Meteorology Applied to Urban Air Pollution Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modélisation De L'impact Du Trafic Routier Sur La Pollution De L'air Et Des
Mod´elisationde l'impact du trafic routier sur la pollution de l'air et des eaux de ruissellement Masoud Fallah Shorshani To cite this version: Masoud Fallah Shorshani. Mod´elisationde l'impact du trafic routier sur la pollution de l'air et des eaux de ruissellement. Sciences de l'environnement. Universit´eParis-Est, 2014. Fran¸cais. <NNT : 2014PEST1068>. <tel-01127301> HAL Id: tel-01127301 https://pastel.archives-ouvertes.fr/tel-01127301 Submitted on 7 Mar 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Thèse de doctorat de l’Université Paris-Est Présentée par Masoud Fallah Shorshani pour l’obtention du diplôme de docteur de l’Université Paris-Est Spécialité : SIE – Sciences, Ingénierie et Environnement Modélisation de l’impact du trafic routier sur la pollution de l’air et des eaux de ruissellement Soutenue le 4 juillet 2014 Jury composé de Ludovic Leclercq, IFSTTAR Président du jury & examinateur Isabelle Braud, IRSTEA Rapporteur Lionel Soulhac, École Centrale de Lyon Rapporteur Frédéric Mahé, AIRPARIF Examinateur Guido Petrucci, Vrije Universiteit Brussel Examinateur Céline Bonhomme, LEESU Co-encadrante Michel André, IFSTTAR Co-directeur de thèse Christian Seigneur, CEREA Directeur de thèse Abstract: Road traffic emissions are a major source of pollution in cities. -
Improving City Vitality Through Urban Heat Reduction with Green Infrastructure and Design Solutions: a Systematic Literature Review
buildings Review Improving City Vitality through Urban Heat Reduction with Green Infrastructure and Design Solutions: A Systematic Literature Review Helen Elliott, Christine Eon and Jessica K. Breadsell * Curtin University Sustainability Policy Institute, School of Design and the Built Environment, Curtin University, Building 209 Level 1, Kent St. Bentley, Perth, WA 6102, Australia; [email protected] (H.E.); [email protected] (C.E.) * Correspondence: [email protected] Received: 29 September 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: Cities are prone to excess heat, manifesting as urban heat islands (UHIs). UHIs impose a heat penalty upon urban inhabitants that jeopardizes human health and amplifies the escalating effects of background temperature rises and heatwaves, presenting barriers to participation in city life that diminish interaction and activity. This review paper investigates how green infrastructure, passive design and urban planning strategies—herein termed as green infrastructure and design solutions (GIDS)—can be used to cool the urban environment and improve city vitality. A systematic literature review has been undertaken connecting UHIs, city vitality and GIDS to find evidence of how qualities and conditions fundamental to the vitality of the city are diminished by heat, and ways in which these qualities and conditions may be improved through GIDS. This review reveals that comfortable thermal conditions underpin public health and foster activity—a prerequisite for a vital city—and that reducing environmental barriers to participation in urban life enhances physical and mental health as well as activity. This review finds that GIDS manage urban energy flows to reduce the development of excess urban heat and thus improve the environmental quality of urban spaces. -
Planning with Urban Climate in Different Climatic Zones
GEOGRAPHICALIA (2010), 57, 5-39 PLANNING WITH URBAN CLIMATE IN DIFFERENT CLIMATIC ZONES Maria-Joao Alcoforado* Centro de Estudos Geográficos Instituto de Geografia e Ordenamento do Território (IGO/UL) - University of Freiburg [email protected] Andreas Matzarakis Meteorological Institute - University of Freiburg [email protected] Resumen: Se discuten primero los principales cambios climáticos indu- cidos por los asentamientos, con el fin de establecer los principales obje- tivos de este trabajo: mostrar la importancia de la información climática para la planificación urbana y hacer hincapié en que las medidas ade- cuadas “para planificar y construir con el clima” varían de acuerdo con el clima del área donde está localizada la ciudad. Los balances de radia- ción y energía urbanos, la isla de calor, las condiciones del viento, la contaminación del aire y el confort térmico se tratan en detalle. También son revisados los estudios de las últimas décadas que consideran los beneficios económicos y para la salud de la utilización de información climática. La consideración del clima urbano debe formar parte de los procesos de ordenamiento territorial para lograr una mejor “calidad del clima” en los asentamientos. Se proponen también medidas que pueden reducir los efectos negativos o aprovechar las ventajas de urbanizar una zona basándose en su clima (frío, cálido y húmedo, cálido y árido, con- trastes estacionales del clima). Palabras clave: clima urbano, planificación, macroclima, microclima, cambio climático. Abstract: The main climatic changes induced by settlements are dis- cussed first, in order to introduce the main objectives of this paper: to show the importance of urban climate information for planning and to * Miembro del Jury International de Géographie “Vautrin Lud”. -
Urban Planning and Urban Design
5 Urban Planning and Urban Design Coordinating Lead Author Jeffrey Raven (New York) Lead Authors Brian Stone (Atlanta), Gerald Mills (Dublin), Joel Towers (New York), Lutz Katzschner (Kassel), Mattia Federico Leone (Naples), Pascaline Gaborit (Brussels), Matei Georgescu (Tempe), Maryam Hariri (New York) Contributing Authors James Lee (Shanghai/Boston), Jeffrey LeJava (White Plains), Ayyoob Sharifi (Tsukuba/Paveh), Cristina Visconti (Naples), Andrew Rudd (Nairobi/New York) This chapter should be cited as Raven, J., Stone, B., Mills, G., Towers, J., Katzschner, L., Leone, M., Gaborit, P., Georgescu, M., and Hariri, M. (2018). Urban planning and design. In Rosenzweig, C., W. Solecki, P. Romero-Lankao, S. Mehrotra, S. Dhakal, and S. Ali Ibrahim (eds.), Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network. Cambridge University Press. New York. 139–172 139 ARC3.2 Climate Change and Cities Embedding Climate Change in Urban Key Messages Planning and Urban Design Urban planning and urban design have a critical role to play Integrated climate change mitigation and adaptation strategies in the global response to climate change. Actions that simul- should form a core element in urban planning and urban design, taneously reduce greenhouse gas (GHG) emissions and build taking into account local conditions. This is because decisions resilience to climate risks should be prioritized at all urban on urban form have long-term (>50 years) consequences and scales – metropolitan region, city, district/neighborhood, block, thus strongly affect a city’s capacity to reduce GHG emissions and building. This needs to be done in ways that are responsive and to respond to climate hazards over time. -
Urban Clmatology and Its Relevance to Urban Design
WORLD METEOROLOGICAL ORGANIZATION TECHNICAL NOTE No. 149 URBAN CLMATOLOGY AND ITS RELEVANCE TO URBAN DESIGN by T. J. Chandler Prepared with the support of the United Nations Environment Programme (UNEP) WMO - No. 438 Secrétariat of the World Meteorological Organisation - Ceneva - Switzerland THE WMO The World Meteorological Organization (WMO) is a specialized agency of the United Nations of wlùch 145 States and Territories are Members. It was created: — To facilitate international co-operation in the establishment of networks of stations for making meteorological and geophysical observations and centres to provide meteoro logical services and observations; — To promote the establishment and maintenance of Systems for the rapid exchange of meteorological information; — To promote standardization of meteorological observations and ensure the uniform publication of observations and statistics; — To further the application of meteorology to aviation, shipping, water problems, agri culture, and other human activities; — To encourage research and training in meteorology. The machinery of the Organization consists of the following bodies: The World Meteorological Congress, the suprême body of the Organization, brings together the delegates of ail Members once every fo\ir years to détermine gênerai policies for the fulhlmcnt of the purposes of the Organization, to adopt Technical Régulations relating to international meteorological practicc and to détermine the WMO programme. The Executive Commitlee is composed of 24 directors of national Meteorological Services and meets at lcast once a year to conduct the activities of the Organization and to implement the décisions taken by its Members in Congress, to study and makc recommandations on matters affecting international meteorology and the opération of meteorological services. -
E. Gregory Mcpherson
Cooling Urban Heat Islands with Sustainable Landscapes E. Gregory McPherson Introduction The rapid urbanization of U.S. cities during the past fifty years has been associated with a steady increase in downtown temperatures of about o.1° to 1.1°C (0.25° to 2°F) per decade. Because the demand of cities for electricity increases by about 3 to 4 percent for every increase of one degree Celsius (1.5 to ?- percent per degree Fahrenheit), about 3 to 8 percent of current electric demand for cooling is used just to compensate for this urban heat-island effect (Akbari et al. 1990). Other implications of growing urban heat islands include -increases in. carbon dioxide emissions from power plants, municipal water demand, concentrations of smog, and human discomfort and disease. Global warming, which may double the rate of urban temperature rise, could accentuate these environmental problems. More- over, the accelerating world trend toward urbanization may expand the local influence of urban heat islands, as megalopolises begin to modify regional climate and airflow (Tyson et al. 1973). This paper is directed to the policy-makers who are responsible for urban design and its climatological consequences. It summarizes our current knowledge on the structure, energetics, and mitigation of the urban heat island. Special attention is given to physical features of the environment that can be easily manip- ulated, particularly vegetation. Prototypical designs illustrate how concepts of sustainable landscapes and urban climatology can be applied to counteract urban warming in street canyons, parking lots, urban parks, and residential streets. In a previous study (McPherson 1990a), sustainable landscapes were defined as ·multi- functional, low maintenance, biologically diverse, and expressive of "place." l 152 Urbanization and Terrestrial Ecosystems I Urban Heat Islands •I Warmer air temperatures in cities compared to air temperatures in surrounding rural areas is the principal diagnostic feature of the urban heat island. -
Technical Assistance for Improving Emissions Control the Role Of
This Project is Co-Financed by the European Union and the Republic of Turkey This Project is c This project is co-financed by the European Union and the Republic of Turkey Technical Assistance for Improving Emissions Control Service Contract No: TR0802.03-02/001 Identification No: EuropeAid/128897/D/SER/TR The Role of Emissions Dispersion Modelling in Cost Benefit Analysis Applied to Urban Air Quality Management: Part 1-the Approach (Version 2: 18 May 2012) This publication has been produced with the assistance of the European Union. The content of this publication is the sole responsibility of the Consortium led by PM Group and can in no way be taken to reflect the views of the European Union. Contracting Authority: Central Finance and Contracting Unit, Turkey Implementing Authority / Beneficiary: Ministry of Environment and Urbanisation Project Title: Improving Emissions Control Service Contract Number: TR0802.03-02/001 Identification Number: EuropeAid/128897/D/SER/TR PM Project Number: 300424 This project is co-financed by the European Union and the Republic of Turkey The Role of Emissions Dispersion Modelling in Cost Benefit Analysis Applied to Urban Air Quality Management: Part 1 – the Approach Version 2: 18 May 2012 PM File Number: 300424-06-RP-200 PM Document Number: 300424-06-205(2) CURRENT ISSUE Issue No.: 2 Date: 18/05/2012 Reason for Issue: Final Version for Client Approval Customer Approval Sign-Off Originator Reviewer Approver (if required) Scott Hamilton, Peter Print Name Russell Frost Jim McNelis Faircloth, Chris Dore Signature Date PREVIOUS ISSUES (Type Names) Issue No. Date Originator Reviewer Approver Customer Reason for Issue 1 14/03/2012 Scott Hamilton, Peter Russell Frost Jim McNelis For client review / comment Faircloth, Chris Dore CFCU / MoEU 300424-06-RP-205 (2) TA for Improving Emissions Control 18 May 2012 CONTENTS GLOSSARY OF ACRONYMS ...................................................................................... -
Strong Contributions of Local Background Climate to Urban Heat Islands
LETTER doi:10.1038/nature13462 Strong contributions of local background climate to urban heat islands Lei Zhao1,2, Xuhui Lee1,2, Ronald B. Smith3 & Keith Oleson4 The urban heat island (UHI), a common phenomenon in which sur- 3.0 6 0.3 kelvin (mean and standard error) in humid climates but face temperatures are higher in urban areas than in surrounding decreasing DT by 1.5 6 0.2 kelvin in dry climates. In the humid east- rural areas, represents one of the most significant human-induced ern United States, there is evidence of higher DT in drier years. These changes to Earth’s surface climate1,2. Even though they are localized relationships imply that UHIs will exacerbate heatwave stress on human hotspots in the landscape, UHIs have a profound impact on the health in wet climates where high temperature effects are already lives of urban residents, who comprise more than half of the world’s compounded by high air humidity6,7 and in drier years when pos- population3. A barrier to UHI mitigation is the lack of quantitative itive temperature anomalies may be reinforced by a precipitation– attribution of the various contributions to UHI intensity4 (expressed temperature feedback8. Our results support albedo management as as the temperature difference between urban and rural areas, DT). a viable means of reducing DT on large scales9,10. A common perception is that reduction in evaporative cooling in The conversion of natural land to urban land causes several notable urban land is the dominant driver of DT (ref. 5). Here we use a cli- perturbations to the Earth’s surface energy balance. -
J3.8 Urban Heat Islands and Environmental Impact
J3.8 URBAN HEAT ISLANDS AND ENVIRONMENTAL IMPACT Suryadevara S. Devi* Andhra University, Visakhapatnam, India ABSTRACT pollution dispersal which will result in an increase in pollution concentration. The urban heat island The rapid urbanization and industrialization have adds to the development and self sustenance of a brought about microclimatic changes particularly ‘dust-dome’ and a ‘hazehood” of contaminating with regard to its thermal structure. The well particles. It also helps in setting up of the documented climatic modification of the city is urban recirculation of pollutants thus making the pollution heat island. The present paper discusses the nature problems more serious. With the increasing and intensity of heat islands at Visakhapatnam, the emphasis on planning for healthier ad comfortable tropical coastal city of South India. A detailed study physical environments in cities, the need to was carried out with regard to urban heat islands recognise the role of cities in causing and meeting for the last ten years. The study reveals that the the challenges posed by climate change has intensity of heat island varies from 20C to 40C and become greater. The very presence of a city affects intensity is high during winter season compared to the local climate and as the city changes, so does, summer and monsoon seasons. At Visakhapatnam its climate. The modified climate adds to the city the formation of heat island is controlled by residents’ discomfort and even ill-health. The well topography and urban morphology. The land and documented climatic modification of the city is urban sea breeze circulation also interacts with the heat heat island. -
Feasibility Study: Modelling Environmental Concentrations of Chemicals from Emission Data
EEA Technical report No 8/2007 Feasibility study: modelling environmental concentrations of chemicals from emission data ISSN 1725-2237 EEA Technical report No 8/2007 Feasibility study: modelling environmental concentrations of chemicals from emission data Cover design: EEA Layout: Diadeis and EEA Legal notice The contents of this publication do not necessarily reflect the official opinions of the European Commission or other institutions of the European Communities. Neither the European Environment Agency nor any person or company acting on behalf of the Agency is responsible for the use that may be made of the information contained in this report. All rights reserved No part of this publication may be reproduced in any form or by any means electronic or mechanical, including photocopying, recording or by any information storage retrieval system, without the permission in writing from the copyright holder. For translation or reproduction rights please contact EEA (address information below). Information about the European Union is available on the Internet. It can be accessed through the Europa server (www.europa.eu). Luxembourg: Office for Official Publications of the European Communities, 2007 ISBN 978-92-9167-925-6 ISSN 1725-2237 © EEA, Copenhagen, 2007 European Environment Agency Kongens Nytorv 6 1050 Copenhagen K Denmark Tel.: +45 33 36 71 00 Fax: +45 33 36 71 99 Web: eea.europa.eu Enquiries: eea.europa.eu/enquiries Contents Contents Acknowledgements ................................................................................................... -
MARK R THEOBALD.Pdf
TESIS DOCTORAL / Ph.D THESIS An Intercomparison of Modelling Approaches for Simulating the Atmospheric Dispersion of Ammonia Emitted by Agricultural Sources Mark R. Theobald Madrid 2012 E.T.S.I. Agrónomos Universidad Politécnica de Madrid Departamento de Química y Análisis Agrícola Escuela Técnica Superior de Ingenieros Agrónomos An Intercomparison of Modelling Approaches for Simulating the Atmospheric Dispersion of Ammonia Emitted by Agricultural Sources Autor: Mark R. Theobald Licenciado en Ciencias Físicas (MPhys hons) Directores: Dr. Antonio Vallejo Garcia Doctor en Ciencias Químicas Dr. Mark A. Sutton Doctor en Ciencias Físicas Madrid 2012 Acknowledgements ACKNOWLEDGEMENTS This work was funded by the European Commission through the NitroEurope Integrated Project (Contract No. 017841 of the EU Sixth Framework Programme for Research and Technological Development). The European Science Foundation also provided additional funding through COST Action 729 for the attendance of conferences and workshops and for the collaboration with the University of Lisbon (COST-STSM-729-5799). Firstly I would like to thank my two supervisors Dr. Mark A. Sutton and Prof. Antonio Vallejo for their support and guidance throughout this work. I am grateful to Mark not only for his willingness to discuss and direct this work no matter where he was in the world or whatever time of day it was, but also for the support and encouragement I received when I was at CEH Edinburgh. I am also grateful to Antonio for guiding me through the labyrinths of University bureaucracy. I would also like to thank the other research groups with whom I have collaborated throughout this work. Thanks to all my colleagues at CEH Edinburgh with a special mention to Bill Bealey for his help developing the SCAIL model and to Sim Tang for providing the ALPHA samplers and technical support. -
Urban Climatic Map Studies: a Review
INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. (2010) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/joc.2237 Urban climatic map studies: a review Ren Chao,a* Ng Edward Yan-yunga and Katzschner Lutzb a School of Architecture, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong b Department of Landscape and Urban Planning, University Kassel, Kassel, Germany ABSTRACT: Since their introduction 40 years ago, worldwide interest in urban climatic map (UCMap) studies has grown. Today, there are over 15 countries around the world processing their own climatic maps, developing urban climatic guidelines, and implementing mitigation measures for local planning practices. Facing the global issue of climate change, it is also necessary to include the changing climatic considerations holistically and strategically in the planning process, and to update city plans. This paper reviews progress in UCMap studies. The latest concepts, key methodologies, selected parameters, map structure, and the procedures of making UCMaps are described in the paper. The mitigation measures inspired by these studies and the associated urban climatic planning recommendations are also examined. More than 30 relevant studies around the world have been cited, and both significant developments and existing problems are discussed. The thermal environment and air ventilation condition within the urban canopy layer (UCL) of the city are important in the analytical processes of the climatic-environmental evaluation. Possible mitigation measures and planned actions include decreasing anthropogenic heat release, improving air ventilation at the pedestrian level, providing more shaded areas, increasing greenery, creating air paths, and controlling building morphologies. Further developments have and will continue to focus on the spatial analysis of human thermal comfort in urban outdoor environments and on the impacts and adaptations of climate change.