T Cells the Usual Subsets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
T Lymphocytes + and CD8 +CD4 TCR/CD3 Complex in Immortalized Mature -Deficient Γ Signaling Through A
Signaling Through a CD3γ-Deficient TCR/CD3 Complex in Immortalized Mature CD4+ and CD8+ T Lymphocytes This information is current as Alberto Pacheco-Castro, David Alvarez-Zapata, Pilar of September 25, 2021. Serrano-Torres and José R. Regueiro J Immunol 1998; 161:3152-3160; ; http://www.jimmunol.org/content/161/6/3152 Downloaded from References This article cites 47 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/161/6/3152.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Signaling Through a CD3g-Deficient TCR/CD3 Complex in Immortalized Mature CD41 and CD81 T Lymphocytes1 Alberto Pacheco-Castro,2 David Alvarez-Zapata,2 Pilar Serrano-Torres, and Jose´R. Regueiro3 The biologic role of each CD3 chain and their relative contribution to the signals transduced through the TCR/CD3 complex and to downstream activation events are still controversial: they may be specialized or redundant. -
18F-Farag PET for CD8 Profiling of Tumors and Assessment of Immunomodulation by Chemotherapy
Journal of Nuclear Medicine, published on November 6, 2020 as doi:10.2967/jnumed.120.249078 18F-FAraG PET for CD8 Profiling of Tumors and Assessment of Immunomodulation by Chemotherapy Jelena Levi1*, Samuel Goth1, Lyna Huynh1, Tina Lam1, Tony L Huynh2, Brailee Schulte2, Juliet A Packiasamy1 1CellSight Technologies Incorporated, San Francisco, California; 2Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California; *Corresponding Author Jelena Levi, PhD 185 Berry street, San Francisco, 94107, CA Email: [email protected] Running Title: [18F]F-AraG for CD8 profiling of tumors Financial statement: This work was supported by National Institutes of Health Grants NCI SBIR HHSN261201800024C (JL). Conflict of Interest Statement: JL, SG, LH, TL and JP are or were employed by CellSight Technologies. CellSight Technologies Incorporated is commercializing [18F]F-AraG as a PET tracer for evaluation of immune response in immunotherapy. No other potential conflicts of interest relevant to this article exist. ABSTRACT Majority of the clinical trials exploring various combinations of chemo- and immunotherapy rely on serial biopsy to provide information on immune response. The aim of this study was to assess the value of 18F-FAraG as a non-invasive tool that could profile tumors based on the key players in adaptive antitumor response, CD8+ cells, and evaluate immunomodulatory effects of chemotherapy. Methods. To evaluate the ability of 18F-FAraG to report on the presence of CD8+ cells within the TME, we imaged a panel of syngeneic tumor models (MC38, CT26, LLC, A9F1, 4T1 and B16F10), and correlated the signal intensity with the number of lymphocytes found in the tumors. -
CD29 Identifies IFN-Γ–Producing Human CD8+ T Cells With
+ CD29 identifies IFN-γ–producing human CD8 T cells with an increased cytotoxic potential Benoît P. Nicoleta,b, Aurélie Guislaina,b, Floris P. J. van Alphenc, Raquel Gomez-Eerlandd, Ton N. M. Schumacherd, Maartje van den Biggelaarc,e, and Monika C. Wolkersa,b,1 aDepartment of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; bLandsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cDepartment of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands; dDivision of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and eDepartment of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands Edited by Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved February 12, 2020 (received for review August 12, 2019) Cytotoxic CD8+ T cells can effectively kill target cells by producing therefore developed a protocol that allowed for efficient iso- cytokines, chemokines, and granzymes. Expression of these effector lation of RNA and protein from fluorescence-activated cell molecules is however highly divergent, and tools that identify and sorting (FACS)-sorted fixed T cells after intracellular cytokine + preselect CD8 T cells with a cytotoxic expression profile are lacking. staining. With this top-down approach, we performed an un- + Human CD8 T cells can be divided into IFN-γ– and IL-2–producing biased RNA-sequencing (RNA-seq) and mass spectrometry cells. Unbiased transcriptomics and proteomics analysis on cytokine- γ– – + + (MS) analyses on IFN- and IL-2 producing primary human producing fixed CD8 T cells revealed that IL-2 cells produce helper + + + CD8 Tcells. -
Identification of 18 Immune Cell Subsets Using 13-Color Panel
Immunophenotyping Identification of 18 immune cell subsets in human blood using a 13-color panel Background Cell type Function Phenotype Flow cytometry has become the method of choice for Eosinophils Parasitic immunity CD45+, SSCmid/hi, CD14 –, CD16 –, CD19– immunophenotyping and identifying specific cellular + mid/hi subsets. Within seconds, it provides a thorough overview of Neutrophils Innate Immunity CD45 , SSC , CD14 –, CD16+, CD19– the major cell types that constitute a sample. Using multiple + mid markers simultaneously increases the number of parameters Classical Phagocytosis of CD45 , SSC , monocytes pathogens and CD14+, CD16– that can be analyzed per run and decreases the amount of antigen presentation starting material required to perform an assay. This can be Intermediate Phagocytosis of CD45+, SSCmid, critical for precious sample material and long-term immune- monocytes pathogens and CD14+, CD16mid monitoring studies. In this application note, we demonstrate antigen presentation 13-color immunophenotyping of human peripheral blood Non-classical Phagocytosis of CD45+, SSCmid, + + mononuclear cells (PBMCs) using the MACSQuant® Analyzer 16, monocytes pathogens and CD14 , CD16 antigen presentation a compact and reliable benchtop flow cytometer equipped + low + with three lasers. The markers selected allow for the Class-switched Adaptive immunity CD45 , SSC , CD19 , memory B cells CD27+, IgD–, CD14– simultaneous identification and analysis of 18 different cell Non-switched Adaptive immunity CD45+, SSClow, CD19+, populations, thus maximizing the amount of information that memory B cells CD27+, IgD+, CD14– can be retrieved from the sample material analyzed. This is Naive B cells Adaptive immunity – CD45+, SSClow, CD19+, critical when input material is limited, as is often the case for non-antigen CD27–, IgD+, CD14– pediatric or disease studies. -
Optimal Minimal Panels of Immunohistochemistry for Diagnosis of B-Cell Lymphoma for Application in Countries with Limited Resources and for Triaging Cases Before
AJCP /ORIGINAL ARTICLE Optimal Minimal Panels of Immunohistochemistry for Diagnosis of B-Cell Lymphoma for Application in Countries With Limited Resources and for Triaging Cases Before Referral to Specialist Centers Downloaded from https://academic.oup.com/ajcp/article-abstract/145/5/687/2195691 by World Health Organization user on 09 January 2019 Maria Giulia Disanto, MD,1 Maria Raffaella Ambrosio, MD, PhD,2 Bruno Jim Rocca, MD, PhD,2 Hazem A. H. Ibrahim, FRCPath, PhD,1,3 Lorenzo Leoncini, MD, PhD,2 and Kikkeri N. Naresh, MD, FRCPath1 From the 1Department of Histopathology, Imperial College Healthcare NHS Trust & Imperial College, London, United Kingdom; 2Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy; and 3Department of Histopathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt. Key Words: Lymphoma; B-cell lymphoma; Immunohistochemistry; Diagnosis; Classification; Developing countries Am J Clin Pathol May 2016;145:687-695 DOI: 10.1093/AJCP/AQW060 ABSTRACT Lymphomas are a collection of different malignancies “arising” from lymphoid cells. They include about 49 entities, Objectives: Establish and validate optimal minimal and over 19 provisional entities and subsets.1 About 85% of immunohistochemistry panels for usage in a staged lymphomas are of B-cell origin. Precision in lymphoma diag- algorithmic manner for precise diagnosis of B-cell nosis requires expertise and infrastructure. The entities are lymphomas in countries with limited resources. Suggest defined based on morphology, immunohistochemistry (on short panels of immunostains to be used in referring units some occasions in situ hybridization), cytogenetics/fluores- that refer suspected lymphomas to specialist diagnostic cent in situ hybridization (FISH), molecular genetics and clin- centers in resourceful countries. -
Cd4/Cd8 Panel, Blood
Lab Dept: Flow and Immunology Test Name: CD4/CD8 PANEL, BLOOD General Information Lab Order Codes: C48P Synonyms: Helper/Suppressor Ratio; T- cells; T-cell subsets; T-cell phenotyping See also: Immune Status Panel and Comprehensive Immune Status Panel CPT Codes: 86359 – T cells, total count 86360 – T cells; absolute CD4 and CD8 count, including ratio Test Includes: CD4(CD3+) and CD8(CD3+) relative percentages, absolute values and a calculated Helper/Suppressor ratio. Logistics Test Indications: This is a minimal antibody panel to monitor immune status. Lab Testing Sections: Flow Cytometry Phone Numbers: MIN Lab: 612-813-6280 STP Lab: 651-220-6550 Test Availability: 3 times weekly determined by volume. Transport collected specimen immediately to Flow Cytometry. Routine testing is not available on weekends or holidays. Therefore, specimens cannot be used if drawn the day before a 3 day weekend such as Memorial Day, Labor Day or major holiday that falls on a Monday or Friday. Turnaround Time: 1 – 3 days Special Instructions: See Test Availability Specimen Specimen Type: Whole blood Container: Lavender top (EDTA) tube Draw Volume: 2 mL blood in a 2 mL Lavender (EDTA) tube Minimum volume: 0.5 mL in an EDTA microtainer Collection: Routine venipuncture Special Processing: Keep sample at room temperature and forward promptly to the laboratory. Do not centrifuge, refrigerate, or freeze sample. Patient Preparation: None Sample Rejection: Specimens will not be processed that are clotted; hemolyzed; greater than 72 hours old; collected in the wrong tube type (0.5 mL in a 2 mL tube), or that have been held or handled at a temperature other than room temperature Interpretive Reference Range: Age-dependant reference ranges provided with results. -
Flow Cytometry CPT: 88182, 88184, 88185, 88187, 88188, 88189, 86355, 86356, 86357, 86359, 86360, 86361, 86367
Medicare Local Coverage Determination Policy Flow Cytometry CPT: 88182, 88184, 88185, 88187, 88188, 88189, 86355, 86356, 86357, 86359, 86360, 86361, 86367 CMS Policy for Alaska, Arizona, Idaho, Montana, North Dakota, Medically Supportive Oregon, South Dakota, Utah, Washington, and Wyoming ICD Codes are listed Local policies are determined by the performing test location. This is determined by the state on subsequent page(s) in which your performing laboratory resides and where your testing is commonly performed. of this document. Coverage Indications, Limitations, and/or Medical Necessity Flow cytometry (FCM) is a complex process to examine blood, body fluids, CSF, bone marrow, lymph node, tonsil, spleen and other solid tissues. The use of peripheral blood and fine needle aspirate material avoids more invasive procedures for diagnosis. A flow cytometer evaluates the physical and/or chemical characteristics of single cells as the cells pass individually in a fluid stream through a measuring device. Surface receptors, intracellular molecules, and DNA bind with fluorescent dyes that allow detection and evaluation. When light of one wave length excites electrons of certain chemicals to energy levels above their ground state and upon return to ground state emits light of a longer wavelength, fluorescence is produced. A flow cytometer detects cell characteristics by measuring the fluorescence produced by fluorochromes conjugated either directly with cell components or conjugated to antibodies directed against cell components. Indications • Cytopenias and Hypercellular Hematolymphoid Disorders Hematolymphoid neoplasia can present with cytopenias (anemia, leucopenia and/or thrombocytopenia) or elevated leukocyte counts. If medical review and preliminary laboratory testing fails to reveal a cause, bone marrow aspiration and biopsy are indicated to rule out an infiltrative process or a stem cell disorder. -
MGD011, a CD19 X CD3 Dual-Affinity Retargeting Bi-Specific Molecule Incorporating Extended Circulating Half-Life for the Treatment of B-Cell Malignancies
Published OnlineFirst September 23, 2016; DOI: 10.1158/1078-0432.CCR-16-0666 Cancer Therapy: Preclinical Clinical Cancer Research MGD011, A CD19 x CD3 Dual-Affinity Retargeting Bi-specific Molecule Incorporating Extended Circulating Half-life for the Treatment of B-Cell Malignancies Liqin Liu, Chia-Ying K. Lam, Vatana Long, Lusiana Widjaja, Yinhua Yang, Hua Li, Linda Jin, Steve Burke, Sergey Gorlatov, Jennifer Brown, Ralph Alderson, Margaret D. Lewis, Jeffrey L. Nordstrom, Scott Koenig, Paul A. Moore, Syd Johnson, and Ezio Bonvini Abstract Purpose: CD19, a B-cell lineage-specific marker, is highly autologous B-cell depletion in PBMCs from both species. represented in B-cell malignancies and an attractive target for MGD011-mediated killing was accompanied by target-depen- therapeutic interventions. MGD011 is a CD19 x CD3 DART dent T-cell activation and expansion, cytokine release and bispecific protein designed to redirect T lymphocytes to eliminate upregulation of perforin and granzyme B. MGD011 demon- CD19-expressing cells. MGD011 has been engineered with a strated antitumor activity against localized and disseminated modified human Fc domain for improved pharmacokinetic (PK) lymphoma xenografts reconstituted with human PBMCs. In properties and designed to cross-react with the corresponding cynomolgus monkeys, MGD011 displayed a terminal half-life antigens in cynomolgus monkeys. Here, we report on the preclin- of 6.7 days; once weekly intravenous infusion of MGD011 at ical activity, safety and PK properties of MGD011. dosesupto100mg/kg, the highest dose tested, was well Experimental Design: The activity of MGD011 was evaluated tolerated and resulted in dose-dependent, durable decreases in several in vitro and in vivo models. -
CD3+CD5+CD4-CD8-) Alpha/Beta T Cell Receptor-Bearing Cells
Mlsa generated suppressor cells. I. Suppression is mediated by double-negative (CD3+CD5+CD4-CD8-) alpha/beta T cell receptor-bearing cells. This information is current as of October 2, 2021. M Bruley-Rosset, I Miconnet, C Canon and O Halle-Pannenko J Immunol 1990; 145:4046-4052; ; http://www.jimmunol.org/content/145/12/4046 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription by guest on October 2, 2021 Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1990 by American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. 0022-1767/90/14512-4046$02.00/0 THEJOURNAL OF IMMUNOLCGY Vol. 145.4046-4052. No. 12. December 15. 1990 Copyright 0 1990 by The American Association of lmmunologists Printed In U.S.A. Mls" GENERATED SUPPRESSORCELLS I. Suppression is Mediated by Double-Negative (CD3+CDVCD4-CD8-) a/@ T Cell Receptor-Bearing Cells' Grafting of cells from B10.D2 (H-2d)donors into H- The GVHR3 remains a major problem after bone mar- 2 compatible lethally irradiated (DBA/2 x B1O.DZ)Fl row transplantation, even in MHC-compatible donor-re- hostsresults in a severe graft-vs-host reaction cipient combinations. -
Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature
cells Article Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature 1, 2, 1, 1, Sónia Fonseca y, Vanessa Pereira y, Catarina Lau z, Maria dos Anjos Teixeira z, Marika Bini-Antunes 3 and Margarida Lima 1,* 1 Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), 4099-001 Porto Porto, Portugal; [email protected] (S.F.); [email protected] (C.L.); [email protected] (M.d.A.T.) 2 Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), 4434-502 Vila Nova de Gaia, Portugal; [email protected] 3 Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), 4099-001Porto, Portugal; [email protected] * Correspondence: [email protected]; Tel.: + 351-22-20-77-500 These authors contributed equally to this work. y These authors contributed equally to this work. z Received: 10 February 2020; Accepted: 13 March 2020; Published: 16 March 2020 Abstract: Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1. -
Ligand for Bovine CD5 the Identification and Characterization of A
The Identification and Characterization of a Ligand for Bovine CD5 Karen M. Haas and D. Mark Estes This information is current as J Immunol 2001; 166:3158-3166; ; of September 27, 2021. doi: 10.4049/jimmunol.166.5.3158 http://www.jimmunol.org/content/166/5/3158 Downloaded from References This article cites 46 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/166/5/3158.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Identification and Characterization of a Ligand for Bovine CD51 Karen M. Haas* and D. Mark Estes2*† CD5, a type I glycoprotein expressed by T cells and a subset of B cells, is thought to play a significant role in modulating Ag receptor signaling. Previously, our laboratory has shown that bovine B cells are induced to express this key regulatory molecule upon Ag receptor cross-linking.