Insights Into the Chinese Pangolin's (Manis Pentadactyla) Diet in a Peri-Urban Habitat

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into the Chinese Pangolin's (Manis Pentadactyla) Diet in a Peri-Urban Habitat Short Communication Tropical Conservation Science Volume 10: 1–7 Insights Into the Chinese Pangolin’s ! The Author(s) 2017 Reprints and permissions: (Manis pentadactyla) Diet in a Peri-Urban sagepub.com/journalsPermissions.nav DOI: 10.1177/1940082917709648 Habitat: A Case Study From Hong Kong journals.sagepub.com/home/trc Roger Ho Lee1, Khan Cheung1, John R. Fellowes, and Benoit Gue´nard1 Abstract Gut content analysis of a juvenile Chinese pangolin revealed eight ant and one termite species being preyed on. The identification of > 26,000 prey items and a comparison with local ant communities suggest a selective foraging behavior and a tendency for direct predation on arboreal or epigaeic ant nests within secondary forest and shrubland habitats. Keywords arboreal ants, conservation, endangered species, gut content analysis, myrmecophagous, subtropical, urban landscape Introduction feeding behavior of Chinese pangolins on a subset of social insects (Wu, Liu, Li, & Sun, 2005), the identifica- The Chinese pangolin (Manis pentadactyla L. 1758) has tion of the specific ant and termite species consumed as experienced a dramatic population decline over the past prey could substantially assist conservation programs. 20 years, leading to its recent reclassification on the However, existing data on diet are scarce and based IUCN Red List from Lower Risk/Near Threatened to mostly on indirect methods, such as inspection of food Critically Endangered (Challender et al., 2014). Despite leftovers at foraging burrows (e.g., Li, Zhou, Guo, Guo, being listed under the second-class national protection & Chen, 2010; Wu et al., 2005). category in China and Appendix II of the Convention As a result of its extensive protected-areas system and on International Trade in Endangered Species of Wild its relatively effective implementation of legislation pro- Fauna and Flora (CITES) in 1988 and 1994 (Wu, Ma, tecting wild animal, Hong Kong Special Administrative Tang, Chen, & Liu, 2002), and upgraded to Appendix I Region is perceived as a relative stronghold for wild (CITES, 2017) respectively, intensive illegal poaching populations of Chinese pangolin (Challender et al., for putative medicinal use (Soewu & Ayodele, 2009; 2014; Figure 1). However, limited knowledge is available Yee, Chu, Xu, & Choo, 2005) and bushmeat consump- on the species’ ecology in this mosaic of peri-urban tion (Challender, Harrop, & MacMillan, 2015) represent and secondary forest habitats. Furthermore, disturbed the main reasons for its population decline through most environments may induce life history shifts in wildlife of its distribution range (Challender et al., 2014). Due to populations, including diet (Ditchkoff, Saalfeld, & their cryptic behavior and low population densities, eco- Gibson, 2006). Thus, gaining dietary information on logical information on the Chinese pangolins is still frag- Chinese pangolin populations in this mosaic is urgently mentary, limiting the prospects for both in situ and ex situ conservation programs. 1School of Biological Sciences, The University of Hong Kong, Hong Kong, Diet composition reflects food preferences and avail- China ability and can also give insights into behavior, foraging Received 21 February 2017; Revised 21 April 2017; Accepted 21 April 2017 ecology, and habitat use of a species (Challender, 2009). Furthermore, information on diet may also be relevant to Corresponding Author: Benoit Gue´nard, School of Biological Sciences, Kadoorie Biological Sciences the conservation of both wild (Yu, Peng, Zeng, Yin, & Building, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, Zhu, 2015) and captive populations of Chinese pangolins China. (Hua et al., 2015). Given indications of the selective Email: [email protected] Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). 2 Tropical Conservation Science needed. Here, after presenting detailed gut content ana- mounted for identification to species level. The number lysis of a juvenile Chinese pangolin collected in Hong of individuals from each caste (i.e., alates, workers, and Kong and summarizing published diet information, we pupae) in each species was counted. To prevent errors use knowledge of the ecology of its prey species to infer arising from repeated counting of body fragments, only its foraging habits and habitat use. heads were used as counting units. In Formicidae and Isoptera, the head represents a heavily sclerotized body part which is usually preserved during the digestive pro- Methods cess. For each species, five intact individuals were imaged Chinese Pangolin Gut Content Analysis to allow standardized measurements (to the nearest 0.01 mm) of morphological traits including Weber’s A wild juvenile Chinese pangolin, weighing 546 g, length (WL; measured in Formicidae only) and head was found seriously injured by dogs and died shortly width (HW; Figure 2). Dry weights for each species and afterwards on November 24, 2013, in a peri-urban resi- their relative castes and stages were obtained by oven dential area in the New Territories of Hong Kong Special drying five intact individuals of each species at 40C Administrative Region. The animal was sent to the Wild until constant weight was reached and measured with a Animal Rescue Centre of Kadoorie Farm & Botanic microbalance (to the nearest 0.01 mg; Table 1). Garden to extract the gut contents. Gut contents were preserved in 70% ethanol and later examined under a Literature Review on Chinese Pangolin Diet 40 x stereo microscope. Within the gut, only ants and termites were present, and these were sorted based on Prey composition was reviewed through extensive their external morphological characters and point searches on Google Scholar and CNKI, using the key- words ‘‘Chinese pangolin,’’ ‘‘Manis pentadactyla,’’ ‘‘diet,’’ and their corresponding Chinese characters (i.e., ‘‘ ,’’ ‘‘ ,’’ ‘‘ ,’’ and ‘‘ ’’) for pertinent dietary data published before 2017. The compiled species list on diet composition was checked for taxonomic val- idity and compared with the known distribution of each prey species (if scientific name present) within antmap- s.org (Janicki, Narula, Ziegler, Gue´nard, & Economo, 2016) and where necessary revised to reflect the current taxonomic status (Table 2). Insights Into Habitat Use From Ant Prey We used previous data from extensive ant surveys con- ducted in Hong Kong (Fellowes, 1997) to calculate ant species occurrences in different habitats and used these as Figure 1. Picture of a wild Chinese pangolin (Manis pentadactyla) proxies for their local abundance and habitat association. in Hong Kong. Photograph courtesy of Gary Ades. Here again, taxonomy was updated through direct Figure 2. Vectors presenting the ant body measurements taken in mm. (a) Head width (HW) and (b) Weber’s length (WL). Lee et al. 3 Table 1. List of Ant and Termite Prey Species (Worker Caste Unless Otherwise Stated) and Total Number of Individuals Recovered From the Gut of a Juvenile Chinese Pangolin. Body measurements (M Æ SD) Frequency of occurrence (%) No. of individuals Total DW Taxon WL HW DW (% total) (% total) G S F Hymenoptera Formicinae Anoplolepis gracilipes 2.49 Æ 0.08 1.03 Æ 0.04 0.14 Æ 0.04 199 (0.75) 27.02 (0.07) 5.88 23.08 14.81 Camponotus mitis 5.63 Æ 0.14 1.97 Æ 0.08 2.15 Æ 1.36 70 (0.26) 150.51 (0.41) 23.53 46.15 29.63 Camponotus nicobarensis 4.13 Æ 0.39 2.93 Æ 0.87 2.96 Æ 1.45 6804 (25.56) 20122.15 (54.18) 5.88 30.77 22.22 Female alates 27.54 Æ 1.53 79 (0.30) 2175.98 (5.86) Male alates 1.78 Æ 0.43 460 (1.73) 820.09 (2.21) Camponotus variegatus dulcis 4.53 Æ 0.05 1.84 Æ 0.11 1.06 Æ 0.42 121 (0.45) 128.57 (0.35) Polyrhachis demangei 3.08 Æ 0.07 2.33 Æ 0.04 1.24 Æ 0.22 8 (0.03) 9.94 (0.03) 0 7.69 0 Polyrhachis tyrannica 4.64 Æ 0.23 2.79 Æ 0.10 6.74 Æ 3.06 899 (3.38) 6059.44 (16.31) 5.88 61.54 62.96 Myrmicinae Aphaenogaster exasperata 3.60 Æ 0.32 1.80 Æ 0.16 1.01 Æ 0.17 59 (0.22) 59.65 (0.16) 0 0 18.52 Crematogaster dohrni 1.88 Æ 0.32 1.60 Æ 0.32 0.35 Æ 0.07 16500 (62.00) 5827.80 (15.69) 0 0 7.41 Pupae 1.68 Æ 0.86 604 (2.27) 1013.15 (2.73) Isoptera Termitidae Macrotermes barneyi Workers 2.18 Æ 0.65 0.98 Æ 0.09 681 (2.56) 668.20 (1.80) Soldiers 2.37 Æ 0.03 0.60 Æ 0.03 131 (0.49) 79.23 (0.21) Total 26,615 37,141.73 Note. The following average body measurements (ÆSD) were recorded from five individuals of each species: WL ¼Weber’s length (mm); HW ¼ Head width (mm), DW ¼ Dry weight (mg). The frequency of occurrence of each species in three different habitats (G: Grassland, n ¼ 17; S: Shrubland, n ¼ 13; F: Forest, n ¼ 27) in Hong Kong SAR were extracted from Fellowes (1997). examination of the specimens collected to allow taxo- or castes are usually found only within nests and are nomic correspondence between both studies. known to be more nutritious than workers, in particular due to their higher fat content (Redford & Dorea, 1984). Results The large number of individuals recovered (>26,000 indi- viduals) also supports the nest-raiding hypothesis. As a A total of 25,803 ants and 812 termites, comprising six point of comparison on ant abundance in Hong Kong genera and nine species, were recorded.
Recommended publications
  • The Textiles of the Han Dynasty & Their Relationship with Society
    The Textiles of the Han Dynasty & Their Relationship with Society Heather Langford Theses submitted for the degree of Master of Arts Faculty of Humanities and Social Sciences Centre of Asian Studies University of Adelaide May 2009 ii Dissertation submitted in partial fulfilment of the research requirements for the degree of Master of Arts Centre of Asian Studies School of Humanities and Social Sciences Adelaide University 2009 iii Table of Contents 1. Introduction.........................................................................................1 1.1. Literature Review..............................................................................13 1.2. Chapter summary ..............................................................................17 1.3. Conclusion ........................................................................................19 2. Background .......................................................................................20 2.1. Pre Han History.................................................................................20 2.2. Qin Dynasty ......................................................................................24 2.3. The Han Dynasty...............................................................................25 2.3.1. Trade with the West............................................................................. 30 2.4. Conclusion ........................................................................................32 3. Textiles and Technology....................................................................33
    [Show full text]
  • Learning About Mammals
    Learning About Mammals The mammals (Class Mammalia) includes everything from mice to elephants, bats to whales and, of course, man. The amazing diversity of mammals is what has allowed them to live in any habitat from desert to arctic to the deep ocean. They live in trees, they live on the ground, they live underground, and in caves. Some are active during the day (diurnal), while some are active at night (nocturnal) and some are just active at dawn and dusk (crepuscular). They live alone (solitary) or in great herds (gregarious). They mate for life (monogamous) or form harems (polygamous). They eat meat (carnivores), they eat plants (herbivores) and they eat both (omnivores). They fill every niche imaginable. Mammals come in all shapes and sizes from the tiny pygmy shrew, weighing 1/10 of an ounce (2.8 grams), to the blue whale, weighing more than 300,000 pounds! They have a huge variation in life span from a small rodent living one year to an elephant living 70 years. Generally, the bigger the mammal, the longer the life span, except for bats, which are as small as rodents, but can live for up to 20 years. Though huge variation exists in mammals, there are a few physical traits that unite them. 1) Mammals are covered with body hair (fur). Though marine mammals, like dolphins and whales, have traded the benefits of body hair for better aerodynamics for traveling in water, they do still have some bristly hair on their faces (and embryonically - before birth). Hair is important for keeping mammals warm in cold climates, protecting them from sunburn and scratches, and used to warn off others, like when a dog raises the hair on its neck.
    [Show full text]
  • Autecology of the Sunda Pangolin (Manis Javanica) in Singapore
    AUTECOLOGY OF THE SUNDA PANGOLIN (MANIS JAVANICA) IN SINGAPORE LIM T-LON, NORMAN (B.Sc. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2007 An adult male Manis javanica (MJ17) raiding an arboreal Oceophylla smaradgina nest. By shutting its nostrils and eyes, the Sunda Pangolin is able to protect its vulnerable parts from the powerful bites of this ant speces. The scales and thick skin further reduce the impacts of the ants’ attack. ii ACKNOWLEDGEMENTS My supervisor Professor Peter Ng Kee Lin is a wonderful mentor who provides the perfect combination of support and freedom that every graduate student should have. Despite his busy schedule, he always makes time for his students and provides the appropriate advice needed. His insightful comments and innovative ideas never fail to impress and inspire me throughout my entire time in the University. Lastly, I am most grateful to Prof. Ng for seeing promise in me and accepting me into the family of the Systematics and Ecology Laboratory. I would also like to thank Benjamin Lee for introducing me to the subject of pangolins, and subsequently introducing me to Melvin Gumal. They have guided me along tremendously during the preliminary phase of the project and provided wonderful comments throughout the entire course. The Wildlife Conservation Society (WCS) provided funding to undertake this research. In addition, field biologists from the various WCS offices in Southeast Asia have helped tremendously throughout the project, especially Anthony Lynam who has taken time off to conduct a camera-trapping workshop.
    [Show full text]
  • The Termite by Ogden Nash
    Biological studies on two European termite species: establishment risk in the UK Laetitia Virginie Laine B.Sc. M.Sc. D.I.C. A thesis submitted for the degree of Doctor of Philosophy of the University of London November 2002 Department of Biological Sciences, Imperial College, Silwood Park, Ascot, SL5 7PY, Berkshire Abstract The discovery of an accidental introduction of termites into Devon in 1994 generated great interest as termites were previously thought to be unable to establish in the UK due to unfavourable climatic conditions. Information about the species present in Devon, Reticulitermes grassei, was found to be lacking and the present study was undertaken to determine the importance of various abiotic and biotic factors in establishment of this species. The factors included in the study were the minimum termite number for establishment, the consumption of wood and its effect on survival and temperature and soil type. A review of the literature was also conducted, detailing the problems with the taxonomy of this termite genus, their present distribution pattern and the life cycle of Reticulitermes species. Two populations of both R. grassei and R. santonensis were studied. The effect of the minimum termite number was found to be significant in both laboratory and field conditions. However, survival decreased in the laboratory and increased in the field with increased number of termites. Consumption experiments were performed using blocks of Scots pine, beech and oak. In most cases termite populations were found to consume and survive best on oak. Consumption was also tested on live seedlings but these results were inconclusive. Survival was observed to increase with increased temperature.
    [Show full text]
  • Transfer of Manis Crassicaudata, M. Pentadactyla, M. Javanica from Appendix II to Appendix I
    Prop. 11.13 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II Other proposals A. Proposal Transfer of Manis crassicaudata, M. pentadactyla, M. javanica from Appendix II to Appendix I. B. Proponents India, Nepal, Sri Lanka and the United States of America C. Supporting Statement 1. Taxonomy 1.1 Class: Mammalia 1.2 Order: Pholidota 1.3 Family: Manidae 1.4 Genus: Manis crassicaudata Gray, 1827 Manis javanica Desmarest, 1822 Manis pentadactyla Linneaus, 1758 1.5 Scientific synonyms: 1.6 Common names: English: (Manis crassicaudata) - Indian pangolin (Manis javanica) - Malayan pangolin (Manis pentadactyla) - Chinese pangolin French: (Manis crassicaudata) - Grand pangolin de l’Inde (Manis javanica) - Pangolin malais (Manis pentadactyla) - Pangolin de Chino Spanish: (Manis crassicaudata) - Pangolín indio (Manis javanica) - Pangolín malayo (Manis pentadactyla) - Pangolín Chino 1.7 Code numbers: Manis crassicaudata: A-108.001.001.001 Manis javanica: A-108.001.001.003 Manis pentadactyla: A-108.001.001.005 2. Biological Parameters 2.1 Distribution Manis crassicaudata occurs in the Indian sub-continent from eastern Pakistan, through much of India (south of the Himalayas), Bangladesh, and Sri Lanka, and, possibly, Myanmar and extreme western China (IUCN 1996, WCMC et al. 1999). Additional details on the distribution of this species are provided in Appendix A. Manis javanica occurs in tropical Southeast Asia. Although the northern and western limits of its range are very poorly defined, it has been recorded in much of Indonesia, Malaysia, the Philippines (Palawan Province), the southern half of Indo-China, much of Thailand and southern Myanmar (Nowak 1991, WCMC et al. 1999). It may also occur in Bangladesh and southwest Prop.
    [Show full text]
  • Report on Biodiversity and Tropical Forests in Indonesia
    Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and
    [Show full text]
  • Chinese Fables and Folk Stories
    .s;^ '^ "It--::;'*-' =^-^^^H > STC) yi^n^rnit-^,; ^r^-'-,. i-^*:;- ;v^ r:| '|r rra!rg; iiHSZuBs.;:^::^: >» y>| «^ Tif" ^..^..,... Jj AMERICMJ V:B00lt> eOMI^^NY"' ;y:»T:ii;TOiriai5ia5ty..>:y:uy4»r^x<aiiua^^ nu,S i ;:;ti! !fii!i i! !!ir:i!;^ | iM,,TOwnt;;ar NY PUBLIC LIBRARY THE BRANCH LIBRARIES 3 3333 08102 9908 G258034 Digitized by the Internet Arciiive in 2007 with funding from IVIicrosoft Corporation http://www.archive.org/details/chinesefablesfolOOdavi CHINESE FABLES AND FOLK STORIES MARY HAYES DAVIS AND CHOW-LEUNG WITH AN INTRODUCTION BY YIN-CHWANG WANG TSEN-ZAN NEW YORK •:• CINCINNATI •: CHICAGO AMERICAN BOOKCOMPANY Copyright, 1908, by AMERICAN BOOK COMPANY Entered at Stationers' Hall, London Copyright, 1908, Tokyo Chinese Fables W. p. 13 y\9^^ PROPERTY OF THE ^ CITY OF MW YOBK G^X£y:>^c^ TO MY FRIEND MARY F. NIXON-ROULET PREFACE It requires much study of the Oriental mind to catch even brief glimpses of the secret of its mysterious charm. An open mind and the wisdom of great sympathy are conditions essential to making it at all possible. Contemplative, gentle, and metaphysical in their habit of thought, the Chinese have reflected profoundly and worked out many riddles of the universe in ways peculiarly their own. Realization of the value and need to us of a more definite knowledge of the mental processes of our Oriental brothers, increases wonder- fully as one begins to comprehend the richness, depth, and beauty of their thought, ripened as it is by the hidden processes of evolution throughout the ages. To obtain literal translations from the mental store- house of the Chinese has not been found easy of accom- plishment; but it is a more difficult, and a most elusive task to attempt to translate their fancies, to see life itself as it appears from the Chinese point of view, and to retell these impressions without losing quite all of their color and charm.
    [Show full text]
  • PROCEEDINGS of the WORKSHOP on TRADE and CONSERVATION of PANGOLINS NATIVE to SOUTH and SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S
    PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S. Pantel and S.Y. Chin Wildlife Reserves Singapore Group PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 JUNE –2JULY 2008, SINGAPORE ZOO EDITED BY S. PANTEL AND S. Y. CHIN 1 Published by TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia © 2009 TRAFFIC Southeast Asia All rights reserved. All material appearing in these proceedings is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC Southeast Asia as the copyright owner. The views of the authors expressed in these proceedings do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Layout by Sandrine Pantel, TRAFFIC Southeast Asia Suggested citation: Sandrine Pantel and Chin Sing Yun (ed.). 2009. Proceedings of the Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia, 30 June-2 July
    [Show full text]
  • Treatise on the Isoptera of the World Kumar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Museum of Natural History Scientific Publications KRISHNA ET AL.: ISOPTERA OF THE WORLD: 7. REFERENCES AND INDEX7. TREATISE ON THE ISOPTERA OF THE WORLD 7. REFERENCES AND INDEX KUMAR KRISHNA, DAVID A. GRIMALDI, VALERIE KRISHNA, AND MICHAEL S. ENGEL A MNH BULLETIN (7) 377 2 013 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY TREATISE ON THE ISOPTERA OF THE WORLD VolUME 7 REFERENCES AND INDEX KUMAR KRISHNA, DAVID A. GRIMALDI, VALERIE KRISHNA Division of Invertebrate Zoology, American Museum of Natural History Central Park West at 79th Street, New York, New York 10024-5192 AND MICHAEL S. ENGEL Division of Invertebrate Zoology, American Museum of Natural History Central Park West at 79th Street, New York, New York 10024-5192; Division of Entomology (Paleoentomology), Natural History Museum and Department of Ecology and Evolutionary Biology 1501 Crestline Drive, Suite 140 University of Kansas, Lawrence, Kansas 66045 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 377, 2704 pp., 70 figures, 14 tables Issued April 25, 2013 Copyright © American Museum of Natural History 2013 ISSN 0003-0090 2013 Krishna ET AL.: ISOPtera 2435 CS ONTENT VOLUME 1 Abstract...................................................................... 5 Introduction.................................................................. 7 Acknowledgments . 9 A Brief History of Termite Systematics ........................................... 11 Morphology . 44 Key to the
    [Show full text]
  • Saving Pangolins from the Traditional Chinese Medicine Markets in China
    Saving pangolins from the traditional Chinese medicine markets in China Pangolin Yifu Wang Email: [email protected] • About pangolins • About traditional Chinese medicine (TCM) and Structure of pangolin scales talk • About future actions based on findings from this project Pangolin © Kadoorie Farm and Botanical Gardens Order: Pholidota Family: Manidae Poaching of pangolin International trafficking routes of pangolin (2010-2015) • Market demand on pangolin for scale and meat in China is 200,000 individuals every year (Yin et al. 2015) Huge demand on pangolin products ©Martin Fletcher • TCM: a style of traditional medicine built on a foundation of more than 2,500 years of Chinese medical practice Traditional Chinese medicine • TCM is part of the mainstream health care (TCM) and system in China pangolin • Pangolin scales have been used in TCM for at least 1,500 years 1) Policy regulating pangolin scale market? Three 2) Demand on pangolin scale from TCM? questions 3) People’s attitude towards pangolins, pangolin scales, and related regulations? • CITES Appendix I • Second-class National Protected Animal • Certificates required for farming pangolin and commercially trade scales for medical use • National Forestry Bureau assigns annual quota from Q1: pangolin scale stockpile Regulation of pangolin Certain hospitals are allowed to prescribe and sell pangolin scale trade scales Surveyed hospitals in two cities in Henan province Q2: Study site to asses demand Hospitals in Henan: City Number of Number of hospitals Total amount of raw hospitals selling
    [Show full text]
  • Blattodea: Hodotermitidae) and Its Role As a Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia
    Article Characterization of the 12S rRNA Gene Sequences of the Harvester Termite Anacanthotermes ochraceus (Blattodea: Hodotermitidae) and Its Role as A Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia Reem Alajmi 1,*, Rewaida Abdel-Gaber 1,2,* and Noura AlOtaibi 3 1 Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 2 Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt 3 Department of Biology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; [email protected] * Correspondence: [email protected] (R.A.), [email protected] (R.A.-G.) Received: 28 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: Termites are social insects of economic importance that have a worldwide distribution. Identifying termite species has traditionally relied on morphometric characters. Recently, several mitochondrial genes have been used as genetic markers to determine the correlation between different species. Heavy metal accumulation causes serious health problems in humans and animals. Being involved in the food chain, insects are used as bioindicators of heavy metals. In the present study, 100 termite individuals of Anacanthotermes ochraceus were collected from two Saudi Arabian localities with different geoclimatic conditions (Riyadh and Taif). These individuals were subjected to morphological identification followed by molecular analysis using mitochondrial 12S rRNA gene sequence, thus confirming the morphological identification of A. ochraceus. Furthermore, a phylogenetic analysis was conducted to determine the genetic relationship between the acquired species and other termite species with sequences previously submitted in the GenBank database. Several heavy metals including Ca, Al, Mg, Zn, Fe, Cu, Mn, Ba, Cr, Co, Be, Ni, V, Pb, Cd, and Mo were measured in both collected termites and soil samples from both study sites.
    [Show full text]
  • The Phylogeny of Termites
    Molecular Phylogenetics and Evolution 48 (2008) 615–627 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors Frédéric Legendre a,*, Michael F. Whiting b, Christian Bordereau c, Eliana M. Cancello d, Theodore A. Evans e, Philippe Grandcolas a a Muséum national d’Histoire naturelle, Département Systématique et Évolution, UMR 5202, CNRS, CP 50 (Entomologie), 45 rue Buffon, 75005 Paris, France b Department of Integrative Biology, 693 Widtsoe Building, Brigham Young University, Provo, UT 84602, USA c UMR 5548, Développement—Communication chimique, Université de Bourgogne, 6, Bd Gabriel 21000 Dijon, France d Muzeu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, 04263-000 São Paulo, SP, Brazil e CSIRO Entomology, Ecosystem Management: Functional Biodiversity, Canberra, Australia article info abstract Article history: A phylogenetic hypothesis of termite relationships was inferred from DNA sequence data. Seven gene Received 31 October 2007 fragments (12S rDNA, 16S rDNA, 18S rDNA, 28S rDNA, cytochrome oxidase I, cytochrome oxidase II Revised 25 March 2008 and cytochrome b) were sequenced for 40 termite exemplars, representing all termite families and 14 Accepted 9 April 2008 outgroups. Termites were found to be monophyletic with Mastotermes darwiniensis (Mastotermitidae) Available online 27 May 2008 as sister group to the remainder of the termites. In this remainder, the family Kalotermitidae was sister group to other families. The families Kalotermitidae, Hodotermitidae and Termitidae were retrieved as Keywords: monophyletic whereas the Termopsidae and Rhinotermitidae appeared paraphyletic.
    [Show full text]