WWII Innovations - Codebreaking, Radar, Espionage, New Bombs, and More
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Imagination Game Storia E Fantasia in the Imitation Game
The Imagination Game storia e fantasia in The Imitation Game Cap. 2: Bletchley Park e Ultra Giovanni A. Cignoni – Progetto HMR 1/28 Bletchley Park e Ultra • Un’organizzazione poderosa • Bletchley Park • I luoghi, le strutture, le procedure • I meccanismi e gli appoggi • Il personale, le (tante) donne di BP • Ultra • Cos’era, come era nascosto • L’impatto sul conflitto, episodi e numeri Giovanni A. Cignoni – Progetto HMR 2/28 A lezione dai Polacchi • 1919, Biuro Szyfrów • Militari, Kowalewski, e matematici, Mazurkiewicz, Sierpiński, Leśniewski • Nel 1938 il 75% dei messaggi tedeschi intercettati era decifrato (Rejewski, Zygalski, Różycki) • Dopo il ’39 PC Bruno, Cadix, Boxmoor • In Inghilterra • Room40 (1914), GC&CS (1919), BP (1938) • Parigi (gennaio ’39), con Francesi e Polacchi • Pyry vicino Varsavia (luglio ’39) Giovanni A. Cignoni – Progetto HMR 3/28 Un posto strategico Bletchley Park - Gayhurst - Wavendon - Stanmore - Eastcote - Adstock Cambridge Banbury Letchworth Oxford London Giovanni A. Cignoni – Progetto HMR 4/28 Bletchley Park, 1942ca Giovanni A. Cignoni – Progetto HMR 5/28 Nel film, ci somiglia... Giovanni A. Cignoni – Progetto HMR 6/28 … ma non è Giovanni A. Cignoni – Progetto HMR 7/28 Il nume tutelare • 1941.10.21: Action this day! • In un momento di successo • Dopo una visita di Churchill • Le Bombe ci sono, mancano persone • Garanzie per i tecnici BTM • Personale per la catena • Intercettazione in grande • Risorse per una pesca industriale • Un po’ come “Echelon” Giovanni A. Cignoni – Progetto HMR 8/28 Il personale • Una grande industria • Da 9000 a 10000 persone, centinaia di macchine • Piuttosto stabile, circa 12000 nomi • Escluso l’indotto, fornitori e logistica • Reclutamento • Inizialmente diretto, da persona a persona • Poi attraverso controlli e selezioni metodiche • Soprattutto nell’ambito delle leve militari • Ma con un occhio anche ai civili Giovanni A. -
Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms”
“Alan Turing Centenary Year - India Celebrations” 3-Day Faculty Development Program on “Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms” Organized by Foundation for Advancement of Education and Research In association with Computer Society of India - Division II [Software] NASSCOM, IFIP TC - 1 & TC -2, ACM India Council Co-sponsored by P.E.S Institute of Technology Venue PES Institute of Technology, Hoskerehalli, Bangalore Date : 18 - 20 December 2012 Compiled by : Prof. K. Rajanikanth Trustee, FAER “Alan Turing Centenary Year - India Celebrations” 3-Day Faculty Development Program on “Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms” Organized by Foundation for Advancement of Education and Research In association with Computer Society of India - Division II [Software], NASSCOM, IFIP TC - 1 & TC -2, ACM India Council Co-sponsored by P.E.S Institute of Technology December 18 – 20, 2012 Compiled by : Prof. K. Rajanikanth Trustee, FAER Foundation for Advancement of Education and Research G5, Swiss Complex, 33, Race Course Road, Bangalore - 560001 E-mail: [email protected] Website: www.faer.ac.in PREFACE Alan Mathison Turing was born on June 23rd 1912 in Paddington, London. Alan Turing was a brilliant original thinker. He made original and lasting contributions to several fields, from theoretical computer science to artificial intelligence, cryptography, biology, philosophy etc. He is generally considered as the father of theoretical computer science and artificial intelligence. His brilliant career came to a tragic and untimely end in June 1954. In 1945 Turing was awarded the O.B.E. for his vital contribution to the war effort. In 1951 Turing was elected a Fellow of the Royal Society. -
Colossus: the Missing Manual
Colossus: The Missing Manual Mark Priestley Research Fellow, The National Museum of Computing — Bletchley Park, UK Thomas Haigh University of Wisconsin—Milwaukee & Siegen University 1 serialized ciper text English Cipher text of one message plain text 1 0 0 1 1 (5 channel tape) 0 1 0 1 0 0 1 0 0 0 They were already 1 0 1 1 0 1 0 0 1 0 looking at him as approached in the distance, because he just stood out. He had quite an old face, 01101 11101 01011 0010 Knockolt Newmanry Newmanry Testery Testery Hut 3 Outstation Set Chi Wheels Generate Set Psi & Decrypt Translate Intercept, & Verify Counts “dechi” Motor Wheels Message Message Record & Verify Message (Colossus) (Tunny analog (Hand methods) (Tunny analog (Bilingual machine) machine) humans) dechi 1 0 0 1 1 0 27, 12, 30, 43, 8 Chi wheel 0 1 0 1 0 1 Psi & 55, 22 Sie sahen ihn schon 0 1 0 0 0 von weitem auf sich start posns. 1 0 1 1 0 1 0 0 1 0 motor start posns. zukommen, denn er for msg el auf. Er hatte ein 31, 3, 25, 18, 5 ganz altes Gesicht, aber wie er ging, German 1 0 0 1 1 0 0 1 0 1 0 1 0110001010... plain text 0 1 0 0 0 Newmanry 1 0 1 1 0 0011010100... 1 0 0 1 0 10011001001... 01100010110... 1 0 0 1 1 0 Break Chi 01011001101... 0 1 0 1 0 1 0110001010... 0 1 0 0 0 Wheels 1 0 1 1 0 Chi wheel 0011010100.. -
Semantics and Syntax a Legacy of Alan Turing Scientific Report
Semantics and Syntax A Legacy of Alan Turing Scientific Report Arnold Beckmann (Swansea) S. Barry Cooper (Leeds) Benedikt L¨owe (Amsterdam) Elvira Mayordomo (Zaragoza) Nigel P. Smart (Bristol) 1 Basic theme and background information Why was the programme organised on this particular topic? The programme Semantics and Syn- tax was one of the central activities of the Alan Turing Year 2012 (ATY). The ATY was the world-wide celebration of the life and work of the exceptional scientist Alan Mathison Turing (1912{1954) with a particu- lar focus on the places where Turing has worked during his life: Cambridge, Bletchley Park, and Manchester. The research programme Semantics and Syntax took place during the first six months of the ATY in Cam- bridge, included Turing's 100th birthday on 23 June 1912 at King's College, and combined the character of an intensive high-level research semester with outgoing activities as part of the centenary celebrations. The programme had xx visiting fellows, xx programme participants, and xx workshop participants, many of which were leaders of their respective fields. Alan Turing's work was too broad for a coherent research programme, and so we focused on only some of the areas influenced by this remarkable scientists: logic, complexity theory and cryptography. This selection was motivated by a common phenomenon of a divide in these fields between aspects coming from logical considerations (called Syntax in the title of the programme) and those coming from structural, mathematical or algorithmic considerations (called Semantics in the title of the programme). As argued in the original proposal, these instances of the syntax-semantics divide are a major obstacle for progress in our fields, and the programme aimed at bridging this divide. -
Code Breaking at Bletchley Park
Middle School Scholars’ CONTENTS Newsletter A Short History of Bletchley Park by Alex Lent Term 2020 Mapplebeck… p2-3 Alan Turing: A Profile by Sam Ramsey… Code Breaking at p4-6 Bletchley Park’s Role in World War II by Bletchley Park Harry Martin… p6-8 Review: Bletchley Park Museum by Joseph Conway… p9-10 The Women of Bletchley Park by Sammy Jarvis… p10-12 Bill Tutte: The Unsung Codebreaker by Archie Leishman… p12-14 A Very Short Introduction to Bletchley Park by Sam Corbett… p15-16 The Impact of Bletchley Park on Today’s World by Toby Pinnington… p17-18 Introduction A Beginner’s Guide to the Bombe by Luca “A gifted and distinguished boy, whose future Zurek… p19-21 career we shall watch with much interest.” This was the parting remark of Alan Turing’s Headmaster in his last school report. Little The German Equivalent of Bletchley could he have known what Turing would go on Park by Rupert Matthews… 21-22 to achieve alongside the other talented codebreakers of World War II at Bletchley Park. Covering Up Bletchley Park: Operation Our trip with the third year academic scholars Boniface by Philip Kimber… p23-25 this term explored the central role this site near Milton Keynes played in winning a war. 1 intercept stations. During the war, Bletchley A Short History of Bletchley Park Park had many cover names, which included by Alex Mapplebeck “B.P.”, “Station X” and the “Government Communications Headquarters”. The first mention of Bletchley Park in records is in the Domesday Book, where it is part of the Manor of Eaton. -
MTAT.07.006 Research Seminar in Cryptography the Enigma Cipher Machine
MTAT.07.006 Research Seminar in Cryptography The Enigma Cipher Machine Kadri Hendla November 28, 2005 Abstract 3.1 The Rotors The aim of this survey is to give a brief overview on Rotors are the most important part of an Enigma Enigma cipher machine and its cryptanalysis before machine. A rotor is a disc about 10 cm in diameter and during the Second World War. The survey is and it’s usually made of hard rubber or bakelite. mostly based on the articles [1] and [7] on Enigma On one face are 26 brass pins forming a circle; on from Wikipedia. the other side are corresponding electrical contacts. Each pin represents a letter in the alphabet. Inside the rotor are 26 wires connecting the pins on one 1 Introduction side to the contacts on the other side; the wiring is different for each rotor. The rotor also has a finger Enigma is a portable cipher machine, famous for wheel for turning the rotor by hand and an alpha- the role it played in World War II. The breaking of bet ring, so the operator can see the rotor position. Enigma codes is considered to be one of the reasons In the earlier versions of Enigma the alphabet ring for the Allies victory. was fixed; the later versions allowed adjusting the alphabet ring relative to the core wiring. This po- sition of the ring is known as the ring settings. The 2 History of Enigma rotors are placed in the machine side by side, which causes the pins and contacts of the neighbouring In 1918 German engineer Arthur Scherbius applied rotors to form an electrical connection. -
A Note on His Role As World War Ii Cryptanalyst
Internatiuonal Journal ofApplied Engineering and Technology ISSN: 2277-212X (Online) An Online International Journal Available at http://www.cibtech.org/jet.htm 2013 Vol. 3 (1) January-March, pp.21-26/Afreen Historical Note ALAN TURING: A NOTE ON HIS ROLE AS WORLD WAR II CRYPTANALYST *Rahat Afreen *Department of MCA, Millenium Institute of Management, Dr. RafiqZakariaCampus,Aurangabad, Maharashtra *Author for Correspondence ABSTRACT Alan Mathison Turing is well known to the world of computer for the concept of Turing Machine- A conceptual machine presented by him which proves that automatic computation cannot solve all mathematical problems – also called as Halting Problem of Turing Machine. He was attributed as the founder of Computer Science. But, until late 20th century, his contributions in the field of Number Theory, Cryptography, Artificial Intelligence and more importantly how his ideas protected England in the times of world war II were unknown. Key Words: Alan Turing, Enigma, Bombe, Colossus, Tunny, ACE INTRODUCTION Alan Turing was born on 23rd June 1912 in Paddington, London. His father Julius Mathison Turing worked for Indian Civil Services at Orrisa for British government in India. But he and his wife decided to keep their children back in England for education. He got his education from Sherbrone School, Sherbrone and did his higher education from King‟s College Cambridge where he later became a fellow. He had an interest in the field of mathematics and presented numerous papers on famous problems of mathematics. At the age of 24 Turing wrote a paper entitled “On Computable Numbers, with an Application to the Entscheidungs problem”. -
The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus the Secrets of Enigma
The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus The Secrets of Enigma B. Jack Copeland, Editor OXFORD UNIVERSITY PRESS The Essential Turing Alan M. Turing The Essential Turing Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma Edited by B. Jack Copeland CLARENDON PRESS OXFORD Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Taipei Toronto Shanghai With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan South Korea Poland Portugal Singapore Switzerland Thailand Turkey Ukraine Vietnam Published in the United States by Oxford University Press Inc., New York © In this volume the Estate of Alan Turing 2004 Supplementary Material © the several contributors 2004 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2004 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above. -
Alan M. Turing 23.Juni 1912 – 7.Juni 1954
Alan M. Turing 23.juni 1912 – 7.juni 1954 Denne lista inneholder oversikt over bøker og DVD-er relatert til Alan M.Turings liv og virke. De fleste dokumentene er til utlån i Informa- tikkbiblioteket. Biblioteket har mange bøker om Turingmaskiner og be- regnbarhet, sjekk hylla på F.0 og F.1.*. Litteratur om Kryptografi finner du på E.3.0 og om Kunstig intelligens på I.2.0. Du kan også bruke de uthevete ordene som søkeord i BIBSYS: http://app.uio.no/ub/emnesok/?id=ureal URL-ene i lista kan brukes for å sjekke dokumentets utlånsstatus i BIBSYS eller bestille og reservere. Du må ha en pdf-leser som takler lenker. Den kryptiske opplysningen i parentes på linja før URL viser plas- sering på hylla i Informatikkbiblioteket (eller bestillingsstatus). Normalt vil bøkene i denne lista være plassert på noen hyller nær utstillingsmon- teren, så lenge Turing-utstillingen er oppstilt. Bøkene kan lånes derfra på normalt vis. [1] Jon Agar. Turing and the universal machine: the making of the modern computer. Icon, Cambridge, 2001. (K.2.0 AGA) http://ask.bibsys.no/ask/action/show?pid=010911804&kid=biblio. [2] H. Peter Alesso and C.F. Smith. Thinking on the Web: Berners-Lee, Gödel, and Turing. John Wiley & Sons, Hoboken, N.J., 2006. (I.2.4 Ale) http://ask.bibsys.no/ask/action/show?pid=08079954x&kid=biblio. [3] Michael Apter. Enigma. Basert på: Enigma av Robert Harris. Teks- tet på norsk, svensk, dansk, finsk, engelsk. In this twisty thriller about Britain’s secret code breakers during World War II, Tom Je- richo devised the means to break the Nazi Enigma code (DVD) http://ask.bibsys.no/ask/action/show?pid=082617570&kid=biblio. -
Simply Turing
Simply Turing Simply Turing MICHAEL OLINICK SIMPLY CHARLY NEW YORK Copyright © 2020 by Michael Olinick Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-37-7 Brought to you by http://simplycharly.com Contents Praise for Simply Turing vii Other Great Lives x Series Editor's Foreword xi Preface xii Acknowledgements xv 1. Roots and Childhood 1 2. Sherborne and Christopher Morcom 7 3. Cambridge Days 15 4. Birth of the Computer 25 5. Princeton 38 6. Cryptology From Caesar to Turing 44 7. The Enigma Machine 68 8. War Years 85 9. London and the ACE 104 10. Manchester 119 11. Artificial Intelligence 123 12. Mathematical Biology 136 13. Regina vs Turing 146 14. Breaking The Enigma of Death 162 15. Turing’s Legacy 174 Sources 181 Suggested Reading 182 About the Author 185 A Word from the Publisher 186 Praise for Simply Turing “Simply Turing explores the nooks and crannies of Alan Turing’s multifarious life and interests, illuminating with skill and grace the complexities of Turing’s personality and the long-reaching implications of his work.” —Charles Petzold, author of The Annotated Turing: A Guided Tour through Alan Turing’s Historic Paper on Computability and the Turing Machine “Michael Olinick has written a remarkably fresh, detailed study of Turing’s achievements and personal issues. -
Agnes Meyer Driscoll Vs. the Enigma and the Bombe Colin Burke
Colin Burke 1-2001 © Agnes Meyer Driscoll vs. the Enigma and the Bombe Colin Burke ABSTRACT: Documents in Britain‘s National Archives/ Public Record Office and in the U.S. National Archive‘s Record Groups RG457 and RG38 indicate that in mid-1941 the United States Navy‘s codebreaking organization, OP-20-G ignored an opportunity to gain full knowledge of Britain‘s anti-Enigma methods and machines. Spending a year and one-half working on what it felt was a unique and much more effective method– but one that failed--OP-20-G‘s, staff, at a critical time in U.S.- British relations ,did not inform America‘s decision makers of Britain‘s willingness to share its crypto-secrets . As a result, American leaders believed that England‘s GC&CS had deliberately withheld vital information that would have allowed the development of an independent American attack on Naval Enigma. That belief lasted Colin Burke 1-2001 © throughout the war and caused friction between the two nations. Other consequences of OP-20-G‘s mid-1941 decision were to delay the adoption of the British Bombe and its allied methods and to waste perhaps six months of the vital time of the new team of cryptanalysts and engineers assigned, in early 1942, to develop an American Bombe. KEYWORDS: OP-20-G, Enigma, Driscoll, Denniston, GC&CS, Bombe, Safford, Wenger, Weeks, Currier, Engstrom, catalog, Banburismus, hot-point, cold-point, Tiltman. Introduction: A Fragile British-American Crypto-Alliance By the end of World War II Great Britain and the United States had forged uniquely close relationships--even among their intelligence agencies.1 Much had to be overcome to achieve the long-lasting 1 Robert Louis Benson, A History of U.S. -
Lesson Plan Alan Turing
Lesson Plan Alan Turing Plaque marking Alan Turing's former home in Wilmslow, Cheshire Grade Level(s): 9-12 Subject(s): Physics, History, Computation In-Class Time: 60 min Prep Time: 10 min Materials • Either computers or printed copies of the CIA’s cypher games • Prize for the winner of the Code War Game • Discussion Sheets Objective In this lesson students will learn about the life and legacy of Alan Turing, father of the modern-day computer. Introduction Alan Turing was born on June 23,1912 in Paddington, London. At age 13, he attended boarding school at Sherbon School. Here he excelled in math and science. He paid little attention to liberal arts classes to the frustration of his teachers. After Sherbon, Turing went on to study at King’s College in Cambridge. Here Turing produced an elegant solution to the Entscheidungsproblem (Decision problem) for universal machines. At this time, Alonzo Church also published a paper solving the problem, which led to their collaboration and the development of the Church-Turing Thesis, and the idea of Turing machines, which by theory can compute anything that is computable. Prepared by the Center for the History of Physics at AIP 1 During WWII Turing worked as a cryptanalysist breaking cyphers for the Allies at Blectchy Park. It was here that Turing built his “Bombe”, a machine that could quickly break any German cipher by running through hundreds of options per second. Turing’s machine and team were so quick at breaking these codes the German army was convinced they had a British spy in their ranks.