Checklist of Literature on Malaysian Macrofungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating. -
Buglossoporus Pulvinus (Pers.) Donk) Входит В Число Редких Видов Макромицетов, Имеющих Высокий Природоохранный Статус Во Многих Странах Европы
УДК 582.284 : 581.527+581.42 (477.54) РЕДКИЙ ГРИБ PIPTOPORUS QUERCINUS (SCHRAD.) P. KARST. ИЗ НАЦИОНАЛЬНОГО ПРИРОДНОГО ПАРКА «ГОМОЛЬШАНСКИЕ ЛЕСА» Ордынец А.В., Акулов А.Ю. Кафедра микологии и фитоиммунологии, Харьковский национальный университет им. В.Н. Каразина пл. Свободы, 4, 61077, г. Харьков, Украина; e-mail: [email protected] Abstract. The article is devoted to a rare macromycete species Piptoporus quercinus (Schrad.) P. Karst., which has the high nature-conservative status and is included to Red lists of many European countries. The information about finding of this species on the territory of National nature park "Gomolshanskie lesa" (Zmiev area of Kharkiv district, Ukraine) is resulted. The localities of species detection on the territory of National park, the morphological, taxonomical and ecological characteristics of species, and the action plan for P. quercinus conservation are specified. Трутовый гриб Piptoporus quercinus (Schrad.) P. Karst. (=Buglossoporus pulvinus (Pers.) Donk) входит в число редких видов макромицетов, имеющих высокий природоохранный статус во многих странах Европы. Этот гриб развивается на старовозрастных дубах (Quercus spp.), и его численность существенно сокращается по мере уничтожения коренных дубрав [2; 5; 13; 15-19; 21; 22]. В Украине вид Piptoporus quercinus известен всего по нескольким находкам, и до недавнего времени был обнаружен на территории двух ботанико-географических регионов страны: Карпат и Закарпатья [1; 4]. В период 2002-2006 гг. этот вид был впервые обнаружен нами в Левобережной Украине: на валежных стволах и пнях Quercus robur L. в различных кварталах Национального природного парка «Гомольшанские леса». Учитывая редкость этого вида в общемировом масштабе, мы считаем необходимым привести подробную морфолого-таксономическую и экологическую характеристику этого вида, описать локалитеты его обнаружения на территории парка, а также мероприятия, необходимые для его сохранения. -
Diversity of Polyporales in the Malay Peninsular and the Application of Ganoderma Australe (Fr.) Pat
DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS MOHAMAD HASNUL BIN BOLHASSAN FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS MOHAMAD HASNUL BIN BOLHASSAN THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: MOHAMAD HASNUL BIN BOLHASSAN (I.C No: 830416-13-5439) Registration/Matric No: SHC080030 Name of Degree: DOCTOR OF PHILOSOPHY Title of Project Paper/Research Report/Disertation/Thesis (“this Work”): DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS. Field of Study: MUSHROOM DIVERSITY AND BIOTECHNOLOGY I do solemnly and sincerely declare that: 1) I am the sole author/writer of this work; 2) This Work is original; 3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledge in this Work; 4) I do not have any actual -
Book on Specific Groups of Fungi Code General Ainsworth & Bisby’S Dictionary of the Fungi
Book on Specific Groups of Fungi code General Ainsworth & Bisby’s Dictionary of the Fungi. Cab International dictfu Color Atlas of Basidiomycetes. Gustav Fischer farbat Ascomycetes Fungi of Switzerland. Volume 1: Ascomycetes. Verlag Mykologia, Luzern. asz Illustrated Genera of Ascomycetes. APS Press. illus1 Illustrated Genera of Ascomycetes. Volume II. APS Press. illus2 Combined Keys to Illustrated Genera of Ascomycetes I & II comill Mushrooms of Idaho and the Pacific Northwest. Vol 1. Discomycetes. University of Idaho Press. nwdisc Nordic Macromycetes. Vol. 1. Ascomycetes. Nordsvamp, Copenhagen. nord1 Boletes Fungi of Switzerland. Volume 3: Boletes and agarics, 1st part: Strobilomycetaceae, Boletaceae, Paxillaceae, bolsz Gomphidiaceae, Hygrophoraceae, Tricholomtaceae, Polyporaceae (lamellate). Verlag Mykologia, Nordic Macromycetes. Vol. 2. Poyporales, Boletales, Agaricales, Russulales. Nordsvamp, Copenhagen. normac North American Boletes. A Color Guide to the Fleshy Pored Mushrooms. Syracuse University Press, Syracuse. norbol Corticioid The Corticiaceae of North Europe Vol 1: Introduction and Keys. Fungiflora cort1 The Corticiaceae of North Europe Vol 3: Coronicium-Hyphoderma, . Fungiflora cort3 The Corticiaceae of North Europe Vol 8: Phlebiella,Thanatephorus-Ypsilonidlum, . Fungiflora cort8 The Lachnocladiaceae and Coniophoraceae of North Europe. Fungiflora lach Cantharellus, Cantharelloid, and Gomphoid fungi British Fungus Flora: Vol. 8: Cantharellaceae, Gomphaceae, and amyloid-spores and xeruloid members of cangom Tricholomataceae -
Type Studies in Polyporaceae 27. Species Described by P. Ch
CZECH MYCOLOGY 64(1): 13–21, JULY 2, 2012 (ONLINE VERSION, ISSN 1805-1421) Type studies in Polyporaceae 27. Species described by P. Ch. Hennings LEIF RYVARDEN Biological Institute, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway; [email protected] Ryvarden L. (2012): Type studies in Polyporaceae 27. Species described by P. Ch. Hennings. – Czech Mycol. 64(1): 13–21. 103 polypores described by P. Ch. Hennings have been examined based on the available types. Nine- teen species are accepted, 63 species are reduced to synonymy, the types of 19 species could not be found, while two names are illegitimate. Two new combinations are proposed: Tyromyces aquosus (Henn.) Ryvarden and Diplomitoporus daedaleiformis (Henn.) Ryvarden. These two species are provided with de- scriptions, while published recent descriptions are referred to for the other 17 accepted species. Key words: Polyporaceae, types, taxonomy, nomenclature, Berlin herbarium. Ryvarden L. (2012): Typové studie chorošů 27. Druhy popsané P. Ch. Henning- sem – Czech Mycol. 64(1): 13–21. Na základě studia dostupných typů bylo revidováno 103 druhů chorošů popsaných P. Ch. Henning- sem. 19 druhů je akceptováno, 63 zařazeno do synonymiky, typy 19 druhů nebyly nalezeny, jména 2 dru- hů jsou ilegitimní. Jsou publikovány dvě nové kombinace: Tyromyces aquosus (Henn.) Ryvarden a Di- plomitoporus daedaleiformis (Henn.) Ryvarden. Tyto dva druhy jsou podrobně popsány a u 17 dalších akceptovaných druhů jsou připojeny odkazy na již publikované revize. INTRODUCTION Paul Christoph Hennings (1841–1908) was a productive mycologist, who de- scribed besides other species 109 polypores, mostly from Africa and South Amer- ica. -
Decrypting the Polyporus Dictyopus Complex: Recovery of Atroporus Ryvarden and Segregation of Neodictyopus Gen
RESEARCH ARTICLE Decrypting the Polyporus dictyopus complex: Recovery of Atroporus Ryvarden and segregation of Neodictyopus gen. nov. (Polyporales, Basidiomyocta) Melissa Palacio1☯*, Gerardo Lucio Robledo2☯*, Mateus Arduvino Reck1, Emanuel Grassi3, AristoÂteles Go es-Neto4, Elisandro Ricardo Drechsler-Santos1* a1111111111 1 Programa de PoÂs-GraduacËão em Biologia de Fungos, Algas e Plantas, Departamento de BotaÃnica, Universidade Federal de Santa Catarina, FlorianoÂpolis, Santa Catarina, Brasil, 2 Instituto Multidisciplinario de a1111111111 BiologõÂa Vegetal, Universidad Nacional de CoÂrdoba, CoÂrdoba, Argentina, 3 Instituto Misionero de a1111111111 Biodiversidad (IMiBio), Puerto Iguazu - Misiones±Argentina, 4 Molecular and Computational Biology of Fungi a1111111111 Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, a1111111111 Belo Horizonte, Minas Gerais, Brazil ☯ These authors contributed equally to this work. * [email protected] (MP); [email protected] (GR); [email protected] (ERD) OPEN ACCESS Citation: Palacio M, Robledo GL, Reck MA, Grassi Abstract E, GoÂes-Neto A, Drechsler-Santos ER (2017) Polyporus dictyopus, with a large number of heterotypic synonyms, has been traditionally Decrypting the Polyporus dictyopus complex: Recovery of Atroporus Ryvarden and segregation considered a species complex, characterized by wide morphological variation and geo- of Neodictyopus gen. nov. (Polyporales, graphic distribution. Thus, neotropical specimens previously identified as P. dictyopus from Basidiomyocta). PLoS ONE 12(10): e0186183. Amazonia, Cerrado and Atlantic Forest biomes were studied based on detailed macro- and https://doi.org/10.1371/journal.pone.0186183 micromorphological examination and phylogenetic analyses, using distinct ribosomal and Editor: Erika Kothe, Friedrich Schiller University, protein-coding genomic regions: the nuclear ribosomal internal transcribed spacer (nrITS), GERMANY nuclear ribosomal large subunit (nrLSU), and RNA polymerase II second subunit (RPB2). -
Ten Principles for Conservation Translocations of Threatened Wood- Inhabiting Fungi
Ten principles for conservation translocations of threatened wood- inhabiting fungi Jenni Nordén 1, Nerea Abrego 2, Lynne Boddy 3, Claus Bässler 4,5 , Anders Dahlberg 6, Panu Halme 7,8 , Maria Hällfors 9, Sundy Maurice 10 , Audrius Menkis 6, Otto Miettinen 11 , Raisa Mäkipää 12 , Otso Ovaskainen 9,13 , Reijo Penttilä 12 , Sonja Saine 9, Tord Snäll 14 , Kaisa Junninen 15,16 1Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349 Oslo, Norway. 2Dept of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland. 3Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK 4Bavarian Forest National Park, D-94481 Grafenau, Germany. 5Technical University of Munich, Chair for Terrestrial Ecology, D-85354 Freising, Germany. 6Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O.Box 7026, 750 07 Uppsala, Sweden. 7Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland. 8School of Resource Wisdom, P.O. Box 35, FI-40014 University of Jyväskylä, Finland. 9Organismal and Evolutionary Biology Research Programme, P.O. Box 65, FI-00014 University of Helsinki, Finland. 10 Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway. 11 Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland. 12 Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland. 13 Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway. 14 Artdatabanken, Swedish University of Agricultural Sciences, P.O. Box 7007, SE-75007 Uppsala, Sweden. -
2 the Numbers Behind Mushroom Biodiversity
15 2 The Numbers Behind Mushroom Biodiversity Anabela Martins Polytechnic Institute of Bragança, School of Agriculture (IPB-ESA), Portugal 2.1 Origin and Diversity of Fungi Fungi are difficult to preserve and fossilize and due to the poor preservation of most fungal structures, it has been difficult to interpret the fossil record of fungi. Hyphae, the vegetative bodies of fungi, bear few distinctive morphological characteristicss, and organisms as diverse as cyanobacteria, eukaryotic algal groups, and oomycetes can easily be mistaken for them (Taylor & Taylor 1993). Fossils provide minimum ages for divergences and genetic lineages can be much older than even the oldest fossil representative found. According to Berbee and Taylor (2010), molecular clocks (conversion of molecular changes into geological time) calibrated by fossils are the only available tools to estimate timing of evolutionary events in fossil‐poor groups, such as fungi. The arbuscular mycorrhizal symbiotic fungi from the division Glomeromycota, gen- erally accepted as the phylogenetic sister clade to the Ascomycota and Basidiomycota, have left the most ancient fossils in the Rhynie Chert of Aberdeenshire in the north of Scotland (400 million years old). The Glomeromycota and several other fungi have been found associated with the preserved tissues of early vascular plants (Taylor et al. 2004a). Fossil spores from these shallow marine sediments from the Ordovician that closely resemble Glomeromycota spores and finely branched hyphae arbuscules within plant cells were clearly preserved in cells of stems of a 400 Ma primitive land plant, Aglaophyton, from Rhynie chert 455–460 Ma in age (Redecker et al. 2000; Remy et al. 1994) and from roots from the Triassic (250–199 Ma) (Berbee & Taylor 2010; Stubblefield et al. -
Collecting and Recording Fungi
British Mycological Society Recording Network Guidance Notes COLLECTING AND RECORDING FUNGI A revision of the Guide to Recording Fungi previously issued (1994) in the BMS Guides for the Amateur Mycologist series. Edited by Richard Iliffe June 2004 (updated August 2006) © British Mycological Society 2006 Table of contents Foreword 2 Introduction 3 Recording 4 Collecting fungi 4 Access to foray sites and the country code 5 Spore prints 6 Field books 7 Index cards 7 Computers 8 Foray Record Sheets 9 Literature for the identification of fungi 9 Help with identification 9 Drying specimens for a herbarium 10 Taxonomy and nomenclature 12 Recent changes in plant taxonomy 12 Recent changes in fungal taxonomy 13 Orders of fungi 14 Nomenclature 15 Synonymy 16 Morph 16 The spore stages of rust fungi 17 A brief history of fungus recording 19 The BMS Fungal Records Database (BMSFRD) 20 Field definitions 20 Entering records in BMSFRD format 22 Locality 22 Associated organism, substrate and ecosystem 22 Ecosystem descriptors 23 Recommended terms for the substrate field 23 Fungi on dung 24 Examples of database field entries 24 Doubtful identifications 25 MycoRec 25 Recording using other programs 25 Manuscript or typescript records 26 Sending records electronically 26 Saving and back-up 27 Viruses 28 Making data available - Intellectual property rights 28 APPENDICES 1 Other relevant publications 30 2 BMS foray record sheet 31 3 NCC ecosystem codes 32 4 Table of orders of fungi 34 5 Herbaria in UK and Europe 35 6 Help with identification 36 7 Useful contacts 39 8 List of Fungus Recording Groups 40 9 BMS Keys – list of contents 42 10 The BMS website 43 11 Copyright licence form 45 12 Guidelines for field mycologists: the practical interpretation of Section 21 of the Drugs Act 2005 46 1 Foreword In June 2000 the British Mycological Society Recording Network (BMSRN), as it is now known, held its Annual Group Leaders’ Meeting at Littledean, Gloucestershire. -
ISMM NEWSLETTER, Volume 1, Issue 8, Date Released:2017-12-18
Volume 1, Issue 8 Date-released: December 18, 2017 News reports - The 9th International Medicinal Mushrooms Conference (IMMC9) - The 11th Chinese Mushroom Festival held in Zhangzhou Up-coming events - First Circular of the First Chinese (Gutian) Rare Mushroom Conference - Welcome to International Mycological Congress (IMC) 11 Research progress - New Researches - Recommendation of Book--Edible and Medicinal Mushrooms Technology and Applications, Edited by Diego Cunha Zied and Arturo Pardo-Gimenez Points and Reviews - Medicinal Mushrooms (Part III), by Jure Pohleven, Tamara Korošec, Andrej Gregori - Medicinal Mushrooms in Human Clinical Studies. Part I. Anticancer, Oncoimmunological, and Immunomodulatory Activities: A Review (Part I), by Solomon P. Wasser Call for Papers Contact information Issue Editor- Mr. Ziqiang Liu [email protected] Department of Edible Mushrooms, CFNA, 4/F, Talent International Building No. 80 Guangqumennei Street, Dongcheng District, Beijing 10062, China News Reports The 9th International Medicinal Mushrooms Conference (IMMC9), September 24-28, 2017, Palermo, Italy Maria Letizia Gargano1& Giuseppe Venturella2 1Department of Earth and Maine Science, University of Palermo, Bld. 16, I-90128 Palermo (Italy); 2Department of Agricultural, Food and Forest Sciences, University of Palermo, Bld. 5, I-90128 Palermo (Italy) In September 2017 over 200 delegates from 49 different countries (Fig. 1) gathered in Splendid Hotel La Torre, Mondello (Palermo, Italy), for the 9th International Medicinal Mushrooms Conference. IMMC9 in Palermo was the first to be held in Italy. The theme to the Conference was “Advances in Medicinal Mushroom Science: Building Bridges between Western and Eastern Medicine”. IMMC9 participants had the opportunity to discuss and share scientific innovations in the medicinal mushroom sector and to become aware of current research results. -
Phylogenetic Position and Taxonomy of Kusaghiporia Usambarensis Gen
Mycology An International Journal on Fungal Biology ISSN: 2150-1203 (Print) 2150-1211 (Online) Journal homepage: http://www.tandfonline.com/loi/tmyc20 Phylogenetic position and taxonomy of Kusaghiporia usambarensis gen. et sp. nov. (Polyporales) Juma Mahmud Hussein, Donatha Damian Tibuhwa & Sanja Tibell To cite this article: Juma Mahmud Hussein, Donatha Damian Tibuhwa & Sanja Tibell (2018): Phylogenetic position and taxonomy of Kusaghiporia usambarensis gen. et sp. nov. (Polyporales), Mycology, DOI: 10.1080/21501203.2018.1461142 To link to this article: https://doi.org/10.1080/21501203.2018.1461142 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 15 Apr 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmyc20 MYCOLOGY, 2018 https://doi.org/10.1080/21501203.2018.1461142 Phylogenetic position and taxonomy of Kusaghiporia usambarensis gen. et sp. nov. (Polyporales) Juma Mahmud Husseina,b, Donatha Damian Tibuhwab and Sanja Tibella aInstitute of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden; bDepartment of Molecular Biology and Biotechnology, College of Natural & Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania ABSTRACT ARTICLE HISTORY A large polyporoid mushroom from the West Usambara Mountains in North-eastern Tanzania Received 17 November 2017 produces dark brown, up to 60-cm large fruiting bodies that at maturity may weigh more than Accepted 2 April 2018 10 kg. It has a high rate of mycelial growth and regeneration and was found growing on both dry KEYWORDS and green leaves of shrubs; attached to the base of living trees, and it was also observed to Kusaghiporia; molecular degrade dead snakes and insects accidentally coming into contact with it. -
Taxonomic Study of Favolus and Neofavolus Gen. Nov. Segregated from Polyporus (Basidiomycota, Polyporales)
Taxonomic study of Favolus and Neofavolus gen. nov. segregated from Polyporus (Basidiomycota, Polyporales) Kozue Sotome, Yasunori Akagi, Su See Lee, Noemia K. Ishikawa & Tsutomu Hattori Fungal Diversity An International Journal of Mycology ISSN 1560-2745 Volume 58 Number 1 Fungal Diversity (2013) 58:245-266 DOI 10.1007/s13225-012-0213-6 1 23 Your article is protected by copyright and all rights are held exclusively by Mushroom Research Foundation. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Fungal Diversity (2013) 58:245–266 DOI 10.1007/s13225-012-0213-6 Taxonomic study of Favolus and Neofavolus gen. nov. segregated from Polyporus (Basidiomycota, Polyporales) Kozue Sotome & Yasunori Akagi & Su See Lee & Noemia K. Ishikawa & Tsutomu Hattori Received: 31 July 2012 /Accepted: 24 October 2012 /Published online: 7 November 2012 # Mushroom Research Foundation 2012 Abstract We present a taxonomic study of ‘group Favolus’ clade, and revise the genus Favolus, typified by F. brasi- and related species in Polyporus. Phylogenetic analyses of liensis, for the latter clade. Neofavolus includes N. mikawai nurLSU and ITS regions revealed that the infrageneric and N. cremeoalbidus sp. nov., known only from temperate ‘group Favolus’ is divided into two main clades.