Since there will only be five open sections left in the brochure, you should place both the Eubacteria Kingdom and Archaebacteria Kingdom in the same section. You must include the following information for each of the six kingdoms: • Are the organisms unicellular (one cell) or multicellular (many cells) or both? • Do they have a nucleus in their cells? • Do they make their own food or get it from other organisms? • Other important characteristics • A picture or a diagram of sample organisms (one or a few) The Kingdom Fungi The Kingdom Fungi includes some of the most important organisms, both in terms of their ecological and economic roles. By decomposing dead material, they continue the cycle of nutrients through ecosystems. In addition, most plants could not grow without the fungi, or mycorrhizae, that live in their roots and supply essential nutrients. Other fungi provide numerous drugs (such as penicillin and other antibiotics), foods like mushrooms, truffles and morels, and the bubbles in bread (yeast), champagne, and beer. -
Appendix: Bioinspired Parasite Details
A p p e n d i x : B i o i n s p i r e d P a r a s i t e Details Internal Parasites: Endoparasites Biological endoparasites live inside a hosts’ body. In farms, biological parasites infect, hurt, and even kill animals, hurting a farming business. This book is look- ing for inspiration from biology to prevent or treat business “disease.” In business, there are many opportunities for inoculation and treatment. Brain Jackers—Acanthocephala— Thorny-Headed Worms Thorny-headed worms are rare in humans, and also cause disease in birds, amphibians, and reptiles. They are called thorny-headed because they use a bio- logical lancet to pierce and hold onto the stomach walls of the host (Wikipedia, 2013). Their lifecycle includes invertebrates, fish, lizards, birds, and mammals. In one stage of their lifecycle, they “brain jack” a small crustacean eaten by ducks. Just as inner-city drivers are subject to “car-jacking,” this parasite actually redi- rects the crustacean’s dominant behavior from staying away from light to actively seeking it—where ducks may be more likely to eat them, and where the parasite reproduces (Wikipedia, 2013). Alaskan Inuit have a zest for raw fish and that contributes to their increased incidence of Acanthocephala infection compared with other groups of people (Roberts & Janovy, 2009, p. 506). Prevention and Treatment for Acanthocephala Endoscopic and X-ray examinations detect Acanthocephala because their eggs are not passed through feces (Mehlhorn, 2008, p. 25). Controlling the spread of rodents, as well as protecting and cooking food prevents infection. -
Smaller Protostome Phyla: Rotifera, Gastrotricha, Nematomorpha & Acanthocephala Bio 1413: General Zoology Lab (Ziser, 2008) [Exercise 10B] Lab Activities: 1
Smaller Protostome Phyla: Rotifera, Gastrotricha, Nematomorpha & Acanthocephala Bio 1413: General Zoology Lab (Ziser, 2008) [Exercise 10B] Lab Activities: 1. Rotifers (p167) slide: Rotifers, wm • Examine prepared slide of a rotifer and be able to identify the following structures: corona, foot, mastax, digestive tract, reproductive tract • Attempt to locate and to identify living rotifers from the water samples provided • Recognize and identify rotifers on illustrations and be able to identify to Phylum 2. Gastrotrichs (p167) slide: Gastrotrichs, wm • Observe living specimens (if available) and note their appearance and movement • examine prepared slides of a gastrotrich and identify: mouth, pharynx, adhesive gland, scales 3. Nematomorpha (p168) preserved: horsehair worms • examine living and/or preserved horsehair worms as available and be able to recognize them and distinguish them from other “wormlike” phyla 4. Acanthocephala (p168) • examine preserved specimens and slides as available and be able to recognize them and distinguish them from other “wormlike” phyla eg. Macracanthorhynchus preserved: Macracanthorhynchus this animal is parasitic in the intestine of pigs, the larvae develop in beetle grubs which are eaten by pigs to complete its life cycle eg. examine the prepared slide slide: acanthoceophala, wm identify the following: retractable proboscis with hooks, proboscis receptacle, ligament sac Notebook Suggestions: Describe the kinds of movement seen in live rotifers and compare to the movement seen in roundworms; is it similar? Diagram some of the variety of rotifers in samples and illustrations; what characteristics do all share; how do each differ If living gastrotrichs are available, describe how their movement differs from that of rotifers. Can you identify any organs on the gastrotrich Describe the similarities and differences between acanthocephala and nematomorpha make a diagram of the general life cycle of a horsehair worm and an acanthocephalan. -
Chapter 9 in Biology of the Acanthocephala]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1985 Epizootiology: [Chapter 9 in Biology of the Acanthocephala] Brent B. Nickol University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Nickol, Brent B., "Epizootiology: [Chapter 9 in Biology of the Acanthocephala]" (1985). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 505. https://digitalcommons.unl.edu/parasitologyfacpubs/505 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Nickol in Biology of the Acanthocephala (ed. by Crompton & Nickol) Copyright 1985, Cambridge University Press. Used by permission. 9 Epizootiology Brent B. Nickol 9.1 Introduction In practice, epizootiology deals with how parasites spread through host populations, how rapidly the spread occurs and whether or not epizootics result. Prevalence, incidence, factors that permit establishment ofinfection, host response to infection, parasite fecundity and methods of transfer are, therefore, aspects of epizootiology. Indeed, most aspects of a parasite could be related in sorne way to epizootiology, but many ofthese topics are best considered in other contexts. General patterns of transmission, adaptations that facilitate transmission, establishment of infection and occurrence of epizootics are discussed in this chapter. When life cycles are unknown, little progress can be made in under standing the epizootiological aspects ofany group ofparasites. -
Tropical Marine Invertebrates CAS BI 569 Phylum Chordata by J
Tropical Marine Invertebrates CAS BI 569 Phylum Chordata by J. R. Finnerty Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata *Nematoda *Platyhelminthes Acoelomorpha Calcispongia Silicispongiae PROTOSTOMIA Phylum Chordata subPhylum VERTEBRATA subPhylum UROCHORDATA class Ascidaceae—the “sea squirts” class Larvaceae—the larvaceans class Thaliaceae—the salps subPhylum CEPHALOCHORDATA—the “lancelets” Subphylum Subphylum Subphylum Phylum Phylum Vertebrata Urochordata Cephalochordata ECHINODERMATA HEMICHORDATA Phylum CHORDATA Notochord Blastopore -> anus Dorsal hollow nerve cord Radial / equal cleavage Pharyngeal gill slits Coelom forms by enterocoely Endostyle Cross-section through a Chick embryo During Neurulation Subphylum Vertebrata Ordovician Origins—Jawless fishes vertebral column paired appendages post-anal tail Jawed fishes, gnathostomes late Ordovician, early Silurian jaws early Devonian / late Devonian tetrapods / amniotes Permian (299-251) Carboniferous subphylum VERTEBRATA (359-299) gnathostomes (with jaws) 1. Vertebral column Devonian 2. Paired appendages (416-359) 3. Jaws 4. Post anal tail Silurian (444-416) Bony fishes Cartilaginous fishes Paleozoic (543-225) Fishes with jaws & paired fins Ray-finned & Lobe-finned fishes Ordivician Jawless fishes (488-444) Vertebrate origins Jawless fishes phylum CHORDATA Cambrian 1. Dorsal nerve cord (542-488) Non-vert chordates “Cambrian explosion” 2. Notochord Rapid appearance of most 3. Gill slits Animal phyla in fossil record Including Phylum Chordata 4. Endostyle Permian (299-251) 4 3 2 1 1.Pre-mammal-like reptiles 2. Snake-lizard ancestor 3.Crocodile-Bird-Dino ancestor 4. Turtles Carboniferous (359-299) amphibians Early reptiles. Devonian (416-359) Vertebrates invade land “Age of amphibians” Silurian (444-416) Bony fishes AMNIOTES Cartilaginous fishes Paleozoic (543-225) Fishes with jaws & paired fins 1. -
Phylum Onychophora
Lab exercise 6: Arthropoda General Zoology Laborarory . Matt Nelson phylum onychophora Velvet worms Once considered to represent a transitional form between annelids and arthropods, the Onychophora (velvet worms) are now generally considered to be sister to the Arthropoda, and are included in chordata the clade Panarthropoda. They are no hemichordata longer considered to be closely related to echinodermata the Annelida. Molecular evidence strongly deuterostomia supports the clade Panarthropoda, platyhelminthes indicating that those characteristics which the velvet worms share with segmented rotifera worms (e.g. unjointed limbs and acanthocephala metanephridia) must be plesiomorphies. lophotrochozoa nemertea mollusca Onychophorans share many annelida synapomorphies with arthropods. Like arthropods, velvet worms possess a chitinous bilateria protostomia exoskeleton that necessitates molting. The nemata ecdysozoa also possess a tracheal system similar to that nematomorpha of insects and myriapods. Onychophorans panarthropoda have an open circulatory system with tardigrada hemocoels and a ventral heart. As in arthropoda arthropods, the fluid-filled hemocoel is the onychophora main body cavity. However, unlike the arthropods, the hemocoel of onychophorans is used as a hydrostatic acoela skeleton. Onychophorans feed mostly on small invertebrates such as insects. These prey items are captured using a special “slime” which is secreted from large slime glands inside the body and expelled through two oral papillae on either side of the mouth. This slime is protein based, sticking to the cuticle of insects, but not to the cuticle of the velvet worm itself. Secreted as a liquid, the slime quickly becomes solid when exposed to air. Once a prey item is captured, an onychophoran feeds much like a spider. -
Final Guidance on Awards of Grants to Indian Tribes Under Section 106 of the Clean Water Act
Final Guidance on Awards of Grants to Indian Tribes under Section 106 of the Clean Water Act For Fiscal Years 2007 and Beyond United States Environmental Protection Agency Office of Water Office of Wastewater Management EPA 832-R-06-003 i This page intentionally left blank ii Table of Contents Abbreviations and Acronyms .............................................................................................................................. vii Executive Summary .......................................................................................................................................... ES-1 Chapter 1: Introduction ...................................................................................................................................... 1-1 Purpose of this Guidance ........................................................................................................................................................... 1-1 Section 106 Tribal Program Background .................................................................................................................................... 1-2 Need for this Guidance .............................................................................................................................................................. 1-2 GPRA, PART, and Environmental Results .................................................................................................................................. 1-4 EPA’s Strategic Plan ..................................................................................................................................................................