Sugarcane Aphid (Hemiptera: Aphididae): Host Range and Sorghum Resistance Including Cross-Resistance from Greenbug Sources

Total Page:16

File Type:pdf, Size:1020Kb

Sugarcane Aphid (Hemiptera: Aphididae): Host Range and Sorghum Resistance Including Cross-Resistance from Greenbug Sources FIELD AND FORAGE CROPS Sugarcane Aphid (Hemiptera: Aphididae): Host Range and Sorghum Resistance Including Cross-Resistance From Greenbug Sources J. SCOTT ARMSTRONG,1,2 WILLIAM L. ROONEY,3 GARY C. PETERSON,4 RAUL T. VILLENUEVA,5 6 5 MICHAEL J. BREWER, AND DANIELLE SEKULA-ORTIZ J. Econ. Entomol. 108(2): 576–582 (2015); DOI: 10.1093/jee/tou065 ABSTRACT The graminous host range and sources of sorghum [Sorghum bicolor (L.) Moench.] plant resistance, including cross-resistance from greenbug, Schizaphis graminum (Rondani), were studied for the newly emerging sugarcane aphid, Melanaphis sacchari (Zehntner), in greenhouse no-choice experi- ments and field evaluations. The sugarcane aphid could not survive on field corn, Zea mays (L.), Teff grass, Eragrostis tef (Zucc.), proso millet, Panicum miliaceum L., barley, Hordeum vulgare L., and rye, Secale cereale L. Only sorghum genotypes served as hosts including Johnsongrass, Sorghum halepense (L.), a highly suitable noncrop host that generates high numbers of sugarcane aphid and maintains moderate phenotypic injury. The greenbug-resistant parental line RTx2783 that is resistant to greenbug biotypes C and E was resistant to sugarcane aphid in both greenhouse and field tests, while PI 55607 greenbug resistant to biotypes B, C, and E was highly susceptible. PI 55610 that is greenbug resistant to biotypes B, C, and E maintained moderate resistance to the sugarcane aphid, while greenbug-resistant PI 264453 was highly susceptible to sugarcane aphid. Two lines and two hybrids from the Texas A&M breeding program B11070, B11070, AB11055-WF1-CS1/RTx436, and AB11055-WF1-CS1/RTx437 were highly resistant to sugarcane aphid, as were parental types SC110, SC170, and South African lines Ent62/SADC, (Macia/TAM428)-LL9, (SV1*Sima/IS23250)-LG15. Tam428, a parental line that previously showed moderate resistance in South Africa and India, also showed moderate resistance in these evaluations. Overall, 9 of 20 parental sorghum entries tested for phenotypic damage in the field re- sulted in good resistance to the sugarcane aphid and should be utilized in breeding programs that develop agronomically acceptable sorghums for the southern regions of the United States. KEY WORDS host plant resistance, sugarcane aphid, greenbug, cross-resistance The sugarcane aphid Melanaphis sacchari (Zehntner) bioeconomics of the sugarcane aphid infesting sugar- (Homoptera: Aphididae) was first discovered on cane are still lacking in that recognizable damage shows sorghum [Sorghum bicolor (L.) Moench], in the United only as secondary symptoms of sooty molds from the States in Florida as early 1922 (Wilbrink 1922), and plant being covered in honeydew (Hall 1987, later confirmed by Denmark (1988), although it also White et al. 2001). In sugarcane, the sugarcane aphid has a history of infesting sugarcane, Saccharum offici- can vector Sugarcane yellow leaf virus, a casual agent narum (L.), in Florida (Mead 1978, Denmark 1988) of yellow leaf disease, which has been added to the and Louisiana (Hall 1987, White et al. 2001). The certification standards for micropropagated sugarcane in Louisiana (Akbar et al. 2010). In the late summer of 2013, the sugarcane aphid expanded its regional pres- The use of trade, firm, or corporation names in this publication is ence by infesting grain sorghum near Beaumont, TX, for the information and convenience of the reader. Such use does not and thereafter discovered in grain sorghum throughout constitute an official endorsement or approval by the United States the eastern half of the state of Texas to include north Department of Agriculture or the Agricultural Research Service of central Texas, the Gulf Coast, South Texas including any product or service to the exclusion of others that may be suitable. 1 U. S. Department of Agriculture, Agricultural Research Service, the Rio Grande Valley, Louisiana, Oklahoma, and Mis- Wheat, Peanut and Other Field Crops Research Unit, 1301 North sissippi. During the 2014 sorghum production season, Western Rd., Stillwater, OK 74075. the aphid survived the winter in northern State of 2 Corresponding author, email: [email protected]. Tamaulipas, Mexico, and in south Texas where it even- 3 Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843. tually progressed to the northeast into Arkansas, 4 Texas AgriLife Research and Extension Center, Lubbock, TX more northern latitudes of Oklahoma, south central 79403. Kansas,andasfarwestasHaleCenter,TX.Fromthe 5 Texas A&M AgriLife Research and Extension Center, Weslaco, TX two production seasons observed in Texas, and from 78596. 6 Texas A&M AgriLife Research and Extension Center, Corpus previously published literature from other countries Christi, TX 78406. such as South Africa (van Rensburg 1973), and India Published by Oxford University Press on behalf of Entomological Society of America. 2015. This work is written by US Government employees and is in the public domain in the US. April 2015 ARMSTRONG ET AL.: SUGARCANE APHID HOST AND SORGHUM RESISTANCE 577 (Sharma et al. 2013), sugarcane aphids prefer to infest entry means compared (a ¼ 0.05) using least squared sorghum on the underside of the lower leaves where means pair-wise comparisons procedure (SAS 9.3, SAS infesting colonies increasing rapidly from flowering to Institute 2010). For the leaf chlorosis ratings, the Proc grain fill. The entire plant, including the inflorescence Rank procedure was used to compare rating estimates and leaves are covered in honey dew and sooty mold. by sorghum genotype, with chlorosis estimates sepa- This has resulted in mechanical harvesting problems in rated (a ¼ 0.05) by least squared means pair-wise southern United States in that the honeydew interferes comparisons procedure (SAS 9.3, SAS Institute 2010). with harvesting machinery, and compounds the eco- Phenotyping in the Field. The sorghum types nomic loss caused by the sugarcane aphid. Our objec- evaluated in the greenhouse study were also evaluated tives were to evaluate graminous host plants, for in the field during the 2014 production season, in suitability as hosts, and to screen for host plant resis- addition to more lines used to identify resistant sources tance to the sugarcane aphid, including known sources to the sugarcane aphid. The additional sorghum geno- that are used to differentiate greenbug biotypes. types including eight lines B11055, B11070, TAM428, Ent62/SADC, SC110, SC170, (Macia/TAM428)- LL9, and (SV1*Sima/IS23250)-LG15 and six hybrids Materials and Methods ATx642/RTx2783, ATx2752/RTx2783, ATx2752/RTx437, Aphid Origin and Culture. M. sacchari used in ATx642/RTx436, A11055/RTx436, and A11055/RTx437 these studies were collected from grain sorghum near were included because they are related to RTx2783 Bay City, Matagora County, TX, in August of 2013. A (a derivative of SC110 that is known to be resistant to single parthenogenic female was reared on RTx7000, a the greenbug biotypes C and E) or other lines that susceptible sorghum genotype used in greenbug bio- have potential phenotypic resistance (Table 1). On 18 type determinations. The progeny from this single February 2014, these lines were planted at the Texas female were maintained by transfer to RTx7000 seed- A&M AgriLife Hiler Farm, Weslaco, TX, and a dupli- lings once a week within enclosures in the greenhouse cate set were planted on 13 March at the Texas A&M under T-6 fluorescent lighting and a 24-h temperature AgriLife Research and Extension Center, Corpus range (max 31C and min 19C) in the fall of 2013. Christi, TX. Three m rows of each line were planted in Host Range Determinations. For host range a complete randomized block, with 1-m alleys. Repli- determinations of sugarcane aphid, field corn, Zea cates 1–3 at both sites were treated with Cruiser 5FS mays (L.), Teff grass, Eragrostis tef (Zucc.) Trotter, (47.6% a. i. thiamethoxam; Syngenta Crop Protection, forage sorghum, Sorghum bicolor (L.) ‘BMR AF7301’, Greensboro, NC 27419) with 455 ml/100 kg of seed, proso millet, Panicum miliaceum L., Johnsongrass, Sor- along with the seed safener Concep III (74.3% a. i. ghum halepense (L.), barley, Hordeum vulgare L., rye, Fluxofenin, Syngenta Crop Protection) with 0.4 g/kg Secale cereale L., and the cultivated sorghums JS222, seed, and Apron XL (33% a. i. Mefenoxam, Syngenta M627, PI 264453, RTx7000, RTx2737, RTx2783, PI Crop Protection) 2.75 ml/100 kg seed. The remaining 550607, and PI 556010 were used to determine host six replications were treated with identical seed suitability and preference. The latter six sorghums are treatments of Concep and Apron XL, and no used to differentiate greenbug biotypes by phenotypic insecticide. response from feeding injury (Burd 2006). Seed of The sorghum lines were evaluated for phenotypic each genotype were planted in cone-tainers (model injury near full physiological maturity on 11 June 2014 SC10, S7S greenhouse supply, Tangent, OR) in a at Corpus Christi, TX, and 13 June 2014 for Weslaco, three-layer media of potting soil, fritted clay, and sand TX, by using a 1–9 damage rating scale (Sharma et al. (from bottom to top, respectively). The cone-tainers 2013), where a rating of 1) represents few aphids were maintained in the greenhouse at 23.9Cwitha present on the lower one to two leaves, with no appa- photoperiod of 14:10 (L:D) h. When the plants reached rent damage to the leaves; 2) lower one to two leaves the 3–4 leaf stage on 28 October 2013, they were showing aphid infestation, and 1–20% of the infested infested with 10 sugarcane
Recommended publications
  • Aphis Fabae Scop.) to Field Beans ( Vicia Faba L.
    ANALYSIS OF THE DAMAGE CAUSED BY THE BLACK BEAN APHID ( APHIS FABAE SCOP.) TO FIELD BEANS ( VICIA FABA L.) BY JESUS ANTONIO SALAZAR, ING. AGR. ( VENEZUELA ) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE UNIVERSITY OF LONDON OCTOBER 1976 IMPERIAL COLLEGE FIELD STATION, SILWOOD PARK, SUNNINGHILL, ASCOT, BERKSHIRE. 2 ABSTRACT The concept of the economic threshold and its importance in pest management programmes is analysed in Chapter I. The significance of plant responses or compensation in the insect-injury-yield relationship is also discussed. The amount of damage in terms of yield loss that results from aphid attack, is analysed by comparing the different components of yield in infested and uninfested plants. In the former, plants were infested at different stages of plant development. The results showed that seed weights, pod numbers and seed numbers in plants infested before the flowering period were significantly less than in plants infested during or after the period of flower setting. The growth pattern and growth analysis in infested and uninfested plants have shown that the rate of leaf production and dry matter production were also more affected when the infestations occurred at early stages of plant development. When field beans were infested during the flowering period and afterwards, the aphid feeding did not affect the rate of leaf and dry matter production. There is some evidence that the rate of leaf area production may increase following moderate aphid attack during this period. The relationship between timing of aphid migration from the wintering host and the stage of plant development are shown to be of considerable significance in determining the economic threshold for A.
    [Show full text]
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • Melanaphis Sacchari), in Grain Sorghum
    DEVELOPMENT OF A RESEARCH-BASED, USER- FRIENDLY, RAPID SCOUTING PROCEDURE FOR THE INVASIVE SUGARCANE APHID (MELANAPHIS SACCHARI), IN GRAIN SORGHUM By JESSICA CARRIE LINDENMAYER Bachelor of Science in Soil and Crop Sciences Bachelor of Science in Horticulture Colorado State University Fort Collins, Colorado 2013 Master of Science in Entomology and Plant Pathology Oklahoma State University Stillwater, Oklahoma 2015 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2019 DEVELOPMENT OF A RESEARCH-BASED, USER- FRIENDLY, RAPID SCOUTING PROCEDURE FOR THE INVASIVE SUGARCANE APHID (MELANAPHIS SACCHARI), IN GRAIN SORGHUM Dissertation Approved: Tom A. Royer Dissertation Adviser Kristopher L. Giles Norman C. Elliott Mark E. Payton ii ACKNOWLEDGEMENTS I would like to thank my amazing committee and all my friends and family for their endless support during my graduate career. I would like to say a special thank you to my husband Brad for supporting me in every way one possibly can, I couldn’t have pursued this dream without you. I’d also like to thank my first child, due in a month. The thought of getting to be your mama pushed me to finish strong so you would be proud of me. Lastly, I want to thank my step father Jasper H. Davis III for showing me how to have a warrior’s spirit and to never give up on something, or someone you love. Your love, spirit, and motivational words will always be heard in my heart even while you’re gone.
    [Show full text]
  • Correlation of Stylet Activities by the Glassy-Winged Sharpshooter, Homalodisca Coagulata (Say), with Electrical Penetration Graph (EPG) Waveforms
    ARTICLE IN PRESS Journal of Insect Physiology 52 (2006) 327–337 www.elsevier.com/locate/jinsphys Correlation of stylet activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), with electrical penetration graph (EPG) waveforms P. Houston Joosta, Elaine A. Backusb,Ã, David Morganc, Fengming Yand aDepartment of Entomology, University of Riverside, Riverside, CA 92521, USA bUSDA-ARS Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648, USA cCalifornia Department of Food and Agriculture, Mt. Rubidoux Field Station, 4500 Glenwood Dr., Bldg. E, Riverside, CA 92501, USA dCollege of Life Sciences, Peking Univerisity, Beijing, China Received 5 May 2005; received in revised form 29 November 2005; accepted 29 November 2005 Abstract Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce’s disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips.
    [Show full text]
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting Template
    EFFECTS OF INTERCROPPING AND BIOLOGICAL INSECTICIDES ON SUGARCANE APHID (HEMIPTERA: APHIDIDAE) INFESTATIONS ON SORGHUM, AND IDENTIFICATION OF NATURAL ENEMIES AND ALTERNATE HOSTS IN HAITI By WILFRID CALVIN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2019 © 2019 Wilfrid Calvin To Jehovah, Issa, Calissa, Amelise, and Mercilhome ACKNOWLEDGMENTS I thank God for always holding my hand through every step in my life. I am also grateful to my family for their unfailing support throughout my life. I would like to thank my lovely wife for her undying assistance and constant encouragement during my study period. Special thanks to my adorable daughter who endured with love such a long period of time away from daddy to make this achievement possible. I thank Dr. Julien Beuzelin, my committee chair, for all his guidance and support during my master’s study. My committee members, Drs. Oscar Liburd and Marc Branham, have also provided useful advice and support for which I am so thankful. I am also thankful to Mr. Ludger Jean Simon for his support toward the success of the experiments conducted in Haiti. I would like to thank Dr. Elijah Talamas for his help identifying insect samples from Haiti. I thank Donna Larsen for providing technical assistance in all experiments conducted at the UF/IFAS Everglades Research and Education Center (EREC) and for all the help to make my stay in Belle Glade successful. I am also thankful to Erik Roldán for all his help during my master’s program.
    [Show full text]
  • Melon Aphid Or Cotton Aphid, Aphis Gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L
    EENY-173 Melon Aphid or Cotton Aphid, Aphis gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L. Capinera2 Distribution generation can be completed parthenogenetically in about seven days. Melon aphid occurs in tropical and temperate regions throughout the world except northernmost areas. In the In the south, and at least as far north as Arkansas, sexual United States, it is regularly a pest in the southeast and forms are not important. Females continue to produce southwest, but is occasionally damaging everywhere. Be- offspring without mating so long as weather allows feeding cause melon aphid sometimes overwinters in greenhouses, and growth. Unlike many aphid species, melon aphid is and may be introduced into the field with transplants in the not adversely affected by hot weather. Melon aphid can spring, it has potential to be damaging almost anywhere. complete its development and reproduce in as little as a week, so numerous generations are possible under suitable Life Cycle and Description environmental conditions. The life cycle differs greatly between north and south. In the north, female nymphs hatch from eggs in the spring on Egg the primary hosts. They may feed, mature, and reproduce When first deposited, the eggs are yellow, but they soon parthenogenetically (viviparously) on this host all summer, become shiny black in color. As noted previously, the eggs or they may produce winged females that disperse to normally are deposited on catalpa and rose of sharon. secondary hosts and form new colonies. The dispersants typically select new growth to feed upon, and may produce Nymph both winged (alate) and wingless (apterous) female The nymphs vary in color from tan to gray or green, and offspring.
    [Show full text]
  • Alfalfa Aphid and Leafhopper Management for the Low Deserts
    ALFALFA APHID AND LEAFHOPPER MANAGEMENT FOR THE LOW DESERTS Eric T. Natwick U.C. Cooperative Extension Farm Advisor, Imperial County, California APHIDS Spotted Alfalfa ~ The spotted alfalfa aphid (Therioaphis maculata) was introduced into New Mexico in 1953 and by 1954 had spread westward into California. This aphid is small pale yellow or grayish in color with 4 to 6 rows of black spots bearing small spines on its back. The adults mayor may not have wings. Spotted alfalfa aphid is smaller than blue alfalfa aphid or pea aphid arid will readily drop from plants when disturbed. The aphids are common on the underside of leaves where colonies start on the lower part of the plants, but also infest stems and leaves ~s colonies expand. These aphids produce great Quantities of honeydew. Severe infestations can develop on non-resistant varieties of alfalfa and reduce yield, stunt growth and even kill plants. Feed Quality and palatability are also reduced by sooty molds which grow on the honeydew excrement. In most desert growing areas introduction of resistant varieties (e.g., CUF101) along with the activity of predacious bugs, lady beetles, lacewings, syrphid fly larvae and introduced parasites has reduced this aphid to the status of a minor pest. If susceptible varieties are planted and beneficial insect populations are disrupted, then severe infestations can occur from late July through September. Because spotted alfalfa aphid has developed resistance to organophosphorus compounds, the best way to avoid aphid problems is the planting of a resistant variety. In fields where a susceptible variety is planted the field should be checked 2 to 3 times per week during July through September.
    [Show full text]
  • Aphids and Their Control on Orchids
    APHIDS AND THEIR CONTROL ON ORCHIDS Paul J. Johnson, Ph.D. Insect Research Collection, South Dakota State University, Brookings, SD 57007 Aphids are among the most obnoxious of orchid pests. These insects are global and orchid feeding species are problematic in tropical growing areas as well as in commercial and hobby greenhouses in temperate regions. Rabasse and Wyatt (1985) ranked aphids as one of three most serious greenhouse pests, along with spider mites and whiteflies. These pernicious insects can show themselves on orchids year-around in warm climates, but seem to be mostly autumn and winter problems in temperate regions. Like most other orchid pests the most common routes into plant collections is through either the acquisition of an infested plant or the movement of plants from outdoors to indoors. However, certain reproductive stages of pest species do fly and they will move to orchids from other plants quite readily. Because of their propensity for rapid reproduction any action against aphids should be completed quickly while their populations are still small. An aphid infestation is often detected by an accumulation of pale-tan colored “skins” that fall beneath the developing colony. These “skins” are the shed integument from the growing and molting immature aphids. All of the common pest species of aphid also secrete honeydew, a feeding by-product exuded by the aphid and composed of concentrated plant fluids, and is rich in carbohydrates. This honeydew drips and accumulates beneath the aphid colony. Because of the carbohydrates honeydew is attractive to ants, flies, bees, other insects including beneficial species, and sooty mold.
    [Show full text]
  • 080052-12.042.Pdf
    -0€ - wlvJFllaMurB o sqss otoqdI rPl)au Jopaal P tu!,tofua I laoo vlapoutals aoaaqlar!^at aqJ .?yaBrI uPuqro,lurf - olorld 'Funo^ rraql.rojarpl ol stJasutMaJ aql Jo I auosr ArMreaalpua, aq1:1r761taooqy I t4t'lvJFllaMlrr8 sqs8- oloqd 'ds d' I DuuollsoJalaaq lamat aq1 I a6odsnonatd I auo pue 'slapaaluoulpf, {lureur are sallaaqa^ou sta^oJ tur&paua oqslraql ol anp sallaaqueql sarrueaalrt alout '(apprull{qdEs {ool uPl qtrq^ ^lruil) sallaaqa^or puno] aq osleIIr^ apMpl dUaql Fuourelng paalpue ur a^rl ol sloa3?u^U loJ luauruolr^ualuallaJxa ue apr^ordsd?aq lsodtuoJ pala^olun 'pllorv\ pasutaql Jo stasodruo3ap aql roj slErqeqralJo ritlnu pu€sdpaq lsoduof, 'luauruorr^ua l?lnl?uaql ur palJ^lal a.rpralleu f,ru?Alopup lalllt JealsV dVSHJSOdWOC 3HJ 'punojaq upt sdnol? paUrssplJtot?u.I aWJo lsoru ;urluasardal 'ruaql ,pue spasur ulqlro\ pllo,{ Ietnlpu aql Jo rxsof,orlllxp luasaldalsuaplpa rno sleurueupup spllq ,qsq,salrldal 'sFurrup turpnl3ur Jo a8uelapu e loj sa^lasuaqlpooJ tulaq ol usrlrs?lpdpue uorleparduo{ 's.la,1oU uaa4aq uallodJo Uodsuprlaql ol aspasrpJo uorssrursupll aql uro{ 'a^rsualxaosle alp sruals{so)a s,lau€ldsrql ulrlll,rsllasurJo alor aqJ :tellaupue sa^Pal 'poo/r lupld ol poolqpu?.rrpq Ieurup uro{ ',ldn3ro[aq] splrqeqaql sepaue^ puPasra^rp se sr pooJtraqJ .s.ra^upup lsoruIaqI'?tlp4snvol a^rleualp sarf,ads ,,(Ure3aur^ uoruruot ,d€aq 'spuod'sueal}s aql lsoduoJ sa{el Josralp/vr qsarJ aq} s.pFo/{aqlJo arxos (eraldeurac lsaSPI eJoluauodruof, ? srlrnlJ Eur{map JI papeur a^€qpu?suasap lsaup aql ur a^rl rapro) sarir€a aql ar€{.req asool lo xan€urEuritplap
    [Show full text]
  • Download PDF (Inglês)
    Biota Neotropica 20(4): e20201045, 2020 www.scielo.br/bn ISSN 1676-0611 (online edition) Article Anatomy of male and female reproductive organs of stink bugs pests (Pentatomidae: Heteroptera) from soybean and rice crops Vinícius Albano Araújo1* , Tito Bacca2 & Lucimar Gomes Dias3,4 1Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade, Macaé, RJ, Brasil. 2Universidad del Tolima, Facultad de Ingeniería Agronómica, Ibagué, Tolima, Colombia. 3Universidad de Caldas, Caldas, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Biológicas, Colombia. 4Universidad de Caldas, Grupo de investigación Bionat, Caldas, Colombia. *Corresponding author: Vinícius Albano Araújo, e-mail: [email protected] ARAÚJO, V., BACCA, T., DIAS, L. Anatomy of male and female reproductive organs of stink bugs pests (Pentatomidae: Heteroptera) from soybean and rice crops. Biota Neotropica 20(4): e20201045. https://doi.org/10.1590/1676-0611-BN-2020-1045 Abstract: Pentatomidae comprises a diverse group of stink bugs widely distributed in the Neotropical region. Many species are phytophagous and cause injuries to plants, and can thus be defined as agricultural pests. In this study, the anatomy of the female and male reproductive tracts of three important agricultural pests in Colombia is described: Piezodorus guildinii Westwood, 1837 and Chinavia ubica Rolston 1983, found on soybeans, and Oebalus insularis Stål, 1872, found in rice crops. For that, light microscopy techniques were used. The anatomy of the reproductive tract of sexually mature males of the three species studied consisted of a pair of testes, vas deferens, seminal vesicles, ejaculatory bulb, an ejaculatory duct that opens into an aedeagus, and paired accessory glands.
    [Show full text]
  • Aphid and Whitefly Management in Alfalfa in Imperial Valley, California
    APHID AND WHITEFLY MANAGEMENT IN ALFALFA IN IMPERIAL VALLEY, CALIFORNIA Eric T. Natwick and M. Lopez1 ABSTRACT In the low desert region of southern California and Arizona, spotted alfalfa aphid, Therioaphis maculata, pea aphid, Acyrthosiphon pisum, blue alfalfa aphid, Acyrthosiphon kondoi, and cowpea aphid, Aphis craccivora must be managed for successful alfalfa hay production. Considerable progress has been made toward the control of the aphid pests via host plant resistance, but insecticide applications are commonly needed to maintain population densities of aphids below damaging levels. Experiments were conducted at the University of California Desert Research and Extension Center in 1999, 2000 and 2004 to compare efficacy of registered and unregistered materials and combinations of materials for aphid control in alfalfa. The results of these three insecticide efficacy experiments indicate that cowpea aphid is susceptible to control by several different aphicides. Currently there are no cowpea aphid resistant alfalfa varieties. Therefore, cowpea aphid should be controlled using an insecticide registered for use on alfalfa when a damaging population builds up in an alfalfa stand. INTRODUCTION Although several resistant varieties have been developed and released, resistance levels have been low and variable (Lehman 1978). Insecticides still have a major role in the alfalfa insect pest management (Natwick 1987). The blue alfalfa aphid, cowpea aphid, pea aphid and spotted alfalfa aphid are commonly controlled in low desert alfalfa with chlorpyrifos or dimethoate when aphid populations reach damaging levels (Anonymous 2003, Anonymous 1985). Other insecticides used in alfalfa that provide aphid control include: carbofuran, several pyrethroid insecticides or malathion. Insecticides are applied to a large portion of the alfalfa acreage in the low desert region of the Southwestern United States each year for aphid control.
    [Show full text]