WWII Innovations - Codebreaking, Radar, Espionage, New Bombs, and More

Total Page:16

File Type:pdf, Size:1020Kb

WWII Innovations - Codebreaking, Radar, Espionage, New Bombs, and More Part 6: WWII Innovation​ s - Codebreaking, Radar, Espionage, New Bombs, and More. Part 7: WWII Innovations - Codebreaking, Radar, Espionage, New Bombs, and More. ​ ​ Objective: How new innovations impacted the war, people in the war, and people after the war. Assessment Goals: ​ 1. Research and understand at least three of the innovations of WWII that made a difference on the war and after the war. (Learning Target 3) ​ 2. Determine whether you think dropping the atomic bombs on Hiroshima and Nagasaki was a wise decision or not. (Learning Target 2) ​ Resources: Resources in Binder (Video links, websites, and articles) ​ ​ Note Graph (Create something similar in your notes): Use this graph for researching innovations: Innovation #1: ______________________ Innovation #2: ______________________ Innovation #3: ______________________ (Specific notes about impact on war and after) (Specific notes about impact on war and after) (Specific notes about impact on war and after) Use the graph on the next page to organize your research about the atomic bomb. Evidence that dropping the bombs was wise: Evidence that dropping the bombs was not wise: (Include quotes, document citations, and (Include quotes, document citations, and statistics) statistics) ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● My position: My overall thoughts about the choice to drop the bombs: If I were a Japanese civilian, what would I have wanted to happen and why? If I were a U.S. soldier, what would I have wanted to happen and why? Resources: Part 7 - WW2 Innovations - Codebreaking, Radar, Espionage, New Bombs, and More. Links: ● https://www.youtube.com/watch?v=9hAzmh6XSr8 World War II Code Breaking Video Part 1 (There are more available on YouTube) ● https://www.youtube.com/watch?v=8M7q44gVHIE Documentary about FDR and Espionage during WW2 ● https://www.youtube.com/watch?v=27AFh4aIBis Video highlighting types of technology used in WW2 to give ideas for further research ● https://www.youtube.com/watch?v=4IqKdf6In_k Video about Manhattan Project, The Science ● https://www.youtube.com/watch?v=8kFr5zTxsUM Documentary about the Manhattan Project ● http://www.historynet.com/world-war-ii-navajo-code-talkers.htm Interview with Navajo Code Talker Chester Nez ● http://www.bbc.co.uk/history/code_breaking/ More information about:Code breaking ​ Cryptography was used extensively during World War II, with a plethora of code and cipher systems fielded by the nations involved. In addition, the theoretical and practical aspects of cryptanalysis, or codebreaking, was much advanced. Probably the most important codebreaking event of the war was the successful decryption by the Allies of the German "Enigma" Cipher. The first complete break into Enigma was accomplished by Poland around 1932; the techniques and insights used were passed to the French and British Allies just before the outbreak of the War in 1939. They were substantially improved by British efforts at the Bletchley Park research station during the War. Decryption of the Enigma Cipher allowed the Allies to read important parts of German radio traffic on important networks and was an invaluable source of military intelligence throughout the War. Intelligence from this source (and other high level sources, including the Fish ciphers) was eventually called Ultra. A similar break into an important Japanese cipher (PURPLE) by the US Army Signals Intelligence Service started before the US entered the War. Product from this source was called MAGIC. It was the highest security Japanese diplomatic cipher. World War II: Navajo Code Talkers http://www.historynet.com/world-war-ii-navajo-code-talkers.htm As 1942 dawned, World War II was not going well for America and her Allies. Japanese carrier-borne bombers and fighters had crippled the U.S. Navy’s proud Pacific Fleet at Pearl Harbor on December 7, 1941; attacked American bases in the Philippines and on Guam; and were intent on seizing other island bases in the south and central Pacific. In Europe, France had fallen to Germany’s blitzkrieg, and stalwart Britain was still staggering from the Nazis’ relentless nighttime ​ ​ bombing during the previous year. Half a world away, two great British ships — the battleship Prince of Wales and battle cruiser Repulse — and members of ​ ​ ​ ​ their crews lay at the bottom of the sea off the coast of Malaya, unfortunate victims of Japanese bombing attacks on December 10, 1941. Meanwhile, Germany’s armies continued to advance methodically into the Soviet Union, while Hitler’s submarines wreaked havoc on supply convoys outbound to Russian ports from the United States. For the U.S. Armed Forces, communications, which had always been a complex issue, had now become a bewildering problem. Japanese cryptographers were proving themselves amazingly adept at breaking top secret military codes almost as rapidly as newer, more complicated procedures could be devised. Many of the Japanese code breakers had been educated in the United States where they had learned to speak English and had become familiar with American colloquialisms, including slang terms and profanity. As a result, American battle plans became known to the enemy almost immediately, often before they had become operational, and there appeared to be no immediate workable solution. The result was an appalling loss of American lives. One war analyst commented, ‘Military communications were made available to the enemy like sand sifting through a sieve.’ Some months before, Philip Johnston, a middle-aged civil engineer who lived in Los Angeles, read a newspaper article on military security. During World War I, he had served with U.S. forces in France, and although too old to fight in World War II, Johnston wanted to aid the current war effort in some way. From the age of four, he had lived on the Navajo Indian Reservation, where his parents were Protestant missionaries, and had consequently grown up speaking the Navajo tongue with his playmates. Now, as he read, the concept of a secret military code based on the Navajo language flashed across his mind. In February 1942, after formulating his idea, Johnston traveled south to Camp Elliott near San Diego, where he tried to convince Lieutenant Colonel James E. Jones, the Marines’ Signal Corps Communications Officer, that a code based on the Navajo language could not be broken by the enemy. Jones, after listening intently to Johnston’s idea, responded: ‘In all the history of warfare, that has never been done. No code, no cipher is completely secure from enemy interception. We change our codes frequently for this reason.’ But Johnston’s graphic presentation proved so convincing that the two men agreed to set up a test. Johnston’s confidence in his theory lay in the fact that the Navajo language includes a number of words that, when spoken with varying inflections, may have as many as four totally different meanings. Navajo verb forms are especially complex. To most listeners, the language is virtually incomprehensible and has been variously likened to the rumble of a moving freight train, the gurgling noises of a partially blocked sink drain, or, jokingly, the resonant thunder of an old-fashioned commode being flushed. As a result, use of the Navajo tongue was confined almost entirely to the reservation; few non-Navajos spoke or understood it. And it was a ‘hidden language,’ there not yet being an alphabet or written form for others to study. Returning to Los Angeles, Johnston spent nearly two weeks seeking bilingual Navajos from among that city’s population. On February 28, 1942, he returned to Camp Elliott with four Indians in order to prove their linguistic capability before a group of skeptical Marine staff officers. Sent in pairs to separate rooms, the first two Navajos were given a typical military field order to transmit in their own language to the others several doors away. When retranslated back into English, the message received by the second pair proved to be an accurate copy of the order as it was given. The Marines were amazed at the speed and accuracy of the interpretation, and the presentation was pronounced a complete success. Major General Clayton Vogel, Camp Elliott’s commanding officer, composed an urgent letter — supported by another from Johnston — describing the demonstration to the Marine Corps commandant in Washington, D.C., and urging the immediate recruitment of two hundred young, well-educated Navajos to serve as Marine communications specialists. After an agonizing delay, General Vogel was authorized by Washington to recruit just thirty Navajos for training in a trial project. The commandant of the Marine Corps, unwilling to risk turning over such a vital element of the war effort to a civilian and two hundred Navajo Indians, reasoned that if a program using the thirty men did not work out, the Marines would not have expended too much time and effort. By mid-April, Marine recruiting personnel appeared on the Navajo Reservation. They proceeded to enlist thirty volunteers from agency schools at Fort Wingate and Shiprock, New Mexico, and Fort Defiance, Arizona. In addition to being fluent in both the Navajo tongue and English, each enlistee had to be physically fit in order to serve as a messenger in combat. The Navajos were told only that they would be’specialists’ and would serve both in the United States and overseas. Some members of the group were underage, but as birth records were not usually kept on the reservation, it was easy for a recruit to lie or be mistaken about his age. Carl Gorman, a 36-year-old Navajo from Fort Defiance, was too old to be considered by the Marines, so he lied about his age in order to be accepted. For almost all of the Navajos, travel was a brand new experience. Some had never been off the reservation, and many had never ridden on a bus or train. The majority of them had never seen an ocean and did not realize that they would soon be a part of the ferocious war being fought in the middle of the Pacific.
Recommended publications
  • The Imagination Game Storia E Fantasia in the Imitation Game
    The Imagination Game storia e fantasia in The Imitation Game Cap. 2: Bletchley Park e Ultra Giovanni A. Cignoni – Progetto HMR 1/28 Bletchley Park e Ultra • Un’organizzazione poderosa • Bletchley Park • I luoghi, le strutture, le procedure • I meccanismi e gli appoggi • Il personale, le (tante) donne di BP • Ultra • Cos’era, come era nascosto • L’impatto sul conflitto, episodi e numeri Giovanni A. Cignoni – Progetto HMR 2/28 A lezione dai Polacchi • 1919, Biuro Szyfrów • Militari, Kowalewski, e matematici, Mazurkiewicz, Sierpiński, Leśniewski • Nel 1938 il 75% dei messaggi tedeschi intercettati era decifrato (Rejewski, Zygalski, Różycki) • Dopo il ’39 PC Bruno, Cadix, Boxmoor • In Inghilterra • Room40 (1914), GC&CS (1919), BP (1938) • Parigi (gennaio ’39), con Francesi e Polacchi • Pyry vicino Varsavia (luglio ’39) Giovanni A. Cignoni – Progetto HMR 3/28 Un posto strategico Bletchley Park - Gayhurst - Wavendon - Stanmore - Eastcote - Adstock Cambridge Banbury Letchworth Oxford London Giovanni A. Cignoni – Progetto HMR 4/28 Bletchley Park, 1942ca Giovanni A. Cignoni – Progetto HMR 5/28 Nel film, ci somiglia... Giovanni A. Cignoni – Progetto HMR 6/28 … ma non è Giovanni A. Cignoni – Progetto HMR 7/28 Il nume tutelare • 1941.10.21: Action this day! • In un momento di successo • Dopo una visita di Churchill • Le Bombe ci sono, mancano persone • Garanzie per i tecnici BTM • Personale per la catena • Intercettazione in grande • Risorse per una pesca industriale • Un po’ come “Echelon” Giovanni A. Cignoni – Progetto HMR 8/28 Il personale • Una grande industria • Da 9000 a 10000 persone, centinaia di macchine • Piuttosto stabile, circa 12000 nomi • Escluso l’indotto, fornitori e logistica • Reclutamento • Inizialmente diretto, da persona a persona • Poi attraverso controlli e selezioni metodiche • Soprattutto nell’ambito delle leve militari • Ma con un occhio anche ai civili Giovanni A.
    [Show full text]
  • Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms”
    “Alan Turing Centenary Year - India Celebrations” 3-Day Faculty Development Program on “Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms” Organized by Foundation for Advancement of Education and Research In association with Computer Society of India - Division II [Software] NASSCOM, IFIP TC - 1 & TC -2, ACM India Council Co-sponsored by P.E.S Institute of Technology Venue PES Institute of Technology, Hoskerehalli, Bangalore Date : 18 - 20 December 2012 Compiled by : Prof. K. Rajanikanth Trustee, FAER “Alan Turing Centenary Year - India Celebrations” 3-Day Faculty Development Program on “Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms” Organized by Foundation for Advancement of Education and Research In association with Computer Society of India - Division II [Software], NASSCOM, IFIP TC - 1 & TC -2, ACM India Council Co-sponsored by P.E.S Institute of Technology December 18 – 20, 2012 Compiled by : Prof. K. Rajanikanth Trustee, FAER Foundation for Advancement of Education and Research G5, Swiss Complex, 33, Race Course Road, Bangalore - 560001 E-mail: [email protected] Website: www.faer.ac.in PREFACE Alan Mathison Turing was born on June 23rd 1912 in Paddington, London. Alan Turing was a brilliant original thinker. He made original and lasting contributions to several fields, from theoretical computer science to artificial intelligence, cryptography, biology, philosophy etc. He is generally considered as the father of theoretical computer science and artificial intelligence. His brilliant career came to a tragic and untimely end in June 1954. In 1945 Turing was awarded the O.B.E. for his vital contribution to the war effort. In 1951 Turing was elected a Fellow of the Royal Society.
    [Show full text]
  • Colossus: the Missing Manual
    Colossus: The Missing Manual Mark Priestley Research Fellow, The National Museum of Computing — Bletchley Park, UK Thomas Haigh University of Wisconsin—Milwaukee & Siegen University 1 serialized ciper text English Cipher text of one message plain text 1 0 0 1 1 (5 channel tape) 0 1 0 1 0 0 1 0 0 0 They were already 1 0 1 1 0 1 0 0 1 0 looking at him as approached in the distance, because he just stood out. He had quite an old face, 01101 11101 01011 0010 Knockolt Newmanry Newmanry Testery Testery Hut 3 Outstation Set Chi Wheels Generate Set Psi & Decrypt Translate Intercept, & Verify Counts “dechi” Motor Wheels Message Message Record & Verify Message (Colossus) (Tunny analog (Hand methods) (Tunny analog (Bilingual machine) machine) humans) dechi 1 0 0 1 1 0 27, 12, 30, 43, 8 Chi wheel 0 1 0 1 0 1 Psi & 55, 22 Sie sahen ihn schon 0 1 0 0 0 von weitem auf sich start posns. 1 0 1 1 0 1 0 0 1 0 motor start posns. zukommen, denn er for msg el auf. Er hatte ein 31, 3, 25, 18, 5 ganz altes Gesicht, aber wie er ging, German 1 0 0 1 1 0 0 1 0 1 0 1 0110001010... plain text 0 1 0 0 0 Newmanry 1 0 1 1 0 0011010100... 1 0 0 1 0 10011001001... 01100010110... 1 0 0 1 1 0 Break Chi 01011001101... 0 1 0 1 0 1 0110001010... 0 1 0 0 0 Wheels 1 0 1 1 0 Chi wheel 0011010100..
    [Show full text]
  • Semantics and Syntax a Legacy of Alan Turing Scientific Report
    Semantics and Syntax A Legacy of Alan Turing Scientific Report Arnold Beckmann (Swansea) S. Barry Cooper (Leeds) Benedikt L¨owe (Amsterdam) Elvira Mayordomo (Zaragoza) Nigel P. Smart (Bristol) 1 Basic theme and background information Why was the programme organised on this particular topic? The programme Semantics and Syn- tax was one of the central activities of the Alan Turing Year 2012 (ATY). The ATY was the world-wide celebration of the life and work of the exceptional scientist Alan Mathison Turing (1912{1954) with a particu- lar focus on the places where Turing has worked during his life: Cambridge, Bletchley Park, and Manchester. The research programme Semantics and Syntax took place during the first six months of the ATY in Cam- bridge, included Turing's 100th birthday on 23 June 1912 at King's College, and combined the character of an intensive high-level research semester with outgoing activities as part of the centenary celebrations. The programme had xx visiting fellows, xx programme participants, and xx workshop participants, many of which were leaders of their respective fields. Alan Turing's work was too broad for a coherent research programme, and so we focused on only some of the areas influenced by this remarkable scientists: logic, complexity theory and cryptography. This selection was motivated by a common phenomenon of a divide in these fields between aspects coming from logical considerations (called Syntax in the title of the programme) and those coming from structural, mathematical or algorithmic considerations (called Semantics in the title of the programme). As argued in the original proposal, these instances of the syntax-semantics divide are a major obstacle for progress in our fields, and the programme aimed at bridging this divide.
    [Show full text]
  • Code Breaking at Bletchley Park
    Middle School Scholars’ CONTENTS Newsletter A Short History of Bletchley Park by Alex ​ Lent Term 2020 Mapplebeck… p2-3 Alan Turing: A Profile by Sam Ramsey… ​ Code Breaking at p4-6 Bletchley Park’s Role in World War II by ​ Bletchley Park Harry Martin… p6-8 Review: Bletchley Park Museum by ​ Joseph Conway… p9-10 The Women of Bletchley Park by Sammy ​ Jarvis… p10-12 Bill Tutte: The Unsung Codebreaker by ​ Archie Leishman… p12-14 A Very Short Introduction to Bletchley Park by Sam Corbett… p15-16 ​ The Impact of Bletchley Park on Today’s World by Toby Pinnington… p17-18 ​ Introduction A Beginner’s Guide to the Bombe by Luca ​ “A gifted and distinguished boy, whose future Zurek… p19-21 career we shall watch with much interest.” This was the parting remark of Alan Turing’s Headmaster in his last school report. Little The German Equivalent of Bletchley could he have known what Turing would go on Park by Rupert Matthews… 21-22 ​ to achieve alongside the other talented codebreakers of World War II at Bletchley Park. Covering Up Bletchley Park: Operation Our trip with the third year academic scholars Boniface by Philip Kimber… p23-25 this term explored the central role this site ​ near Milton Keynes played in winning a war. 1 intercept stations. During the war, Bletchley A Short History of Bletchley Park Park had many cover names, which included by Alex Mapplebeck “B.P.”, “Station X” and the “Government Communications Headquarters”. The first mention of Bletchley Park in records is in the Domesday Book, where it is part of the Manor of Eaton.
    [Show full text]
  • MTAT.07.006 Research Seminar in Cryptography the Enigma Cipher Machine
    MTAT.07.006 Research Seminar in Cryptography The Enigma Cipher Machine Kadri Hendla November 28, 2005 Abstract 3.1 The Rotors The aim of this survey is to give a brief overview on Rotors are the most important part of an Enigma Enigma cipher machine and its cryptanalysis before machine. A rotor is a disc about 10 cm in diameter and during the Second World War. The survey is and it’s usually made of hard rubber or bakelite. mostly based on the articles [1] and [7] on Enigma On one face are 26 brass pins forming a circle; on from Wikipedia. the other side are corresponding electrical contacts. Each pin represents a letter in the alphabet. Inside the rotor are 26 wires connecting the pins on one 1 Introduction side to the contacts on the other side; the wiring is different for each rotor. The rotor also has a finger Enigma is a portable cipher machine, famous for wheel for turning the rotor by hand and an alpha- the role it played in World War II. The breaking of bet ring, so the operator can see the rotor position. Enigma codes is considered to be one of the reasons In the earlier versions of Enigma the alphabet ring for the Allies victory. was fixed; the later versions allowed adjusting the alphabet ring relative to the core wiring. This po- sition of the ring is known as the ring settings. The 2 History of Enigma rotors are placed in the machine side by side, which causes the pins and contacts of the neighbouring In 1918 German engineer Arthur Scherbius applied rotors to form an electrical connection.
    [Show full text]
  • A Note on His Role As World War Ii Cryptanalyst
    Internatiuonal Journal ofApplied Engineering and Technology ISSN: 2277-212X (Online) An Online International Journal Available at http://www.cibtech.org/jet.htm 2013 Vol. 3 (1) January-March, pp.21-26/Afreen Historical Note ALAN TURING: A NOTE ON HIS ROLE AS WORLD WAR II CRYPTANALYST *Rahat Afreen *Department of MCA, Millenium Institute of Management, Dr. RafiqZakariaCampus,Aurangabad, Maharashtra *Author for Correspondence ABSTRACT Alan Mathison Turing is well known to the world of computer for the concept of Turing Machine- A conceptual machine presented by him which proves that automatic computation cannot solve all mathematical problems – also called as Halting Problem of Turing Machine. He was attributed as the founder of Computer Science. But, until late 20th century, his contributions in the field of Number Theory, Cryptography, Artificial Intelligence and more importantly how his ideas protected England in the times of world war II were unknown. Key Words: Alan Turing, Enigma, Bombe, Colossus, Tunny, ACE INTRODUCTION Alan Turing was born on 23rd June 1912 in Paddington, London. His father Julius Mathison Turing worked for Indian Civil Services at Orrisa for British government in India. But he and his wife decided to keep their children back in England for education. He got his education from Sherbrone School, Sherbrone and did his higher education from King‟s College Cambridge where he later became a fellow. He had an interest in the field of mathematics and presented numerous papers on famous problems of mathematics. At the age of 24 Turing wrote a paper entitled “On Computable Numbers, with an Application to the Entscheidungs problem”.
    [Show full text]
  • The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus the Secrets of Enigma
    The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus The Secrets of Enigma B. Jack Copeland, Editor OXFORD UNIVERSITY PRESS The Essential Turing Alan M. Turing The Essential Turing Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma Edited by B. Jack Copeland CLARENDON PRESS OXFORD Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Taipei Toronto Shanghai With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan South Korea Poland Portugal Singapore Switzerland Thailand Turkey Ukraine Vietnam Published in the United States by Oxford University Press Inc., New York © In this volume the Estate of Alan Turing 2004 Supplementary Material © the several contributors 2004 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2004 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.
    [Show full text]
  • Alan M. Turing 23.Juni 1912 – 7.Juni 1954
    Alan M. Turing 23.juni 1912 – 7.juni 1954 Denne lista inneholder oversikt over bøker og DVD-er relatert til Alan M.Turings liv og virke. De fleste dokumentene er til utlån i Informa- tikkbiblioteket. Biblioteket har mange bøker om Turingmaskiner og be- regnbarhet, sjekk hylla på F.0 og F.1.*. Litteratur om Kryptografi finner du på E.3.0 og om Kunstig intelligens på I.2.0. Du kan også bruke de uthevete ordene som søkeord i BIBSYS: http://app.uio.no/ub/emnesok/?id=ureal URL-ene i lista kan brukes for å sjekke dokumentets utlånsstatus i BIBSYS eller bestille og reservere. Du må ha en pdf-leser som takler lenker. Den kryptiske opplysningen i parentes på linja før URL viser plas- sering på hylla i Informatikkbiblioteket (eller bestillingsstatus). Normalt vil bøkene i denne lista være plassert på noen hyller nær utstillingsmon- teren, så lenge Turing-utstillingen er oppstilt. Bøkene kan lånes derfra på normalt vis. [1] Jon Agar. Turing and the universal machine: the making of the modern computer. Icon, Cambridge, 2001. (K.2.0 AGA) http://ask.bibsys.no/ask/action/show?pid=010911804&kid=biblio. [2] H. Peter Alesso and C.F. Smith. Thinking on the Web: Berners-Lee, Gödel, and Turing. John Wiley & Sons, Hoboken, N.J., 2006. (I.2.4 Ale) http://ask.bibsys.no/ask/action/show?pid=08079954x&kid=biblio. [3] Michael Apter. Enigma. Basert på: Enigma av Robert Harris. Teks- tet på norsk, svensk, dansk, finsk, engelsk. In this twisty thriller about Britain’s secret code breakers during World War II, Tom Je- richo devised the means to break the Nazi Enigma code (DVD) http://ask.bibsys.no/ask/action/show?pid=082617570&kid=biblio.
    [Show full text]
  • Simply Turing
    Simply Turing Simply Turing MICHAEL OLINICK SIMPLY CHARLY NEW YORK Copyright © 2020 by Michael Olinick Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-37-7 Brought to you by http://simplycharly.com Contents Praise for Simply Turing vii Other Great Lives x Series Editor's Foreword xi Preface xii Acknowledgements xv 1. Roots and Childhood 1 2. Sherborne and Christopher Morcom 7 3. Cambridge Days 15 4. Birth of the Computer 25 5. Princeton 38 6. Cryptology From Caesar to Turing 44 7. The Enigma Machine 68 8. War Years 85 9. London and the ACE 104 10. Manchester 119 11. Artificial Intelligence 123 12. Mathematical Biology 136 13. Regina vs Turing 146 14. Breaking The Enigma of Death 162 15. Turing’s Legacy 174 Sources 181 Suggested Reading 182 About the Author 185 A Word from the Publisher 186 Praise for Simply Turing “Simply Turing explores the nooks and crannies of Alan Turing’s multifarious life and interests, illuminating with skill and grace the complexities of Turing’s personality and the long-reaching implications of his work.” —Charles Petzold, author of The Annotated Turing: A Guided Tour through Alan Turing’s Historic Paper on Computability and the Turing Machine “Michael Olinick has written a remarkably fresh, detailed study of Turing’s achievements and personal issues.
    [Show full text]
  • Agnes Meyer Driscoll Vs. the Enigma and the Bombe Colin Burke
    Colin Burke 1-2001 © Agnes Meyer Driscoll vs. the Enigma and the Bombe Colin Burke ABSTRACT: Documents in Britain‘s National Archives/ Public Record Office and in the U.S. National Archive‘s Record Groups RG457 and RG38 indicate that in mid-1941 the United States Navy‘s codebreaking organization, OP-20-G ignored an opportunity to gain full knowledge of Britain‘s anti-Enigma methods and machines. Spending a year and one-half working on what it felt was a unique and much more effective method– but one that failed--OP-20-G‘s, staff, at a critical time in U.S.- British relations ,did not inform America‘s decision makers of Britain‘s willingness to share its crypto-secrets . As a result, American leaders believed that England‘s GC&CS had deliberately withheld vital information that would have allowed the development of an independent American attack on Naval Enigma. That belief lasted Colin Burke 1-2001 © throughout the war and caused friction between the two nations. Other consequences of OP-20-G‘s mid-1941 decision were to delay the adoption of the British Bombe and its allied methods and to waste perhaps six months of the vital time of the new team of cryptanalysts and engineers assigned, in early 1942, to develop an American Bombe. KEYWORDS: OP-20-G, Enigma, Driscoll, Denniston, GC&CS, Bombe, Safford, Wenger, Weeks, Currier, Engstrom, catalog, Banburismus, hot-point, cold-point, Tiltman. Introduction: A Fragile British-American Crypto-Alliance By the end of World War II Great Britain and the United States had forged uniquely close relationships--even among their intelligence agencies.1 Much had to be overcome to achieve the long-lasting 1 Robert Louis Benson, A History of U.S.
    [Show full text]
  • Lesson Plan Alan Turing
    Lesson Plan Alan Turing Plaque marking Alan Turing's former home in Wilmslow, Cheshire Grade Level(s): 9-12 Subject(s): Physics, History, Computation In-Class Time: 60 min Prep Time: 10 min Materials • Either computers or printed copies of the CIA’s cypher games • Prize for the winner of the Code War Game • Discussion Sheets Objective In this lesson students will learn about the life and legacy of Alan Turing, father of the modern-day computer. Introduction Alan Turing was born on June 23,1912 in Paddington, London. At age 13, he attended boarding school at Sherbon School. Here he excelled in math and science. He paid little attention to liberal arts classes to the frustration of his teachers. After Sherbon, Turing went on to study at King’s College in Cambridge. Here Turing produced an elegant solution to the Entscheidungsproblem (Decision problem) for universal machines. At this time, Alonzo Church also published a paper solving the problem, which led to their collaboration and the development of the Church-Turing Thesis, and the idea of Turing machines, which by theory can compute anything that is computable. Prepared by the Center for the History of Physics at AIP 1 During WWII Turing worked as a cryptanalysist breaking cyphers for the Allies at Blectchy Park. It was here that Turing built his “Bombe”, a machine that could quickly break any German cipher by running through hundreds of options per second. Turing’s machine and team were so quick at breaking these codes the German army was convinced they had a British spy in their ranks.
    [Show full text]