Papers J Clin Pathol: First Published As 10.1136/Jcp.49.7.539 on 1 July 1996
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Costimulation of T-Cell Activation and Virus Production by B7 Antigen on Activated CD4+ T Cells from Human Immunodeficiency Virus Type 1-Infected Donors OMAR K
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11094-11098, December 1993 Immunology Costimulation of T-cell activation and virus production by B7 antigen on activated CD4+ T cells from human immunodeficiency virus type 1-infected donors OMAR K. HAFFAR, MOLLY D. SMITHGALL, JEFFREY BRADSHAW, BILL BRADY, NITIN K. DAMLE*, AND PETER S. LINSLEY Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121 Communicated by Leon E. Rosenberg, August 3, 1993 (receivedfor review April 29, 1993) ABSTRACT Infection with the human immunodeficiency sequence (CTLA-4) (34), a protein structurally related to virus type 1 (HIV-1) requires T-cefl activation. Recent studies CD28 but only expressed on T cells after activation (12). have shown that interactions of the T-lymphocyte receptors CTLA-4 acts cooperatively with CD28 to bind B7 and deliver CD28 and CTLA-4 with their counter receptor, B7, on antigen- T-cell costimulatory signals (13). presenting cells are required for optimal T-cell activation. Here Because of the importance of the CD28/CTLA-4 and B7 we show that HIV-1 infection is associated with decreased interactions in immune responses, it is likely that these expression of CD28 and increased expression of B7 on CD4+ interactions are also important during HIV-1 infection. Stud- T-cell lines generated from seropositive donors by afloantigen ies with anti-CD28 monoclonal antibodies (mAbs) suggested stimulation. Loss of CD28 expression was not seen on CD4+ a role for CD28 in up-regulating HIV-1 long terminal repeat- T-ceU lines from seronegative donors, but up-regulation of B7 driven transcription of a reporter gene in leukemic cell lines expression was observed upon more prolonged culture. -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
And Heterodimeric Interactions Between the Gene Products of PKD1 and PKD2 (Polycystic Kidney Disease͞yeast Two-Hybrid System͞protein–Protein Interactions)
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 6965–6970, June 1997 Medical Sciences Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2 (polycystic kidney diseaseyyeast two-hybrid systemyprotein–protein interactions) LEONIDAS TSIOKAS*†,EMILY KIM†‡,THIERRY ARNOULD*, VIKAS P. SUKHATME*, AND GERD WALZ*§ *Renal Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and ‡Laboratory of Molecular and Developmental Neuroscience, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 Communicated by Irving M. London, Massachusetts Institute of Technology, Cambridge, MA, May 1, 1997 (received for review January 3, 1997) ABSTRACT PKD1 and PKD2 are two recently identified clarified the nature of the aberrant gene products caused by genes that are responsible for the vast majority of autosomal mutations of PKD1 and PKD2. Renal cysts are thought to arise polycystic kidney disease, a common inherited disease that through a process of persistent epithelial proliferation related causes progressive renal failure. PKD1 encodes polycystin, a to the lack of terminal differentiation. Both abnormal growth large glycoprotein that contains several extracellular motifs factor responsiveness (8–12) and the elevated expression of indicative of a role in cell–cell or cell–matrix interactions, and certain oncogenes appear to support this hypothesis (13–16). the PKD2 encodes a protein with homology to a voltage- Recently, loss of heterozygosity was discovered within a subset activated calcium channel and to PKD1. It is currently un- of cysts for two closely linked polymorphic markers located known how mutations of either protein functionally cause within the PKD1 gene, indicating that cyst formation in autosomal polycystic kidney disease. -
CD18) in a Patient with Leukocyte Adhesion Molecule (Leu-CAM) Deficiency
Point mutations impairing cell surface expression of the common beta subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency. M A Arnaout, … , D G Tenen, D M Fathallah J Clin Invest. 1990;85(3):977-981. https://doi.org/10.1172/JCI114529. Research Article The leukocyte adhesion molecules CD11a/CD18, CD11b/CD18, and CD11c/CD18 (Leu-CAM) are members of the integrin receptor family and mediate crucial adhesion-dependent functions in leukocytes. The molecular basis for their deficient cell surface expression was sought in a patient suffering from severe and recurrent bacterial infections. Previous studies revealed that impaired cell surface expression of Leu-CAM is secondary to heterogeneous structural defects in the common beta subunit (CD18). Cloning and sequencing of complementary DNA encoding for CD18 in this patient revealed two mutant alleles, each representing a point mutation in the coding region of CD18 and resulting in an amino acid substitution. Each mutant allele results in impaired CD18 expression on the cell surface membrane of transfected COS M6 cells. One substitution involves an arginine residue (Arg593----cysteine) that is conserved in the highly homologous fourth cysteine-rich repeats of other mammalian integrin subfamilies. The other substitution involves a lysine residue (Lys196----threonine) located within another highly conserved region in integrins. These data identify crucial residues and regions necessary for normal cell surface expression of CD18 and possibly other integrin beta subunits and define a molecular basis for impaired cell surface expression of CD18 in this patient. Find the latest version: https://jci.me/114529/pdf Rapid Publication Point Mutations Impairing Cell Surface Expression of the Common ,B Subunit (CD18) in a Patient with Leukocyte Adhesion Molecule (Leu-CAM) Deficiency M. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
CD29 Identifies IFN-Γ–Producing Human CD8+ T Cells With
+ CD29 identifies IFN-γ–producing human CD8 T cells with an increased cytotoxic potential Benoît P. Nicoleta,b, Aurélie Guislaina,b, Floris P. J. van Alphenc, Raquel Gomez-Eerlandd, Ton N. M. Schumacherd, Maartje van den Biggelaarc,e, and Monika C. Wolkersa,b,1 aDepartment of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; bLandsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cDepartment of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands; dDivision of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and eDepartment of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands Edited by Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved February 12, 2020 (received for review August 12, 2019) Cytotoxic CD8+ T cells can effectively kill target cells by producing therefore developed a protocol that allowed for efficient iso- cytokines, chemokines, and granzymes. Expression of these effector lation of RNA and protein from fluorescence-activated cell molecules is however highly divergent, and tools that identify and sorting (FACS)-sorted fixed T cells after intracellular cytokine + preselect CD8 T cells with a cytotoxic expression profile are lacking. staining. With this top-down approach, we performed an un- + Human CD8 T cells can be divided into IFN-γ– and IL-2–producing biased RNA-sequencing (RNA-seq) and mass spectrometry cells. Unbiased transcriptomics and proteomics analysis on cytokine- γ– – + + (MS) analyses on IFN- and IL-2 producing primary human producing fixed CD8 T cells revealed that IL-2 cells produce helper + + + CD8 Tcells. -
Expression of Endothelial Cell-Associated Molecules in AML
Leukemia (2002) 16, 112–119 2002 Nature Publishing Group All rights reserved 0887-6924/02 $25.00 www.nature.com/leu Expression of endothelial cell-associated molecules in AML cells M Watarai1, H Miwa1, M Shikami1, K Sugamura1, M Wakabayashi1, A Satoh1, K Tsuboi1, A Imamura1, H Mihara1, Y Katoh1, K Kita2 and M Nitta1 1Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan; and 2Tokura Hospital, Uji, Kyoto, Japan Recently, it has been clarified that interaction between hemato- hematopoietic cells is also mediated by adhesion molecules poietic cells and endothelial cells is important in normal hema- such as integrins, as well as soluble factors.10,11 topoiesis and leukemogenesis. In this study, we examined the relationship between AML cells and endothelial cells by analyz- Angiopoietins and VEGF are recognized to act coordinately ing the expression profile of angiogenic factors, angiopoietin- during vascular growth and remodeling. Blood vessels remain 1 (Ang-1), Ang-2, Tie-2 (a receptor for angiopoietins) and vascu- in a stable state when Tie-2 receptor is constitutively engaged lar endothelial growth factor (VEGF). Our results demonstrated with angiopoietin-1 (Ang-1) by stabilizing blood vessels -that CD7(؉)AML expressed Ang-2 mRNA frequently and inte- through interactions with perivascular cells and the extracellu grin-family adhesion molecules (CD11c and CD18) intensively, lar matrix. When Ang-2 expression is up-regulated, the inter- suggesting the close correlation with endothelial cells. On the other hand, in t(8;21) AML cells, expression of Ang-2 was action between Tie-2 and Ang-1 is disrupted, and the vessel infrequent and expression of integrin-family adhesion mol- is destabilized. -
The Immunological Synapse and CD28-CD80 Interactions Shannon K
© 2001 Nature Publishing Group http://immunol.nature.com ARTICLES The immunological synapse and CD28-CD80 interactions Shannon K. Bromley1,Andrea Iaboni2, Simon J. Davis2,Adrian Whitty3, Jonathan M. Green4, Andrey S. Shaw1,ArthurWeiss5 and Michael L. Dustin5,6 Published online: 19 November 2001, DOI: 10.1038/ni737 According to the two-signal model of T cell activation, costimulatory molecules augment T cell receptor (TCR) signaling, whereas adhesion molecules enhance TCR–MHC-peptide recognition.The structure and binding properties of CD28 imply that it may perform both functions, blurring the distinction between adhesion and costimulatory molecules. Our results show that CD28 on naïve T cells does not support adhesion and has little or no capacity for directly enhancing TCR–MHC- peptide interactions. Instead of being dependent on costimulatory signaling, we propose that a key function of the immunological synapse is to generate a cellular microenvironment that favors the interactions of potent secondary signaling molecules, such as CD28. The T cell receptor (TCR) interaction with complexes of peptide and as CD2 and CD48, which suggests that CD28 might have a dual role as major histocompatibility complex (pMHC) is central to the T cell an adhesion and a signaling molecule4. Coengagement of CD28 with response. However, efficient T cell activation also requires the partici- the TCR has a number of effects on T cell activation; these include pation of additional cell-surface receptors that engage nonpolymorphic increasing sensitivity to TCR stimulation and increasing the survival of ligands on antigen-presenting cells (APCs). Some of these molecules T cells after stimulation5. CD80-transfected APCs have been used to are involved in the “physical embrace” between T cells and APCs and assess the temporal relationship of TCR and CD28 signaling, as initiat- are characterized as adhesion molecules. -
(12) United States Patent (405
USOO6291239B1 (12) United States Patent (10) Patent No.: US 6,291,239 B1 Prodinger et al. (45) Date of Patent: Sep. 18, 2001 (54) MONOCLONAL ANTIBODY Recess Formed Between SCR1 and SCR 2 of Complement Receptor Type Two', Prodinger. (76) Inventors: Wolfgang Prodinger, Kirschentalgasse Immunopharmacology, vol. 38, No. 1-2, Dec., 1997, pp. 16, A-6020 Innsbruck; Michael 141-148, XP002089604, “Expression in Insect Cells of the Schwendinger, Semmelweisgasse 4, Functional Domain of CD21 (Complement Receptor Type A-7100 Neusiedl/See, both of (AT) Two) as a Truncated... ", Prodinger. Journal of Immunology, vol. 156, No. 7 Apr. 1, 1996, pp. (*) Notice: Subject to any disclaimer, the term of this 2580–2584, XP002089605, “Ligation of the Functional patent is extended or adjusted under 35 Domain of Complement Receptor Type 2 (CR2, CD21) is U.S.C. 154(b) by 0 days. Relevant for Complex . , Prodinger. Journal of Immunology, vol. 154, No. 10, May 15, 1995, pp. (21) Appl. No.: 09/276,296 5426–5435, XP002089606, “Characterization of a Comple (22) Filed: Mar. 25, 1999 ment Receptor 2 (CR2, CD21) Ligand Binding Site for C3”, H. Molina et al. (51) Int. Cl. ............................... C12N 5/06; C12O 1/70; Journal of Immunology, vol. 161, Nov. 1, 1998, pp. G01N 33/53; CO7K 16/00; A61K 39/395 4604–4610, XP002089607, “Characterization of C3dg Binding to a Recess Formed Between Short Consensus (52) U.S. Cl. ............................ 435/339.1; 435/5; 435/7.1; Repeats 1 and 2 ... ', Prodinger. 435/334; 530/388.1; 530/388.35; 424/141.1; 424/143.1; 424/159.1 Primary Examiner Hankyel T. -
CD20-Positive Peripheral T-Cell Lymphoma: Report of a Case After Nodular Sclerosis Hodgkin’S Disease and Review of the Literature Renee L
CD20-Positive Peripheral T-Cell Lymphoma: Report of a Case after Nodular Sclerosis Hodgkin’s Disease and Review of the Literature Renee L. Mohrmann, M.D., Daniel A. Arber, M.D. Division of Pathology, City of Hope National Medical Center, Duarte, California CASE REPORT We present a case of peripheral T-cell lymphoma co-expressing CD3 and CD20, as well as demon- A 47-year-old man presented in 1993 with a brief strating T-cell receptor gene rearrangement, in a history of right axillary lymph node enlargement patient who had been diagnosed with nodular scle- and mild fatigue. Biopsy showed nodular sclerosis rosis Hodgkin’s disease 5 years previously. Although Hodgkin’s disease. He was treated with six courses 15 cases of CD20-positive T-cell neoplasms have of mechlorethamine, vincristine, procarbazine, been previously reported in the literature, this is the prednisone/doxorubicin, bleomycin, vinblastine first report of CD20-positive T-cell lymphoma oc- chemotherapy over a period of 6 months. Clinical curring subsequent to treatment of Hodgkin’s dis- remission was achieved for 5 years. In early 1998, the patient noticed enlargement of lymph nodes in ease. The current case affords an opportunity to the posterior cervical region, which were followed review the rarely reported expression of CD20 in clinically for several months. Weight loss of 15 lbs., T-cell neoplasms as well as the relationship between fatigue, and flu-like symptoms ensued. The lymph Hodgkin’s disease and subsequently occurring non- nodes became firmer to palpation and were biop- Hodgkin’s lymphomas. In addition, the identifica- sied, showing peripheral T-cell lymphoma, diffuse tion of this case supports the suggestion that the use large-cell type. -
Immunological Synapse Formation Licenses CD40-CD40L Accumulations at T-APC Contact Sites1
The Journal of Immunology Immunological Synapse Formation Licenses CD40-CD40L Accumulations at T-APC Contact Sites1 Judie Boisvert, Samuel Edmondson, and Matthew F. Krummel2 The maintenance of tolerance is likely to rely on the ability of a T cell to polarize surface molecules providing “help” to only specific APCs. The formation of a mature immunological synapse leads to concentration of the TCR at the APC interface. In this study, we show that the CD40-CD154 receptor-ligand pair is also highly concentrated into a central region of the synapse on mouse lymphocytes only after the formation of the TCR/CD3 c-SMAC. Concentration of this ligand was strictly dependent on TCR recognition, the binding of ICAM-1 to T cell integrins and the presence of an intact cytoskeleton in the T cells. This may provide a novel explanation for the specificity of T cell help directing the help signal to the site of Ag receptor signal. It may also serve as a site for these molecular aggregates to coassociate and/or internalize alongside other signaling receptors. The Journal of Im- munology, 2004, 173: 3647–3652. uring the onset and propagation of immune responses, T Interactions of T cells with Ag-bearing APCs is associated with cells send and receive signals via Ag-dependent and Ag- a coalescence of TCRs, other related receptors such as CD2, CD4, independent ligands. Whereas peptide-class II MHC CD28, and signaling molecules such as p56lck, fyn, linker for ac- D ϩ complexes on APC are recognized by the TCR on CD4 helper T tivation of T cells, and protein kinase C into the central portion of cells, separate cell surface receptors modulate T cell-APC inter- an “immunological synapse” (15–23). -
Processing Epitope Precursor Recognition and Analogue Provides
The Journal of Immunology Crystal Structure of Insulin-Regulated Aminopeptidase with Bound Substrate Analogue Provides Insight on Antigenic Epitope Precursor Recognition and Processing Anastasia Mpakali,* Emmanuel Saridakis,* Karl Harlos,† Yuguang Zhao,† Athanasios Papakyriakou,* Paraskevi Kokkala,*,‡ Dimitris Georgiadis,‡ and Efstratios Stratikos* Aminopeptidases that generate antigenic peptides influence immunodominance and adaptive cytotoxic immune responses. The mechanisms that allow these enzymes to efficiently process a vast number of different long peptide substrates are poorly understood. In this work, we report the structure of insulin-regulated aminopeptidase, an enzyme that prepares antigenic epitopes for cross- presentation in dendritic cells, in complex with an antigenic peptide precursor analog. Insulin-regulated aminopeptidase is found in a semiclosed conformation with an extended internal cavity with limited access to the solvent. The N-terminal moiety of the peptide is located at the active site, positioned optimally for catalysis, whereas the C-terminal moiety of the peptide is stabilized along the extended internal cavity lodged between domains II and IV. Hydrophobic interactions and shape complementarity enhance peptide affinity beyond the catalytic site and support a limited selectivity model for antigenic peptide selection that may underlie the generation of complex immunopeptidomes. The Journal of Immunology, 2015, 195: 2842–2851. ytotoxic adaptive immune responses rely on the recogni- process, and present external Ags onto MHCI to allow cross-priming tion on the cell surface of complexes of MHC class I of naive CD8+ T cells (2). The cross-presentation pathway is key for C molecules (MHCI) with antigenic peptides. These peptides the immune defense against many viruses, bacteria, and tumors and are generated inside the cell by proteolytic digestion that often can help the immune system avoid immune evasion strategies.