Immunological Synapse Formation Licenses CD40-CD40L Accumulations at T-APC Contact Sites1

Total Page:16

File Type:pdf, Size:1020Kb

Immunological Synapse Formation Licenses CD40-CD40L Accumulations at T-APC Contact Sites1 The Journal of Immunology Immunological Synapse Formation Licenses CD40-CD40L Accumulations at T-APC Contact Sites1 Judie Boisvert, Samuel Edmondson, and Matthew F. Krummel2 The maintenance of tolerance is likely to rely on the ability of a T cell to polarize surface molecules providing “help” to only specific APCs. The formation of a mature immunological synapse leads to concentration of the TCR at the APC interface. In this study, we show that the CD40-CD154 receptor-ligand pair is also highly concentrated into a central region of the synapse on mouse lymphocytes only after the formation of the TCR/CD3 c-SMAC. Concentration of this ligand was strictly dependent on TCR recognition, the binding of ICAM-1 to T cell integrins and the presence of an intact cytoskeleton in the T cells. This may provide a novel explanation for the specificity of T cell help directing the help signal to the site of Ag receptor signal. It may also serve as a site for these molecular aggregates to coassociate and/or internalize alongside other signaling receptors. The Journal of Im- munology, 2004, 173: 3647–3652. uring the onset and propagation of immune responses, T Interactions of T cells with Ag-bearing APCs is associated with cells send and receive signals via Ag-dependent and Ag- a coalescence of TCRs, other related receptors such as CD2, CD4, independent ligands. Whereas peptide-class II MHC CD28, and signaling molecules such as p56lck, fyn, linker for ac- D ϩ complexes on APC are recognized by the TCR on CD4 helper T tivation of T cells, and protein kinase C␪ into the central portion of cells, separate cell surface receptors modulate T cell-APC inter- an “immunological synapse” (15–23). Integrins and their associ- actions, such as help. The primary form of T cell help is mediated ated molecules, as well as CD43 and CD45, are predominantly by the binding of T cell CD40L (CD154) to CD40 on B cells, accumulated at an outer zone of this interface (15, 16, 24, 25). The macrophages, and dendritic cells (DCs).3 CD154-CD40 interac- central supramolecular-activating cluster (c-SMAC) of TCRs in tions have been identified in vivo as being responsible for T cell- the central zone was initially demonstrated to be uniquely associ- dependent B cell activation and class switching, for facilitating ated with agonist but not weak agonist activation (16). Recently, germinal center reactions (reviewed in Refs. 1 and 2)), for activa- the dynamics of signaling leading to downstream outcomes have tion of macrophages and DCs, for the establishment of memory proven more complex, with clear-cut indications that the c-SMAC CTLs (3), and in licensing CD4-dependent help for CD8ϩ killer is formed only after the onset of signal transduction (17, 26), and cells (4–6). recent evidence suggesting that the c-SMAC might in fact coor- A critical gap in our current comprehension of helper events lies dinate the internalization of TCRs (27). Therefore, the function of in understanding how these interactions are regulated such that the mature synapse structure is a subject of some debate (28, 29). only the correct APC receives signals via the up-regulated CD154. We postulated that helper interactions, such as those of CD154- CD4ϩ T cells typically up-regulate surface CD154 upon stimula- CD40, might be of sufficiently low affinity to be regulated by the tion for times ranging from 24 h to 3 days after activation (7–11). presence or absence of a synapse. Therefore, we assessed the lo- In some instances, CD154 expression is detected at low levels on calization, movement, and activation of CD40 on B cells during resting peripheral CD4ϩ T cells (10). In studies using T cell hy- synapse formation with CD154-bearing T cells. Our results dem- bridomas bearing high levels of CD154, signaling to B cells occurs onstrate that accumulation of these helper molecules to the immu- independent of Ag receptors (12, 13). However, given the milieu nological synapse proceeds after and requires MHC-peptide rec- of the spleen and lymph nodes in which numerous cells are packed ognition by the TCR, ICAM-1-dependent stable synapse tightly together, it is not obvious how spurious signaling from formation, and a functional actin cytoskeleton within the T cells. CD154 to a bystander CD40-bearing cell is prevented. This is crit- Thus, the immunological synapse plays a critical role in regulating ically important, because the availability of such help determines the assembly of signaling complexes containing receptors that are the fate of potentially autoreactive B cells in vivo (14). not directly involved in TCR recognition and signaling. Department of Pathology, University of California, San Francisco, CA 94143 Materials and Methods Received for publication February 11, 2004. Accepted for publication July 9, 2004. Cell lines and peptides ϩ The costs of publication of this article were defrayed in part by the payment of page D10.G4.1 (D10) is a CD4 T cell clone derived from AKR/J mice and the charges. This article must therefore be hereby marked advertisement in accordance TCR of this clone binds with high affinity to conalbumin peptide CA134- with 18 U.S.C. Section 1734 solely to indicate this fact. 146 (CA) in the context of MHC class II IAk (30). D10-CD3␨ cyan fluo- 1 This research was supported by National Institutes of Health (NIH) Training Grant rescent protein (CFP) is a stable transfectant with properties similar to the T32 AI07334-15 (to J.B.), NIH RO1 AI AI52116 (to M.F.K.), and by startup funds GFP equivalent, previously described (17). Clones were maintained by from the Howard Hughes Medical Institute Biomedical Research Support Program weekly restimulations as previously described (30). Experiments were per- Grant 5300246 (to M.F.K.). formed 2–10 days after T cell stimulation; CD40L expression over that 2 Address correspondence and reprint requests to Dr. Matthew F. Krummel, Depart- period varied by ϳ2-fold and all experiments compared cells cultured iden- ment of Pathology, University of California, 513 Parnassus Avenue, San Francisco, tically before assaying synapse formation. CH27 is a B cell hybridoma CA 94143-0511. E-mail address: [email protected] expressing IAk, ICAM-1, CD40, CD80, and CD86. The agonist CA and 3 Abbreviations used in this paper: DC, dendritic cells; CFP, cyan fluorescent protein; weak agonist E8T peptides were purified by HPLC and reconstituted in YFP, yellow fluorescent protein; c-SMAC, central supramolecular-activating cluster; PBS before use as described previously (17). CH27 stably expressing CA, canalbumin peptide CA134-146. CD40 yellow fluorescent protein (CH27-CD40YFP) were generated by Copyright © 2004 by The American Association of Immunologists, Inc. 0022-1767/04/$02.00 3648 RECRUITMENT OF CD40-CD154 TO THE IMMUNOLOGICAL SYNAPSE electroporation using a Gene Pulser II (Bio-Rad, Hercules, CA) followed Rapid three-dimensional fluorescence microscopy by selection of stable transfectants using gentamicin (Sigma-Aldrich, St. Louis, MP) and cell sorting. All three-dimensional data acquisition was achieved using an inverted Ax- iovert 200 M microscope and a ϫ40/1.4 lens (Carl Zeiss, NJ), equipped Constructs with a 175 W xenon highspeed ␭ DG4 wavelength selector and a single emission filter wheel (Sutter Instruments, Novato, CA), a PI piezoelectric A plasmid encoding CD40YFP was derived by mutagenic PCR of a plas- z-drive (Physik Instrument, Germany) and a cooled-CCD Coolsnap camera mid encoding murine CD40 cDNA using as 5Ј primer: GGA CTG CTC (Roper Instruments, NJ). Stage temperature was controlled by a heated GAG ATG GTG TCT TTG CCT C, and 3Ј primer: CG CAG TAC CGG stage along with an objective heater. Data were acquired and analyzed TCC ACC GCC ACC TGA ACC GCC TCC GAC CAG GGG CCT CAA using Metamorph (Universal Imaging, Downingtown, PA). For D10 time G. This product was then cloned into the XhoI and AgeI sites of pEYFP-N1 course experiments, D10 T cells were loaded with fura 2-AM (Molecular (BD Clontech, Palo Alto, CA) to create a fusion protein containing full- Probes, Eugene, OR) and ϳ105 cells were placed into 8-well glass-bottom length CD40 at the N terminus, followed by a linker comprised of the coverslips (Nunc, Naperville, IL) in phenol red-deficient RPMI 1640. Cov- amino acids gly-gly-ser-gly-gly-gly-gly-pro and YFP at the C terminus. erslips were placed on a heated (37°C) microscope stage. Optimal exposure CD3␨CFP was produced from a construct similar to one previously de- parameters were determined and ϳ105 peptide-pulsed CH27-CD40YFP scribed to express CD3␨GFP (17), through the exchange of the CFP and cells were added and allowed to settle. Data acquired every 15 s-1 min GFP coding sequences. consisted of single differential interference contrast, fura 2-AM excitation at 340 nm and 380 nm, and a 8–19 frame 1-␮m separation GFP/CFP/YFP Abs and drugs (xFP) z-stack. The xFP stacks were collected using streaming software Anti-mouse IAkPE (11-5.2), anti-mouse ICAM-1-biotin (3E2), anti-mouse with 30–1000 msec exposures for each z-plane, resulting in an overall CD154.biotin (MR1) were obtained from BD Pharmingen (San Diego, collection time of 2–30 s. For two-color collection, data were acquired for CA). Anti-mouse CD40 (FGK) and anti-mouse CD3 (500.A2) were pre- each wavelength sequentially. A JP4 polychroic (Chroma Technology, pared from cultured hybridoma supernatant using standard Protein A/G Ab Rockingham, VT) and the following respective filters were used: 436/10 purification methods. Cytoskeletal disassembly was performed by pretreat- excitation and 470/30 emission (CFP), 490/20 excitation and 528/38 emis- ing T or B cells with 10 ␮g/ml cytochalasin D (CalBiochem, San Diego, sion (GFP), 500/20 excitation and 550/50 emission (YFP), 555/28 excita- CA) for 30 min at 37°C, followed by washing, immediately before imaging tion and 617/73 emission (red), and 635/20 excitation and 685/40 emission or bead coupling.
Recommended publications
  • Costimulation of T-Cell Activation and Virus Production by B7 Antigen on Activated CD4+ T Cells from Human Immunodeficiency Virus Type 1-Infected Donors OMAR K
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11094-11098, December 1993 Immunology Costimulation of T-cell activation and virus production by B7 antigen on activated CD4+ T cells from human immunodeficiency virus type 1-infected donors OMAR K. HAFFAR, MOLLY D. SMITHGALL, JEFFREY BRADSHAW, BILL BRADY, NITIN K. DAMLE*, AND PETER S. LINSLEY Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121 Communicated by Leon E. Rosenberg, August 3, 1993 (receivedfor review April 29, 1993) ABSTRACT Infection with the human immunodeficiency sequence (CTLA-4) (34), a protein structurally related to virus type 1 (HIV-1) requires T-cefl activation. Recent studies CD28 but only expressed on T cells after activation (12). have shown that interactions of the T-lymphocyte receptors CTLA-4 acts cooperatively with CD28 to bind B7 and deliver CD28 and CTLA-4 with their counter receptor, B7, on antigen- T-cell costimulatory signals (13). presenting cells are required for optimal T-cell activation. Here Because of the importance of the CD28/CTLA-4 and B7 we show that HIV-1 infection is associated with decreased interactions in immune responses, it is likely that these expression of CD28 and increased expression of B7 on CD4+ interactions are also important during HIV-1 infection. Stud- T-cell lines generated from seropositive donors by afloantigen ies with anti-CD28 monoclonal antibodies (mAbs) suggested stimulation. Loss of CD28 expression was not seen on CD4+ a role for CD28 in up-regulating HIV-1 long terminal repeat- T-ceU lines from seronegative donors, but up-regulation of B7 driven transcription of a reporter gene in leukemic cell lines expression was observed upon more prolonged culture.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • T Cells the Usual Subsets
    T cells: the usual subsets Chen Dong and Gustavo J. Martinez T cells have important roles in immune responses and function by directly secreting soluble mediators or important for adaptation of immune responses in different microenvironments and might be particularly through cell contact-dependent mechanisms. Many T cell subsets have been characterized. Although relevant for host defence against pathogens that colonize different tissues. Distinct T cell subsets, or effector T cells were originally considered to be terminally differentiated, a growing body of evidence has differentiation states, can be identified based on the cell surface markers expressed and/or the effector challenged this view and suggested that the phenotype of effector T cells is not completely fixed but is molecules produced by a particular T cell population. This Poster summarizes our current understanding of more flexible or plastic. T cells can have ‘mixed’ phenotypes (that is, have characteristics usually the surface markers, transcriptional regulators, effector molecules and functions of the different T cell associated with more than one T cell subset) and can interconvert from one subset phenotype to another, subsets that participate in immune responses. Further knowledge of how these T cell subsets are regulated IMMUNOLOGY although instructive signalling can lead to long-term fixation of cytokine memory. T cell plasticity can be and cooperate with each other will provide us with better tools to treat immune-related diseases. Cytotoxic T cell Exhausted T cell
    [Show full text]
  • Papers J Clin Pathol: First Published As 10.1136/Jcp.49.7.539 on 1 July 1996
    Clin Pathol 1996;49:539-544 539 Papers J Clin Pathol: first published as 10.1136/jcp.49.7.539 on 1 July 1996. Downloaded from Differential expression of T cell antigens in normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry L Ginaldi, N Farahat, E Matutes, M De Martinis, R Morilla, D Catovsky Abstract diagnosis by comparison with findings in Aims-To obtain reference values of the normal counterparts. level of expression of T cell antigens on ( Clin Pathol 1996;49:539-544) normal lymphocyte subsets in order to disclose differences which could reflect Keywords: flow cytometry, T cell antigens, peripheral their function or maturation stages, or blood lymphocytes. both. Methods-Peripheral blood from 15 healthy donors was processed by flow The most common use of flow cytometry is to cytometry with triple colour analysis. For determine the percent of "positive" or "nega- each sample phycoerythrin (PE) conju- tive" cells for each antigen in different cell gated CD2, CD4, CD5, CD8, and CD56 populations. However, valuable information is monoclonal antibodies were combined lost when the relative intensities of the positive with Cy5-R-phycoerythrin (TC) conju- cells, reflecting antigenic densities, are not considered. A cell population with a well gated CD3 and fluorescein isothiocyanate http://jcp.bmj.com/ (FITC) conjugated CD7; CD2- and defined phenotype, positive for one antigen, CD7-PE were also combined with might be heterogeneous with regard to its level CD3-TC and CD4-FITC. Standard mi- of expression. This may reflect different crobeads with different capacities to bind functional or maturational states, or both, or mouse immunoglobulins were used to identify subpopulations on the basis of the dif- convert the mean fluorescence intensity ferent numbers of molecules of antigen per cell.
    [Show full text]
  • CD18) in a Patient with Leukocyte Adhesion Molecule (Leu-CAM) Deficiency
    Point mutations impairing cell surface expression of the common beta subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency. M A Arnaout, … , D G Tenen, D M Fathallah J Clin Invest. 1990;85(3):977-981. https://doi.org/10.1172/JCI114529. Research Article The leukocyte adhesion molecules CD11a/CD18, CD11b/CD18, and CD11c/CD18 (Leu-CAM) are members of the integrin receptor family and mediate crucial adhesion-dependent functions in leukocytes. The molecular basis for their deficient cell surface expression was sought in a patient suffering from severe and recurrent bacterial infections. Previous studies revealed that impaired cell surface expression of Leu-CAM is secondary to heterogeneous structural defects in the common beta subunit (CD18). Cloning and sequencing of complementary DNA encoding for CD18 in this patient revealed two mutant alleles, each representing a point mutation in the coding region of CD18 and resulting in an amino acid substitution. Each mutant allele results in impaired CD18 expression on the cell surface membrane of transfected COS M6 cells. One substitution involves an arginine residue (Arg593----cysteine) that is conserved in the highly homologous fourth cysteine-rich repeats of other mammalian integrin subfamilies. The other substitution involves a lysine residue (Lys196----threonine) located within another highly conserved region in integrins. These data identify crucial residues and regions necessary for normal cell surface expression of CD18 and possibly other integrin beta subunits and define a molecular basis for impaired cell surface expression of CD18 in this patient. Find the latest version: https://jci.me/114529/pdf Rapid Publication Point Mutations Impairing Cell Surface Expression of the Common ,B Subunit (CD18) in a Patient with Leukocyte Adhesion Molecule (Leu-CAM) Deficiency M.
    [Show full text]
  • Optimal Minimal Panels of Immunohistochemistry for Diagnosis of B-Cell Lymphoma for Application in Countries with Limited Resources and for Triaging Cases Before
    AJCP /ORIGINAL ARTICLE Optimal Minimal Panels of Immunohistochemistry for Diagnosis of B-Cell Lymphoma for Application in Countries With Limited Resources and for Triaging Cases Before Referral to Specialist Centers Downloaded from https://academic.oup.com/ajcp/article-abstract/145/5/687/2195691 by World Health Organization user on 09 January 2019 Maria Giulia Disanto, MD,1 Maria Raffaella Ambrosio, MD, PhD,2 Bruno Jim Rocca, MD, PhD,2 Hazem A. H. Ibrahim, FRCPath, PhD,1,3 Lorenzo Leoncini, MD, PhD,2 and Kikkeri N. Naresh, MD, FRCPath1 From the 1Department of Histopathology, Imperial College Healthcare NHS Trust & Imperial College, London, United Kingdom; 2Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy; and 3Department of Histopathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt. Key Words: Lymphoma; B-cell lymphoma; Immunohistochemistry; Diagnosis; Classification; Developing countries Am J Clin Pathol May 2016;145:687-695 DOI: 10.1093/AJCP/AQW060 ABSTRACT Lymphomas are a collection of different malignancies “arising” from lymphoid cells. They include about 49 entities, Objectives: Establish and validate optimal minimal and over 19 provisional entities and subsets.1 About 85% of immunohistochemistry panels for usage in a staged lymphomas are of B-cell origin. Precision in lymphoma diag- algorithmic manner for precise diagnosis of B-cell nosis requires expertise and infrastructure. The entities are lymphomas in countries with limited resources. Suggest defined based on morphology, immunohistochemistry (on short panels of immunostains to be used in referring units some occasions in situ hybridization), cytogenetics/fluores- that refer suspected lymphomas to specialist diagnostic cent in situ hybridization (FISH), molecular genetics and clin- centers in resourceful countries.
    [Show full text]
  • MGD011, a CD19 X CD3 Dual-Affinity Retargeting Bi-Specific Molecule Incorporating Extended Circulating Half-Life for the Treatment of B-Cell Malignancies
    Published OnlineFirst September 23, 2016; DOI: 10.1158/1078-0432.CCR-16-0666 Cancer Therapy: Preclinical Clinical Cancer Research MGD011, A CD19 x CD3 Dual-Affinity Retargeting Bi-specific Molecule Incorporating Extended Circulating Half-life for the Treatment of B-Cell Malignancies Liqin Liu, Chia-Ying K. Lam, Vatana Long, Lusiana Widjaja, Yinhua Yang, Hua Li, Linda Jin, Steve Burke, Sergey Gorlatov, Jennifer Brown, Ralph Alderson, Margaret D. Lewis, Jeffrey L. Nordstrom, Scott Koenig, Paul A. Moore, Syd Johnson, and Ezio Bonvini Abstract Purpose: CD19, a B-cell lineage-specific marker, is highly autologous B-cell depletion in PBMCs from both species. represented in B-cell malignancies and an attractive target for MGD011-mediated killing was accompanied by target-depen- therapeutic interventions. MGD011 is a CD19 x CD3 DART dent T-cell activation and expansion, cytokine release and bispecific protein designed to redirect T lymphocytes to eliminate upregulation of perforin and granzyme B. MGD011 demon- CD19-expressing cells. MGD011 has been engineered with a strated antitumor activity against localized and disseminated modified human Fc domain for improved pharmacokinetic (PK) lymphoma xenografts reconstituted with human PBMCs. In properties and designed to cross-react with the corresponding cynomolgus monkeys, MGD011 displayed a terminal half-life antigens in cynomolgus monkeys. Here, we report on the preclin- of 6.7 days; once weekly intravenous infusion of MGD011 at ical activity, safety and PK properties of MGD011. dosesupto100mg/kg, the highest dose tested, was well Experimental Design: The activity of MGD011 was evaluated tolerated and resulted in dose-dependent, durable decreases in several in vitro and in vivo models.
    [Show full text]
  • CD3+CD5+CD4-CD8-) Alpha/Beta T Cell Receptor-Bearing Cells
    Mlsa generated suppressor cells. I. Suppression is mediated by double-negative (CD3+CD5+CD4-CD8-) alpha/beta T cell receptor-bearing cells. This information is current as of October 2, 2021. M Bruley-Rosset, I Miconnet, C Canon and O Halle-Pannenko J Immunol 1990; 145:4046-4052; ; http://www.jimmunol.org/content/145/12/4046 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription by guest on October 2, 2021 Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1990 by American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. 0022-1767/90/14512-4046$02.00/0 THEJOURNAL OF IMMUNOLCGY Vol. 145.4046-4052. No. 12. December 15. 1990 Copyright 0 1990 by The American Association of lmmunologists Printed In U.S.A. Mls" GENERATED SUPPRESSORCELLS I. Suppression is Mediated by Double-Negative (CD3+CDVCD4-CD8-) a/@ T Cell Receptor-Bearing Cells' Grafting of cells from B10.D2 (H-2d)donors into H- The GVHR3 remains a major problem after bone mar- 2 compatible lethally irradiated (DBA/2 x B1O.DZ)Fl row transplantation, even in MHC-compatible donor-re- hostsresults in a severe graft-vs-host reaction cipient combinations.
    [Show full text]
  • The Immunological Synapse and CD28-CD80 Interactions Shannon K
    © 2001 Nature Publishing Group http://immunol.nature.com ARTICLES The immunological synapse and CD28-CD80 interactions Shannon K. Bromley1,Andrea Iaboni2, Simon J. Davis2,Adrian Whitty3, Jonathan M. Green4, Andrey S. Shaw1,ArthurWeiss5 and Michael L. Dustin5,6 Published online: 19 November 2001, DOI: 10.1038/ni737 According to the two-signal model of T cell activation, costimulatory molecules augment T cell receptor (TCR) signaling, whereas adhesion molecules enhance TCR–MHC-peptide recognition.The structure and binding properties of CD28 imply that it may perform both functions, blurring the distinction between adhesion and costimulatory molecules. Our results show that CD28 on naïve T cells does not support adhesion and has little or no capacity for directly enhancing TCR–MHC- peptide interactions. Instead of being dependent on costimulatory signaling, we propose that a key function of the immunological synapse is to generate a cellular microenvironment that favors the interactions of potent secondary signaling molecules, such as CD28. The T cell receptor (TCR) interaction with complexes of peptide and as CD2 and CD48, which suggests that CD28 might have a dual role as major histocompatibility complex (pMHC) is central to the T cell an adhesion and a signaling molecule4. Coengagement of CD28 with response. However, efficient T cell activation also requires the partici- the TCR has a number of effects on T cell activation; these include pation of additional cell-surface receptors that engage nonpolymorphic increasing sensitivity to TCR stimulation and increasing the survival of ligands on antigen-presenting cells (APCs). Some of these molecules T cells after stimulation5. CD80-transfected APCs have been used to are involved in the “physical embrace” between T cells and APCs and assess the temporal relationship of TCR and CD28 signaling, as initiat- are characterized as adhesion molecules.
    [Show full text]
  • Ligand for Bovine CD5 the Identification and Characterization of A
    The Identification and Characterization of a Ligand for Bovine CD5 Karen M. Haas and D. Mark Estes This information is current as J Immunol 2001; 166:3158-3166; ; of September 27, 2021. doi: 10.4049/jimmunol.166.5.3158 http://www.jimmunol.org/content/166/5/3158 Downloaded from References This article cites 46 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/166/5/3158.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Identification and Characterization of a Ligand for Bovine CD51 Karen M. Haas* and D. Mark Estes2*† CD5, a type I glycoprotein expressed by T cells and a subset of B cells, is thought to play a significant role in modulating Ag receptor signaling. Previously, our laboratory has shown that bovine B cells are induced to express this key regulatory molecule upon Ag receptor cross-linking.
    [Show full text]
  • (12) United States Patent (405
    USOO6291239B1 (12) United States Patent (10) Patent No.: US 6,291,239 B1 Prodinger et al. (45) Date of Patent: Sep. 18, 2001 (54) MONOCLONAL ANTIBODY Recess Formed Between SCR1 and SCR 2 of Complement Receptor Type Two', Prodinger. (76) Inventors: Wolfgang Prodinger, Kirschentalgasse Immunopharmacology, vol. 38, No. 1-2, Dec., 1997, pp. 16, A-6020 Innsbruck; Michael 141-148, XP002089604, “Expression in Insect Cells of the Schwendinger, Semmelweisgasse 4, Functional Domain of CD21 (Complement Receptor Type A-7100 Neusiedl/See, both of (AT) Two) as a Truncated... ", Prodinger. Journal of Immunology, vol. 156, No. 7 Apr. 1, 1996, pp. (*) Notice: Subject to any disclaimer, the term of this 2580–2584, XP002089605, “Ligation of the Functional patent is extended or adjusted under 35 Domain of Complement Receptor Type 2 (CR2, CD21) is U.S.C. 154(b) by 0 days. Relevant for Complex . , Prodinger. Journal of Immunology, vol. 154, No. 10, May 15, 1995, pp. (21) Appl. No.: 09/276,296 5426–5435, XP002089606, “Characterization of a Comple (22) Filed: Mar. 25, 1999 ment Receptor 2 (CR2, CD21) Ligand Binding Site for C3”, H. Molina et al. (51) Int. Cl. ............................... C12N 5/06; C12O 1/70; Journal of Immunology, vol. 161, Nov. 1, 1998, pp. G01N 33/53; CO7K 16/00; A61K 39/395 4604–4610, XP002089607, “Characterization of C3dg Binding to a Recess Formed Between Short Consensus (52) U.S. Cl. ............................ 435/339.1; 435/5; 435/7.1; Repeats 1 and 2 ... ', Prodinger. 435/334; 530/388.1; 530/388.35; 424/141.1; 424/143.1; 424/159.1 Primary Examiner Hankyel T.
    [Show full text]
  • Significant Enlargement of a Specific Subset of CD3+CD8+ Peripheral Blood Leukocytes Mediating Cytotoxic T-Lymphocyte Activity D
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 9427-9430, October 1993 Immunology Significant enlargement of a specific subset of CD3+CD8+ peripheral blood leukocytes mediating cytotoxic T-lymphocyte activity during human immunodeficiency virus infection (T lymphocyte subset/monoclonal antibody/AIDS) A. BENSUSSAN*t, C. RABIANt, V. SCHIAVON*, D. BENGOUFAt, G. LECA*, AND L. BOUMSELL* Institut Nationale de la Sant6 et de la Recherche Medicale U93, Association Claude Bernard, and tLaboratoire d'Immunologie et d'Histocompatibilite, H6pital Saint-Louis, 1 Avenue Claude Veliefaux, 75475 Paris cedex 10, France Communicated by Jean Dausset, July 20, 1993 ABSTRACT We have obtained a monoclonal antibody studies have shown that human immunodeficiency virus termed BY55 that defines an 80-kDa cell-surface structure on (HIV) infection significantly changes the phenotype of cir- a subset ofcirculating peripheral blood mononucleocytes. This culating lymphocytes and increases CD8 T lymphocytes (19), structure, which was not detected on most cell lines or activated it was interesting to look for this cytotoxic CD3+CD8+BY55+ lymphocytes, was expressed exclusively on 15-25% of CD2+ circulating cell subset in asymptomatic HIV-positive individ- circulating lymphocytes, including a major subset within the uals with various numbers of CD4 cells. Results indicated CD3- and the T-cell receptor y6+ lymphocytes and a small that peripheral blood CD3+CD8+BY55+ cells significantly percentage of the CD3+CD8+ cells. Moreover, we have shown increased in HIV-positive individuals. that the BY55 molecule delineated the competent killer circu- lating lymphocytes. In the present report, additional two- and MATERIALS AND METHODS three-color immunofluorescence studies of peripheral blood lymphocytes were done to precisely determine BY55 expression mAbs.
    [Show full text]