<<

Geo Alp

A new yearly journal devoted to · Alpine geology

Neue Jahreszeitschrift zur AI pe·ngeolog ie

La nuova rivista per Ia Geologia delle AI pi Geo.Aip

Redaktionskomitee: Rainer Brandner, lnnsbruck, Diethard Sanders, lnnsbruck, Volkmar Mair, Bozen, Benno Baumgarten, Naturmuseum Bozen

Technische Redaktion/Layout: Monika Tessadri-Wackerle

Herausgeber, EigentUmer und Verleger: lnstitut fur Geologie und PaHiontologie, Universitat lnnsbruck, Naturmuseum Bozen

Chefredakteur Geo.Aip 2: Karl Krainer

Referentlnnen dieser Nummer: M. Breda, Padova; H. Kerp, Munster; T. Kotsakis, Roma; S.G. Lucas, Albuquerque; D. Nagel, Vienna; Chr. Rupp, Vienna B. Sala, Ferrara; R. Sardella, Roma; G. Tichy, Salzburg

Erscheinungsweise und Bezug: Geo.Aip erscheint einmal jahrlich und kann bei beiden herausgebenden lnstitutionen im Abonnement oder einzeln bezogen werden : lnstitut fUr Geologie und Palaontologie, lnnrain 52, A-6020 lnnsbruck, Austria Naturmuseum SUdtiroi/Museo Scienze Naturali Alto Adige, Bindergasse/via Bottai 1, 1-39100 Bozen/Bolzano,

© lnstitut fUr Geologie and jlalaontologie, Universitat lnnsbruck; Naturmuseum SUdtiroi/Museo Scienze Naturali Alto Adige

Genehmigung des Landesgerichts Bozen Nr. 12/2004 vim 05/11/2004

Verantwortli~;:her Direktor: Dr. Vito lingerie

ISSN 1824-7741

Umschlagbild: Monika Tessadri-Wackerle, verwendete Abbildung von Evely Kustatscher

Druck: Walser Druck KG F

Geo.Aip

In halt

Herbert Scholz, Karl-Heinz Bestle & Sebastian Willerich: Ouartargeologische Untersuchungen im Oberetsch

Beitrage zu ,Giornate della Paleontologia der Societa Paleontologica ltaliana 2004", 20-23. Mai 2004:

Raffaele Sardella, Claudia Bedetti, Luca Bellucci, Nicoletta Conti, Danilo Coppola, Emmanuele Di Canzio, Marco Pavia, Carmela Petronio, Mauro Petrucci & Leonardo Salari: The Late vertebrate fauna from Avetrana (Taranto, Apulia, Southern Italy): preliminary report...... 25

Evelyn Kustatscher & Johanna H.A. van Konijnenburg-van Cittert: The Ladinian Flora (Middle ) of the : palaeoenvironmental reconstructions and palaeoclimatic considerations ...... 31

Cristiana lata & lassos Kotsakis: Italian fossil chiropteran assemblages: a preliminary report ...... 53

Gabriella Mangano: Cervus elaphus siciliae from Pleistocene lacustrine deposits of Acquedolci (North-Eastern Sicily, Italy) and its taphonomic significance...... 61

Gabriella Mangano, Laura Bonfiglio & Daria Petruso: Excavations of 2003 at the S. Teodoro Cave (north-eastern Sicily, Italy): preliminary faunistic and stratigraphic data 71

Giuseppe Santi: Lower paleoichnology from the Oroboc basin (northern Italy) ...... 77

Maria Teresa Curcio, Longino Contoli, Emanuele Di Canzio & lassos Kotsakis: Preliminary analysis of the first lower molar variability in Late Pleistocene and living populations of Terri cola savii (Arvicolidae, Rodentia) ...... 91

Davide Mana: A test application of the SHE method as a biostratigraphical parameter ...... 99

Cinzia Galli, Mario Rossi & Giuseppe Santi: Ursus spe/aeus Rosen muller, 1794 from the Venetian region of Northern Italy: Preliminary notes on its evolutionary path ...... 107

Alessandro de Carlis, Enrico Alluvione, Alessandro Fonte, Mario Rossi & Giuseppe Santi: Morphometry of the Ursus spelaeus remains from Valstrona (Northern Italy) ...... 115

Abstracts zu ,Giornate della Paleontologia der Societa Paleontologica ltaliana 2004", 20-23. Mai 2004:

Francesco Garofalo, Fabrizio Bizzarini & Federica Ferrieri: The activities of the Ligabue Study Research Centre on the thirtieth anniversary of its foundation ...... 127

Nicola Daii'Oiio: The origin of the palaeontological fossil concept ...... 131 INSTRUCTIONS TO AUTHORS

Articles may be submitted in English, German or Italian. In case of a German or Italian text, the captions to all fig­ ures, plates and tables must be also in English, and an English abridged version (1000-1500 words) and abstract are to be delivered.

Articles shall be submitted in th~e copies to:

Karl Krainer, Diethard Sanders, Institute of Geology and Palaeontology, University of lnnsbruck, lnnrain 52, A-6020 lnnsbruck, Austria. E-mail: [email protected]; [email protected] or to: Benno Baumgarten, Naturmuseum Si.ldtiroi/Museo Scienze Naturali Alto Adige, Bindergasse 1Nia Bottai 1, 1-39100 Bozen/Bolzano, Italy: E-mail: [email protected]

Articles must be typed double-space. The quality of line-drawings must be ready for print. In line-drawings and fig­ ures of any sort, all labellings, numbers and letters should be readable upon 50% reduction in size.

Photographs and line-drawings can be submitted in original hardcopy, or in an electronic format. All photographs must be clearly labelled on the backside.

For photographic tables: please note that the page setup of Geo.Aip is 23.47 x 16,70 em (8 em column width).

The final text (Word file) must be submitted on CD or Zip disk. The name of the author, the name and version of the word processing program(s) and type of computer on which the text was prepared must be indicated. To avoid obso­ lete passages in the manuscript please note that Word files should be saved after using the option "Accept Changes" in the Tools Menu.

Word tables must be on single pages for transformation into pdf format or already in pdf format. .. The text should be submitted in single column format, and should be formatted as simple as possible (e.g. no bullets and no automatic numbering). Electronic versions of figures and/or photographs must be submitted as separate files (file format: tif (high -resolution jpg files are also possible), photographs with a resolution of 300 dpi (due to print size), line drawings at least 600 dpi; colour images all in CMYK mode.

Referencing:

Articles: Author 1, X. Y., Author 2, Z. A. (2002): Title of article. - International journal abbreviation (e.g. Sediment. Geol.), vol. : pp-pp. .

Articles in books: Author 1, X. Y., Author 2, Z. A. (2002): Title of article.- In: Person A, Person B. (eds.): Title of book, pp-pp, publisher, place of publication.

Books: Author 1, X. Y., Author 2, Z. A. (2002): Title of book. - no. of pages, publisher, place of publication.

Reprints: 50 reprints are free of charge Geo.Alp, Vol. 2, S. 1–23, 2005

QUARTARGEOLOGISCHE UNTERSUCHUNGEN IM ÜBERETSCH

Herbert Scholz, Karl-Heinz Bestle & Sebastian Willerich

Mit 8 Abbildungen und 1 Fototafel With 8 figures and 1 plate

Herbert Scholz, Karl-Heinz Bestle und Sebastian Willerich,Lehrstuhl für Ingenieurgeologie der Technischen Universität München, Arcisstr. 21, D-80290 München; e-mail: [email protected]

Zusammenfassung In der weiten Talung von Eppan-Kaltern im Südtiroler Überetsch bei Bozen ist ein ganzes System von kie- sigen Lateralmoränen, breiten Kamesterrassen sowie in die mächtige, komplex aufgebaute pleistozäne Tal - füllung erosiv eingeschnittenen, kastenförmigen Schmelzwasserrinnen erkennbar, mit deren Hilfe sich unter- schiedliche Eisstände einer „Kalterer Zunge“ aus dem ausgehenden Hochglazial rekonstruieren lassen, einer Teil zunge des Etschgletschers. An den Osthängen des Mendel-Roèn-Kammes sind zudem zertalte Erosionsre- ste von Murfächern nachweisbar, hier als „Murkames“ bezeichnet, die direkt gegen den absinkenden Westrand dieses Gletschers geschüttet wurden. Sehr kalk- und dolomitreiche Mursedimente, durch Eisauflast überkonsolidiert und damit vermutlich älter als der letzte Eishöchststand, aber auch Ablagerungen von deutlich jüngeren Muren, die aus dem Spät- und Postglazial stammen dürften, bedecken große Flächen an der Ostflanke des Mendel-Roèn-Kammes bis ins Tal hinunter, besonders im Gebiet zwischen Margreid, Penon und Kurtatsch. Gerade auf diesen von den Einheimischen „Kampferde“ genannten diamiktischen Ablagerun- gen liegt ein Großteil der Weinberge rund um Tramin und Kurtatsch.

Summary Within the wide vale of Eppan-Kaltern (Appiano-Caldaro) at Überetsch (Oltradige, Sella di Appiano-Cal- daro) close to Bozen (Bolzano) in (Alto Adige) a complicated system of gravelly lateral moraines, large kame terraces as well as erosive fossil meltwater valleys can be identified, which are deeply incised into a thick and complex sequence of Pleistocene sediments. Most of these structures are remnants of the „Kaltern lobe“, a late Pleniglacial tongue of the Etsch (Adige) valley glacier. Moreover erosional remnants of debris fans can be identified at the eastern slopes of Mendola-Roèn-Ridge, obviously deposited in the gap between the mountain slope and the western rim of this recessing glacier (“fankame“). The eastern slopes of the Mendola-Roèn-Ridge, especially the region between Margreid (Magrè all’Adige), Penon (Penone) and Kurtatsch (Cortaccia), are widely covered with debris flow deposits which are extremely rich in limestone and dolomite fragments. They are partly older and partly younger than the “fankame“. Some are obviously over- consolidated by the extra load of glacier ice and therefore presumably older than the Last Glacial Maximum, some are obviously younger and may have a Late to Postglacial age. Many vineyards around Kurtatsch (Cor- taccia) and Tramin (Termeno) are situated right on the surface of these diamictic deposits, called “Kampferde” by the local people.

1 Einleitung mit dem unterpermischen Bozener Quarzporphyr- komplex beginnt, fällt generell leicht nach SW ein. Die hier vorgestellten Ergebnisse wurden im Rah- Die Mächtigkeit des Bozener Quarzporphyrs dürfte men dreier Kartierungsübungen mit fortge - weit über 1000 m betragen, denn das Gebiet befin- schrittenen Geologiestudenten der TU München det sich noch innerhalb der permischen „Caldera von sowie bei eigenen Geländebegehungen im Ge biet Bozen“ (Bosselini 1998: 82), in der besonders mäch- zwischen Oberplanitzing und Margreid in Südtirol tige Ignimbritfolgen akkumuliert wurden. Über den erarbeitet. Diese von Prof. Dr. Herbert Scholz be- permischen Vulkaniten folgt der terrestrische, mit 40 treuten Kartierungsübungen waren vom 31. März bis 70 m vergleichsweise geringmächtige Grödner bis zum 11. April 2002, vom 24. März bis zum 4. Sandstein (Perm), eine teilweise kohleführende, bunt April 2003 und vom 23. März bis zum 3. April 2004 gefärbte Folge von Sandsteinen und Tonschluff - durchgeführt worden und hatten vor allem das Ziel, steinen (Brandner & Mostler 1982, Gwinner 1971). die quartären Sedimente im Überetsch zu erkunden, Die Gröden Formation geht zum Hangenden in genetisch zu klas sifizieren sowie zeitlich zu ordnen. die flach-marine Werfen Formation (Skyth) über. Die Alle Geländeübungen wurden seitens des Amtes für oberpermische Bellerophon Formation, die schon Material prüfung und Geologie in Bozen (Dr. Volk- wenige Kilometer östlich der Etsch weit verbreitet ist mar Mair), des Südtiroler Amtes für Gewässerschutz (Heissel 1982: 22, 28), fehlt hier hingegen völlig. Die und der Gemeinde sowie der freiwilligen Feuerwehr hier aufgeschlossene, regel mäßig gebankte tonig- von Kurtatsch (Bürgermeister Oswald Schiefer, schluffige Schichtfolge der Werfe n Formation ent- Kommandant Albert Terzer) unterstützt. hält zahlreiche feste Bän ke aus Schluffsteinen, An den drei Kartierungsübungen haben folgende Sandsteinen, Dolomiten, Mergelkalken, Kalken und Studenten bzw. Studentinnen teilgenommen: W. Oolithen. Sie lässt sich nicht ohne weiteres mit dem Bäumel, I. Baumann, K.-H. Bestle, A. Dargel, M. Döh- Werfener Standard-Profil im Schlern gebiet oder in ner, M. Elsner, Chr. Gampe, G. Ghon, R. Hohlfeld, J. der nur wenige Kilometer entfernten Bletterbach- Kadlcakova, F. Köppl, M. Lammel, F. Meyer, Chr. schlucht parallelisieren (vergl. Brandner & Mostler Minet, Chr. Mögele, I. Mon sorno, S. Suckfüll, I. Thie- 1982, Moser 1996). Das Unteranis wird durch den le, B. Weiher, Chr. Weber, K. Wendl und S. Willerich. Unteren Sarldolomit und stellenweise durch bren- Eingehendere Untersuchungen zur Quartärgeo- nend rote Sandsteine (evtl. Äqui valente des Voltago- logie des Gemeidegebietes von Kurtatsch wurden Konglomerates) repräsentiert, die sich ohne scharfe im Rahmen zweier Diplomarbeiten von Karl-Heinz Grenze aus der unterla gernden Wer fen Formation Bestle und Sebastian Willerich am Lehr stuhl für In- entwickeln. Diese bunten Sandsteine werden von genieurgeologie der TU München angestellt (Bestle einer grau gefärb ten, kalkig-mergeligen Schichtfol- 2005 und Willerich 2005). Diese Diplomarbeiten ge überlagert, bei denen es sich um Äquivalente der wurden von Prof. Dr. Herbert Scholz im Gebiet zwi- oberanisi schen Mor biac-Kalke handeln dürfte. Diese schen Tramin, Graun, Fennberg und Margreid verge- gehen zum Hangenden hin in den Contrindolomit ben und betreut. Sie wurden vom Amt für Geologie über, dolo mitischen und gebankten gelblich anwit- und Bau stoffkunde in Kardaun sowie von der Ge- ternden Flachwasserkarbonaten des Oberanis. meinde Kurtatsch unterstützt. Allen, die wissen - An den steilen Schluchthängen, die vom Mendel- schaftlich, logistisch oder finanziell zum Gelingen kamm zum Etschtal hinunterziehen, sind im mer wie- dieser Untersuchungen beigetragen haben, sei an der grobblockige Konglomerate mit sandig-tonigem, dieser Stelle herzlich gedankt. rotem Bindemittel, rötliche Sandsteine und Tone aufgeschlossen. Diese konglomeratischen, teilweise riesige Blöcke enthaltenden Sedi mente stellen of- 1. Geologischer Aufbau des Überetsch fensichtlich Füllungen klammartiger fossiler Erosi- onsrinnen dar, die mehrere Dekameter tief in die 1.1 Die Gesteine des Untergrundes im Überblick Schichtfolge der Werfen Formation eingeschnitten sind. Sie werden sicher vom Contrindolomit, teilwei- Die westliche Talflanke der Etschtalfurche süd- se wohl auch von den Morbiac-Kalken überlagert westlich von Bozen, das Gebiet von Überetsch und und sind z.B. an der Forststraße im Höllental auf - dem Mendelkamm, wird vor allem von permotriassi- geschlossen, die von Graun nach Söll führt. Diese schen Gesteinen aufgebaut. Die Schicht folge, die Konglomerate enthalten vor allem gelblich gefärbte

2 Geo.Alp, Vol. 2, 2005 Komponenten der Werfen Formation, daneben aber auf der anderen Seite dieser Talung. Die Oberfläche auch kleine Geröllchen aus hell grauem Dolomit. Ob des Quarz porphyrs am Montiggler Wald scheint es sich um Äquivalente des Richthofen- oder des mehr als 230 m tiefer zu liegen als am gegenüber- Voltago-Konglomerates handelt, ist unbekannt. Die liegenden Gandberg bei Oberplanitzing, der am oben genannten Konglo me rat vor kom men füllen im Mitterberg knapp 100 m tiefer als am gegenüberlie- Höllental fossile Erosionsrinnen auf, die klammartig genden Seeberg bei Altenburg. Insgesamt scheint bis in den Unteren Sarldolomit ein geschnit ten sind. die Etschtalstörung hier also die Struktur eines Gra - An der Anis-Ladin-Grenze entwickeln sich im bens mit etwas ungleich hoch liegenden Graben- Hangenden des Contrindolomits zwischen Margreid schultern zu besitzen. und Tramin die kalkig-mergeligen, teilweise auch Außerdem ist die Schichtfolge durch mehrere sandigen „Zwischenschichten“, eine bitu minöse quer dazu verlaufende, vor allem E-W- bis SE-NW- Beckenfazies mit Tuffiteinschaltungen. In diese orientierte Störungen in einzelne Schollen zerlegt. Schichtfolge sind Dolomite, gebankte Kalksteine An solchen Abschiebungen verspringt die Oberkan- und chaotisch gelagerte Brekzien aus Flachwasser- te des Quarzporphyres erkennbar, etwa nördlich von kalken (Olisto strome) eingeschaltet, denn die „Zwi- Söll oder unmittelbar nördlich des Bergsturzes von schenschichten“ verzahnen sich nach S hin offen - Eppan, wo sich zwischen Matschasch und dem sichtlich mit den Flachwas serablagerungen des ba- Schloss von Englar eine Sprung höhe von rund 480 salen Schlerndolomits. Sie haben sich in einem klei- m ergibt! Viele dieser Störungen werden durch nen, aber vermutlich recht tiefen, im Norden durch große Täler und Schluchten nachgezeichnet, die Störungen begrenzten Becken gebildet, im sogen. vom Überetsch zum Mendelkamm hinaufziehen, „Kurtatscher Loch“. Der Mendelkamm selbst wird z.B. das Höllental. von mächtigem Schlerndolomit (Ladin) und Haupt- Oberhalb von Penon und Graun ist eine größere, dolomit (Karn/Nor) aufgebaut, der im Norden direkt über weite Abschnitte subhorizontal verlaufende dem Contrindolomit, im S auch den „Zwischen - Überschiebungsbahn kartierbar (Vigo-di-Ton-Ter- schichten“ auflagert. Südlich von Margreid, wo die meno-Linie), entlang der die Dolomite des Mendel- gesamte Mittel- und Obertrias in ähnlicher dolomi- kammes auf unterschiedliche Trias- und Jura-Ge- tischer Fazies entwickelt ist, lässt sich die Dolomit- steine in südöstlicher Richtung über schoben sind. folge nur schwer unterglie dern und wird als „Men- An dieser Überschie bungsbahn sind die Dolomite deldolomit“ bzw. „Etschtaldolomit“ zusammenge- der Deckenbasis extrem stark beansprucht und in fasst (Geyer 1993). einer teilweise dekametermächtigen Zone klein- An der Straße von Penon nach Fennberg und in stückig zerbrochen worden. Diese jedenfalls postju- Fennberg selbst werden die Dolomite von ge - rassisch ent standene Überschiebungsbahn ist sicher ringmächtigen, teilweise bunt gefärbten pelagi- alpidisch. Sie wird von einigen der oben erwähnten schen Kalken überlagert, die schon dem Jura und Querstörungen versetzt, die gleichfalls alpidisch der Oberkreide angehören. oder jünger sind. Andere Störungen, etwa die E-W- verlaufende große Abschiebung mit einer Sprung- höhe von mindestens 430 m, die zwischen Graun 1.2 Tektonik im Überblick und Kurtatsch den Nordrand des „Kurtatscher Lo- ches“ markiert, müssen dagegen schon in der Trias Zwischen Bozen und Neumarkt folgt das Etschtal aktiv gewesen sein, da sich die Mäch tigkeit der vermutlich einer N-S-orientierten Störungs zone, an „Zwischenschichten“ an dieser Störung sprunghaft der die östliche Talflanke gegenüber der westlichen ändert. Diese Störung scheint aller dings abschnitts- deutlich herausgehoben zu sein scheint. Die Aufla- weise den Charakter einer Aufschiebung zu besit- gerungsfläche des Grödner Sandsteins auf dem zen, also wohl durch die alpi dische Einengungstek- Quarzporphyr liegt bei Kaltern mindestens 500 m tonik überprägt zu sein. tiefer als auf der gegenüberliegenden Seite des Etschtales bei Branzoll. Paral lel dazu dürfte wohl auch – unter mächtigem Quartär verborgen – eine 1.3 Das Quartär im Überblick Störungszone durch die weite Talung von Eppan- Kaltern im Überetsch verlaufen, denn der Quarzpor- Die permotriassischen Festgesteine des Überetsch phyr zwischen Gaid und Tramin passt nicht zu dem werden großflächig von lockeren Ablagerun gen des

Geo.Alp, Vol. 2, 2005 3 Abb. 1: Stark vereinfachtes Übersichtskärtchen des Etschtales zwischen Bozen und Auer an der Wende vom Hoch- zum Spätglazial (Eisstand von Auer). Eingezeichnet sind eine Reihe von Reihe eine sind Eingezeichnet Auer). von Abb.(Eisstand Spätglazial Wendezum der Hoch- an vereinfachtesvom Auer Stark und 1: Bozen Übersichtskärtchen zwischen Etschtales des Fig. 1: Simplified map showing the Etsch Valley between Bozen (Bolzano) und Auer (Ora) at the beginning of late Würmglacial times (stage of Auer). The phenomena shown on this map are Übersicht lichkeit halber weggelassen und auf einer eigenen geomorphologischen Karte dargestellt (Abb. 6). stand von Auer (Fuschgalai-Stadium). Kamesterrassen und pleistozäne Erosionsrin nen, die für die Rekonstruktion des Rückmelzens der Kalterer Zunge herangezogen wurden, sind Mursedimenhier der Eis- von VerbreitungBlockgletscher,der Felssturzmassen, Schwemmfächer,und wird: „Murkames“ eingegangen ten, näher Kapiteln folgenden den in die auf Phänomenen, described more thoroughfully in the following chapters: alluvial fans, masses of rock fall debris, rock glaciers, distribution of debris flow sediments, „fankame“ and the stage of Auer of stage the and „fankame“ sediments, flow debris of distributionglaciers, rock debris, fall rock of masses fans, alluvial chapters:following the in thoroughfullymore described (Fuschgalai-substage). Due to clearness Pleistocene erosional valleys and kame terraces are ignored here, although they are important for the reconstruction of the deglaciation. These phe- nomena are shown on a separate geomorphological map (fig. 6).

4 Geo.Alp, Vol. 2, 2005 Quartärs verdeckt, die in der weiten Talung von sonders die Kalterer Zunge und ihr langsames Rück- Eppan-Kaltern erhebliche Mächtigkeiten erreichen schmelzen lässt sich anhand entspre chender können. Es handelt sich vor allem um Geschiebeleh- Ablagerun gen gut rekonstruieren. me, Schmelzwasserkiese, Seesedi mente und Murab- Der Etschgletscher hat das Etschtal zum weiten lagerungen, deren Mächtigkeiten mit zunehmender Trogtal umgeformt, dessen trogähnlicher Talquer - Höhenlage generell abneh men. Der größte Teil die- schnitt aber nicht sichtbar ist. Der heutige Talbo- ser Sedimente ist während des Pleistozäns, vor den, die landwirtschaftlich intensiv genutzte Etsch- allem während der Würmeiszeit entstanden und talebene, ist eine Akkumulationsfläche, die erst steht in direktem oder mittelbarem Zusammenhang während und nach dem Rück schmelzen der Glet- mit dem Etsch gletscher, der in den kältesten Ab- scher entstanden ist und bei Andrian rund 240 m, schnitten des Eiszeitalters zeitweise das ganze bei Tramin 215 m über dem Meer liegt. Das Etschtal Etschtal aus füllte. ist, wie alle großen Alpentäler, mit mächtigen quar- Während des Vereisungsmaximums der letzten tären Ablagerungen aufgefüllt, vor allem mit flu- Eiszeit, vor ca. 20.000 Jahren, dürfte das Etschtal viatilen Kiesen und Seesedimenten. Am Aufbau der südlich von Bozen bis in Höhen von über 2000 m quartären Tal füllung sind zwischen Bozen und Sa- mit Gletschereis erfüllt gewesen sein (Hantke 1983: lurn entsprechend einer mündl. Mitt. von Herrn Dr. 197). Nur noch die höchsten Teile des Mendelkam- W. Sadgorski (vor mals LfW, München) auch mächti- mes, am Roèn (2116 m), überragten noch die Eis- ge Torfe mit geringmächtigen Auelehm-Zwi- oberfläche (Klebelsberg 1949, Husen 1982). Südtirol schenlagen beteiligt (insgesamt 30 und 60 m). dürfte damals ähnlich im Eis ertrunken gewesen Randlich dürften auch Rutschmassen und Mursedi- sein wie die Gebirge Ostgrönlands (Scholz 1984, mente am Aufbau der Talfüllung beteiligt sein. Der 1986). Über dem Mendelpass stand das Eis des Et- Felsuntergrund ist bei einer Bohrung südlich von schgletschers mit dem im Nonstal liegenden Noce- Andrian erst in einer Teufe von über 670 m unter Gletscher in Verbindung (Hantke 1983: 197). Der der Oberfläche erreicht worden (Werth 2003). Bei Etschgletscher stirnte in dieser Zeit noch südlich des Auer hat eine Bohrung den Felsuntergrund in einer Gar dasees südlich Solferino (Habbe 1969). Die Ge- Tiefe von 200 m dagegen noch nicht erreicht schiebe, die der Etschgletscher transportierte, stam- (mündl. Mitt. Dr. Volkmar Mair). men größtenteils aus den zentralalpinen Nährge- bieten dieses Gletschers, vor allem aus den Ötztal- Stubaier Alpen, der Silvretta, dem Ortler-Gebiet, 2. Landschaftselemente im Überetsch den Sarntaler Alpen, westlichen Ziller taler Alpen und westlichen Dolomiten. 2.1 Rundhöcker und Gletscherschliffe Beim Rückschmelzen des Eises im ausgehenden Hochglazial sank die Eisoberfläche der großen Talgletscher – natürlich auch die des Etschglet- Weit verbreitet sind im Überetsch eisüberschlif- schers – langsam ab. Dadurch wurden die über - fene Rundhöckerlandschaften. Große Felder mit steilten Talhänge freigegeben und waren zuneh- Rundhöckern sind fast ausschließlich auf Quarzpor- mend der Erosion ausgesetzt. Auf der Höhe von phyr-Oberflächen ausgebildet, z.B. in der Umge- Auer muss sich der Etschgletscher beim Dünnerwer- bung der Montiggler Seen, am Seeberg bei Alten- den des Eises in zwei Eisloben aufgespalten haben burg oder am Kalvarienberg in St. Micha el (Eppan). (Abb. 7): eine Eiszunge floss über Bozen und folgte Allerdings scheint die Ausbil dung ideal geformter, dem Etschtal abwärts (Etschtalzunge), eine zweite walrückenartiger Rundhöcker, mit flachen, ge- Eiszunge drang bei Missian ins Überetsch ein und schrammten Luv- und stei len, gebrochenen Leesei- folgte der weiten Talung von Kaltern (Kalterer ten durch die engständige Klüftung vielfach verhin- Zunge). Große Felskuppen, die vom Wilden-Mann- dert worden zu sein. Einige ideal geformte Rund- Bühel über den Großen Priol, Jagenberg, Mitterberg, höcker sind am Trimm-dich-Pfad östlich des Sport- Unterberg und über die Leuchtenburg zum Piglon platzes von Kaltern zu finden. Schöne Rundhöcker- ziehen (insge samt teilweise als „Mittelberg“ be- felder sind auch auf dem Plateau von Unterfenn- zeichnet), wirkten dabei als Eisteiler (Abb. 1, 7). Das berg südlich von Margreid auf Contrin-Dolomit Eis der Etschtalzunge muss um ein Vielfaches mäch- entwickelt. Die anderen Gesteine des untersuchten tiger gewesen sein als das der Kalterer Zunge. Be- Gebietes sind offenbar nicht hinreichend isotrop

Geo.Alp, Vol. 2, 2005 5 und fest, um die Entwicklung von Rundhöckern zu- 2.2 Tille (Geschiebelehme, Geschiebesande) zulassen. Geschrammte Gletscherschliffe sind ge- wöhnlich nur dort erhalten geblieben, wo die Stellenweise treten im Überetsch schluffig-san- Gesteins oberflächen durch eine hinreichend mäch- dige und stark verdichtete Geschiebelehme auf tige Auflage von Geschiebelehmen vor der (lodgement till, „Grundmoräne“), die teilweise so Verwitte rung geschützt waren. Trotz einer anzu- wenig Schluff enthalten, dass sie besser als Geschie- nehmenden Eis überlagerung von 1500 bis 1800 m besande bezeichnet werden sollten. Diese Tille ent- im Überetsch, die an sich zur Ausbildung von Si- halten vor allem Kristallingeschiebe, auch viel chelmarken und Parabelrissen ausreicht, wurden auf Quarzporphyr, aber vergleichsweise wenige und den eisüberschliffenen Gesteinsoberflächen keine kleine Karbonatkomponenten (Abb. 3). Die westli- ent sprechenden Strukturen beobachtet. che Hälfte des riesigen, fast 10 km breiten Talglet- schers, die den Überetsch erreich te, dürfte vor allem aus Eis bestanden haben, das dem Etschgletsacher aus dem W des Ein zugs gebietes zugeführt worden ist, vor allem aus dem Val Müstair, Martelltal und Ultental. Ein Großteil der Geschiebe im Überetsch dürfte demnach vor allem aus der relativ nahe gele- genen Ortlergruppe stammen. Gelegentlich sind auch Serpentinit-Komponenten zu finden, die aus dem Oberengadin stammen und über eine Tansflu- enz am Reschenpass ins Etschtal gelangt sein dürf- ten (Ebers 1972: 114). Die in den Tillen enthaltenen Geschiebe sind ge- wöhnlich recht gut gerundet, aber nur die Karbona- te sind deutlich gekritzt. Lokal dünnen diese Abla- gerungen stark aus und bilden einen geringmächti- gen Geschiebeschleier, doch sind Aufschlüsse selten, in denen sich die Mächtigkeit dieser Geschiebeleh- me ermitteln lässt. Der teilweise ausgezeichnete Rundungsgrad der Kristal linkomponenten ließe sich durch die Annahme erklären, dass das Eis ältere flu- viatile Kiese im Etschtal und im Überetsch aufgear- beitet haben könnte. Oft liegen Geschiebelehme dem eisüberschliffe- nen Felsuntergrund in wechselnder Mächtigkeit di- rekt auf. Insgesamt sind richtige lodgement tills, die wohl aus Zeiten mit hoher Eisbedeckung stammen, weit verbreitet. Geschiebelehme mit einem eindeu- Abb. 2: Schema der Genese von Kamesterrassen am Westrand tig lokalen Geschiebespektrum, also Ablagerungen des Etschgletschers. Die Kamesterrassen wurden durch von Lokalgletschern des Mendelkammes, waren Schmelzwässer zwischen Berghang und Eisrand aufgeschüttet, nicht zu finden. teilweise auch unter Beteiligung von Mur material, das den Schmelzwassersedimenten vom Berghang her seitlich zuge- führt wurde (unten). Nach dem Ab schmelzen des Gletscher - eises wurden die Kamesterrassen zertalt (oben). 2.3 Eisrandablagerungen (Moränenwälle und Fig. 2: Simplified sketch showing how kame terraces at the Kames) western rim of the retreating Etsch valley glacier may have formed. They have been generated by accumulation of melt- Schon Penck (in Penck & Brückner 1909: 924) water sediments within the gap between the moun tain slope war am Westhang des Mitter- und Unter berges ge- and the glacier. Gravel derived from the slope above has been added by debris flows (below). After the glacier ice has van- genüber von Kaltern ein großer Moränenwall auf- ished these kame terraces have been cut by erosional valleys gefallen, der südlich von Girlan be ginnt, die Mon- (above). tiggler Seen abdämmt und bis gegen den Kalterer

6 Geo.Alp, Vol. 2, 2005 See hinziehen soll. Nach Penck (in Penck & Brückner Das auf dem Moränenwall abgreif bare Gefälle 1909: 924) markiert er einen längeren Gletscher- spricht eher dafür, dass sich der Eisrand der Kalterer halt. Weniger zusammenhängend sieht er die Morä- Zunge in der Zeit des Fuschga lai-Stadiums an den nenwälle an der Westseite von Eppan. Er gibt an, NE-Hang des Jagenberges und sich südlich des dass sie sich oberhalb St. Pauls an den Fuß des Buch- Großen Priol mit der Etsch talzunge vereinigt hat. berges lehnen, bei Planitzing durch das Trümmer werk Zwischen dem Wilden-Mann-Bühel und dem eines Bergsturzes und bei Kaltern durch einen großen Großen Priol müssen damals mehrere Quarzpor- Schuttkegel unterbrochen sind (Penck in Penck & phyr-Kuppen das Eis als Nunatakker knapp überragt Brückner 1909: 924 f.). Die Existenz dieser Eisrand - haben (Abb. 1, 7). Dieses Sta dium könnte zum Eis- ablagerungen, Moränenwälle und Kamesterrassen, stand von Auer gehören, der nach Hantke (1983: konnte durch die Kartierungen tatsächlich bestätigt 234) demjenigen von Kufstein auf der Alpennord- werden. seite entsprechen soll. Nach Jerz (1993: 95) ent- Im E der Talung gibt es am Westhang des Mitter- spricht das einem Alter von etwa 15.000 bis 16.000 und Unterberges gegenüber von Kaltern nicht nur Jahren vor heute. einen einzigen großen Moränenwall, sondern ein Im W der Talung Eppan-Kaltern gibt es, anders ganzes System von kiesigen Lateralmorä nen und als Penck (in Penck & Brückner 1909: 924) vermu- Kamesterrassen (Abb. 2, 6), mit deren Hilfe sich tet, kaum Moränenwälle, wohl aber ein System von mindestens zwei unterschiedliche Eis stände einer breiten Kamesterrassen zwischen Kaltern und St. „Kalterer Zunge“ rekonstruieren lassen, die in der Josef am Kalterer See (Taf. 1, 2), die einen Eisstand Talung von Eppan-Kaltern gele gen haben und nachzeichnen, den wir hier als Stadium von Kaltern knapp südlich des heutigen Kalterer Sees gestirnt bezeichnen wollen (Abb. 6, 7). Die ursprünglich haben muss (Abb. 1, 7). Die am höchsten gelegene wohl zusammenhän genden, bis zu 500 m breiten und deut lichste dieser Strukturen ist ein Wall, den Terrassen mit ebenen oder leicht welligen Ober- man auf über 1,5 km Länge verfolgen kann. Er hat flächen sind durch jüngere, W-E-orientierte Erosi- ein deutliches Gefälle in südlicher Richtung und onstäler, die dem generellen Gefälle des Hanges fol- liegt an seinem N-Ende um ca. 60 m höher als an gen, in mehrere Teilstücke zerlegt worden (Abb. 6). seinem S-Ende (Taf. 1). Ursprünglich scheint es sich Am Barleitherhof ist ein N-S-orentiertes, wallarti- wohl eher um eine Kamesterrasse gehandelt zu ges Teil stück der Kamesterrasse durch ein Ero - haben als um einen Wall. Bei sinkendem Eis stand sionstälchen vom bergwärtigen Rest der Terrasse wurde durch ein sich bergseitig eintiefendes abge trennt worden (Abb. 6). Die Zertalung muss Schmelz wassertal (Fuschgalai) ein wallartiger schon unmittelbar nach der Entstehung dieser Ter- Rücken abgetrennt (Abb. 6). Weiter im S lässt sich rassen begonnen haben, denn viele der Erosionsrin- der Eisstand von Fuschgalai mit Kamesterrassen am nen sind Trockentäler. Ein besonders großes Teil- Falzig weiterverfolgen, die am Kreithof wieder in stück der Kamesterrassen, auf dem der Ortskern von einem deutlichen Wall auslaufen (Abb. 6). Dieses Kaltern steht, ist von der Berg seite her durch den Wallstück ist inzwischen größtenteils einem Kiesab- komplexen Schwem mfächer des Pfusser Baches bau zum Opfer gefallen. Obwohl die in den 60er überschüttet worden (Abb. 6). Penck (in Penck & Jahren ausgebeutete Grube inzwischen völlig ver- Brückner 1909: 924) glaubt die Kamesterrassen in wachsen ist, lässt sich immer noch erken nen, dass Richtung Ober planitzing und Eppan weiterverfol- das Material, aus dem der Wall besteht, stark kiesig gen zu können, was sich jedoch als unmöglich und sehr kristallinreich ist und zahlreiche meter- heraus stellte. große Kristallinblöcke ent hält. Castiglioni & Trevi- Das Gefälle dieser Eisrandterrassen ist etwas ge- san (1973: 6 ff.) rechnen diese groben, auf einer ringer als das des Walles auf der Gegenseite. Sie lie- ihrer Abbildungen erkennbar geschichteten Kiese gen auch deutlich tiefer und entsprechen von ihrer freilich zu den glazi fluvialen Schottern des „Con- Höhenlage her wohl eher den Kames terrassen an glomerato di Caldaro“. Diese Kiese sind aber in un- den Bergflanken unterhalb von Fuschgalai (Abb. 7). mittelbare Nähe des Eisrandes entstanden, da sie Mit dem Stadium von Fusch galai der Kalterer Zunge große Mengen gekritzter Geschiebe enthalten. dürften wohl eher drei kleine Terrassenreste ober- Anders als Penck (in Penck & Brückner 1909: halb des Barleither Weges korrespondieren (Abb. 6). 924) glaubt, sind die Wallsysteme in Rich tung Mon- In den Kamesterrassen gibt es zahlreiche Aufschlüs- tiggler Seen und Girlan nicht weiter zu verfolgen. se, die Ein blicke in ihren inneren Aufbau erlauben.

Geo.Alp, Vol. 2, 2005 7 Abb. 3: Gegenüberstellung der Texturen genetisch unterschiedlicher Sedimente mit diamiktischer Kornverteilung im Etschtal. Auf den Bildern sind die wichtigsten im Aufschluss sichtbaren Eigenschaften dieser Sedimente sowie deren genetische Deutung schema- tisch dargestellt. Fig. 3: Comparison of genetically different diamictic sediments in the Etsch valley. Textures and some other important macroscopic visible features of these sediments are shown here, together with their genetic interpretation.

Zum größten Teil bestehen sie aus gut ausgewa - Sedimente stark in den Hintergrund. Dafür sind in schenen, geschichteten Kiesen, die teilweise sehr die Kamesterrassen stellenweise schluffreiche Sedi- grob sind und große Mengen gekritzter Geschiebe mente mit lokalem Schutt integriert. In diesen Sedi- ent halten, also sehr eisrandnah abgelagert worden menten, die als Bestandteile der Kamesterrassen z.B. sind. Daneben spielen geschichtete Sande und am Barleither Weg 500 m NNW‘ des Barleitherhofes Schluffe eine wichtige Rolle. Die Kiesgrube vom Vo- oder im Tal ober halb von Schloss Kaltenburg aufge- glmeierhof westlich des Kalterer Sees, die bei Casti - schlossen sind, dominieren eckige Komponenten aus glioni & Trevisan (1973: Abb. 7) abgebildet ist, zeigt Schlern dolomit sowie aus Karbonaten, Schluff- und keine Schotter, die zum glazi fluvialen „Conglomera- Sandsteinen der Werfen Formation. Nur ganz to di Caldaro“ gehören, sondern eisrandnah ent- unter geordnet finden sich auch Kristallingerölle. Bei standene Kameskiese, wie sie in allen Kamesterras- diesen Sedimenten handelt es sich definitiv nicht sen auf der Westseite der Kalterer Zunge akkumu- um Lokalmoränen (siehe unten). liert worden sind. Verglichen mit den Kiesen innerhalb des Walles auf der Ostseite der Talung ist das Material hier 2.4 Mursedimente deutlich reicher an Karbonatkomponenten. Stellen- weise konnten glazialtektonisch bedingte Schicht- Weit verbreitet sind im Untersuchungsgebiet Se- störungen beobachtet werden. Obwohl zahlreiche dimente, deren Habitus auf den ersten Blick an Tille gekritzte Geschiebe zu finden sind, tre ten tillartige („Moränen“) erinnert, die aber von den Komponen-

8 Geo.Alp, Vol. 2, 2005 tenspektren, den Kornformen und den Kornober- nur schwer abschätzbar. Oft lassen sich aufgrund flächen her keine glazigenen Sedimente sein kön- der Tiefe von Erosionstälern Mächtigkeiten von nen. Diese Sedimente haben eine dia miktische mehreren Dekametern schätzen; in Einzelfällen Korn größenverteilung (Taf. 4) und sind von daher kommt man auf 60 bis 80 m. Tillen ähnlich (Abb. 3). Es handelt sich um matrixge - Im Überetsch sind Sedimente dieses Typs weit stützte Sedimente mit einer sandig-schluffigen verbreitet (Abb. 1). Als fast geschlossene Decken Grundmasse, in der zahlreiche grobe Komponen ten von erheblicher Mächtigkeit treten diese Ablage- schwimmen. Die Korngrößen des Grobmaterials lie- rungen an den Hängen oberhalb von Kurtatsch, gen im Bereich von Kies bis Blockwerk; gelegentlich Entiklar und Margreid auf, wo sie bis über Penon kommen auch metergroße Blöcke vor. Die groben hinauf die tonig-kalkigen „Zwischen schichten“ des Komponenten sind eckig, weisen vielfach scharfe Unterladin zusammen mit ihren mächtigen Kalk- Bruchkanten auf, doch sind auch kantengerundete und Dolomiteinschaltungen überlagern. Nur in be- Bruch stücke zu finden. Gut gerundete und/oder ge- sonders tief eingeschnittenen Erosionstälern wird kritzte Komponenten, kristallines Material und an- hier das Quartär durch schnitten. Hier bilden diese dere Fremdgesteine fehlen oder sind zumindest sel- Ablagerungen eine fast geschlossene Decke mit ten. Die Hauptmasse der Komponenten besteht aus einer Gesamtfläche von fast 5 km2. Weiter im N sind Schlern-, Haupt- bzw. Contrindolomit sowie Bruch- diese Sedimente weniger geschlossen verbreitet, stücken der Hartbänke aus der Werfen Formation. nehmen jeweils kleinere Flächen von immerhin Doch die Zusammensetzung schwankt in weiten noch vielen Hektar Größe ein. Auch hier können die Grenzen. Es gibt Bereiche, in denen diese Gesteine Vorkommen mehrere Dekameter mächtig werden. fast nur aus Schlern- und Contrindolomit-Bruch- Auffällig ist, dass die Verteilung der Vor kommen stücken bestehen, an anderen Stellen nur aus Frag- eine klare Bezie hung zu den bedeutenderen, tief menten der Werfen Formation, manchmal auch aus eingeschnittenen Rinnen zeigen, die zum Mendel- einer Mischung aus beidem. Die Farbe der feiner- kamm hinauf ziehen. Ein besonders mächtiges Vor- körnigen Matrix ist grau, häufig auch rötlich oder kommen dieser Sedimente bildet z.B. die markante gelblich, letzteres vor allem dort, wo viele Werfener Kuppe am Ausgang des Höllentales in Tramin, auf Komponenten in der Grobfraktion zu finden sind. der St. Jakob in Kastellaz liegt (Abb. 1). Ein anderes Deutliche Schichtungsgefüge sind meist nicht zu Vorkommen ist beispielsweise an der Straße von erkennen, selbst dann nicht, wenn man meter hohe Kaltern nach Altenburg auf geschlossen, genau un- Aufschlüsse begutachten kann. Selten kommen terhalb des tief eingeschnittenen Val della Lavine. aber doch Lagen mit deutlich weniger Grobmaterial Manche dieser merkwürdigen Sedimente zeigen oder schluffige, sandige oder kiesige Einschaltun- eindeutige Beziehungen zu jungen Oberflächen- gen vor. formen. „Kampferde“-Sedimente, die z.B. NW’ Im Aufschluss sind diese Gesteine überraschend Penon, zwischen Altenburg und Kaltern oder ober- standfest; fast vertikale Straßen- und Wegan - halb von Pfuss bei St. Nikolaus in Kaltern vorkom- schnitte erweisen sich seit Jahrzehnten ohne Siche- men (Taf. 3), bauen jeweils mehrere parallel ori - rungsmaßnamen als standfest (Taf. 4). Diese Gestei- entierte, schmale Rücken auf, die von tief einge- ne finden sich im Untergrund vieler Weinberge zwi- schnittenen Erosionstälern vonein ander getrennt schen Kaltern und Margreid. Die stei nigen Sedi - werden. Die Oberflächen benachbarter Rücken wei- mente sind auf den Feldern nur schwer zu bearbei- sen ein identisches Gefälle von 15 bis 30° auf (Taf. ten, so dass sie die Weinbauern als „Kampf erde“ 3). Talwärts sind diese Rücken durch einen Gefälle- oder „Kampf“ bezeichnen, ein Ausdruck, der ande- knick begrenzt; unterhalb davon hören die Rücken renorts in Südtirol auch für lodgement-till („Grund- mit einer kräftigen Versteilung des Hanges auf (Taf. moräne“) verwendet wird (mündl. Mitt. Dr. Volkmar 3). Dieser Gefälleknick liegt bei benachbar ten Mair, Bozen). Die Sedimente bilden oft mächtige Rücken ungefähr auf der gleichen Höhe; die Struk- Decken über dem Felsuntergrund, deren basale turen erscheinen dadurch wie abgehackt. Bei diesen Auflagerungs flächen oft geneigt sind und parallel Rücken könnte es sich um Erosionsreste von fächer- zum Hang einfallen. Mitunter kommen sogar fast artigen Gebilden zu handeln, wohl um die Reste vertikale Kontakt flächen an Stellen vor, wo die Se- alter Murfächer, die von parallel orientierten Tälern dimente offensichtlich alten, verschütteten Felsstu- zerschnitten worden sind (Abb. 6). Auf grund günsti- fen angelagert sind. Die Mächtigkeiten sind meist ger Aufschlussverhält nisse am anerodierten Mur-

Geo.Alp, Vol. 2, 2005 9 bonatreiche Geschiebelehme überzugehen, was die unmittelbare Nähe des Eises am talwärtigen Ende der Strukturen anzeigt. Hier besteht also der begründete Verdacht, dass es sich um Murfächer handelt, die gegen den Eis- rand des zurückschmelzenden Etschgletschers ge- schüttet worden sind; wir wollen sie hier „Mur - kames“ nennen (Abb. 1, 6). Neben diesen „Murka- mes“ gibt es auch, wie oben schon dargelegt, ge- wöhnliche Kamesterrassen mit ebenen Oberflächen, die außer kiesigen oder schluffig-san digen, gut ge- schichteten Schmelzwassersedimenten auch ab- schittsweise „Kampferde“-Sedi mente enthalten. Solche Kamesterrassen sind z.B. NE‘ von Penon oder südlich von Kaltern am Barleiter Weg zu finden. Die meisten Vorkommen von Sedimenten dieses Typs lassen indes keinerlei Beziehungen zu irgend- welchen charakteristischen Oberflächenformen er- kennen. An einigen Stellen ist zu beo bachten, dass derartige Ablagerungen eindeutig von kristallinrei- chen Geschiebelehmen überla gert werden. Das ist z.B. an Ablagerungen im Hügel von St. Jakob in Ka- stellaz in Tramin ganz in der Nähe des Bungalows der Wildbachverbauung zu sehen. Dieses und einige andere Vorkom men scheinen zudem rundliche, drumlinähnliche Geländeformen zu bilden und soll- Abb. 4: Schema der Genese von „Murkames“ am Westrand des ten folglich vom Gletschereis überfahren worden Etschgletschers. Die Murkames entstanden als Mur fächer und enthalten ausschließlich Material, das aus Erosionsrinnen im sein. Deshalb muss zumindest ein Teil dieser Sedi- Hang gegen den Rand des Etschgletschers vorgeschüttet mente vor dem Höchststand des Eises der letzten wurde (unten). Nach dem Abschmelzen des Eises wurden die Eiszeit entstanden sein. Ähnlich sieht das auch Murkames, die talwärts primär durch eine steile Sackungskan- Penck (in Penck & Brückner 1909: 921). Er argu- te begrenzt sind, erosiv zerschnitten (oben). mentiert, dass sie zeitlich zwischen zwei Fig. 4: Simplified sketch showing how a "fankame“ at the west- aufeinander folgende Vergletscherungen zu stellen ern rim of the Etsch valley glacier may have been formed. wären, da sie gelegent lich auch (umgelagerte) Originally they have been generated as alluvial fans by accu- mulation of debris flows at the glacier rim, the debris deriving Fremdge schiebe enthalten. Auch bei Meran hat entirely from the hillslope above (below). These "fankame“ ex- Penck (in Penck & Brückner 1909: 921) solche pose a typical steep edge at their lower part and have been cut Schutt ablagerungen gefunden, zwischen Gardasee by erosional valleys since the glacier ice has vanished (above). und Meran will er gar Reste von vier verschieden alten Schuttkegeln nachgewiesen haben. Dafür, dass es sich bei den „Kampferde“-Sedi- fächer von Pfuss ist zu erkennen, dass die Haupt- menten um Ablagerungen von debris flows handelt, masse der Höhen rücken tatsächlich aus Ablagerun- spricht vor allem die praktisch fehlende Rundung gen dieses Typs aufgebaut wird. Schon Penck (in der Komponenten und die äußerst schlechte Sortie- Penck & Brückner 1909: 924) hat diese Vorkommen rung des Materials (Johnson & Rodine 1984: 315). bei St. Nikolaus in Kaltern gekannt, in ähnlicher Warum sind die „Kampferde“-Abla gerungen, wenn Weise als „Schuttkegelrudimente“ gedeutet und sie man sie als Mursedimente deutet, kaum oder gar ins „Spätglazial“ gestellt. Am Fuß der Ver steilungen nicht geschichtet, obwohl post glaziale mudflow- unterhalb des Gefälleknicks scheinen die Mursedi- Sedimente, genauso wie rezente Murkegel, immer mente durch eine Zunahme des Kri stallinmaterials, eine wenn auch undeut liche Schichtung aufweisen des Rundungsgrades der Komponenten und dem (Costa 1984, 1988, Davies 1988)? Der typische Auf- vermehrten Auftreten gekritzter Geschiebe in kar- bau junger Mursedi mente kann bei spielsweise im

10 Geo.Alp, Vol. 2, 2005 Nussental am Hang oberhalb Kuenburg am Kalterer See studiert werden, wo ein steiler Murkegel durch eine kleine Grube angeschnitten ist. Das hier aufgeschlos sene diamikti sche Material, sehr reich an eckigen Quarzporphyr-Komponenten, ist un- deutlich geschichtet. Der geschichtete Eindruck wird durch einen Wechsel in der Korngröße und in der Zusammensetzung der Mursedimente erzeugt, wie sie für Ablagerungen typisch sind, die von de- bris flows aufgebaut werden (Coussot & Meunier 1996). Vielleicht hängen die Unterschiede zu den fossi- Abb. 5: Schematische Schnitte durch moderne Murfächer und „Murkames“, die während des Rückschmelzens des Etschglet- len Mursedimenten damit zusammen, dass die schers entstanden sind. Durch den Rückstau am Rande des heute noch aktiven, mehrere Dekameter mächtigen Talgletschers waren die Sedimente, die ein ein ziger Murgang Murkegel im Laufe von vielen einzelnen Murereig- bzw. ein einzelnes Murereignis hinterließ, bedeutend mächti- nissen akkumuliert worden sind. Bei jedem Mur- ger (unten) als in heutigen Murfächern (oben). Dadurch er- gang werden hier jeweils nur wenige Meter Sedi- scheinen die Schichtfolgen in „Murkames“ weitgehend unge- schichtet. ment auf einmal abgelagert, da sich die Mure über einen Teil des Fächers flächenhaft ausbreiten kann. Fig. 5: Schematic cuts through a modern fan in comparison to Gleiches gilt auch für die rezenten Beispiele, die bei a late Pleistocene "fankame“, which was generated when the Etsch valley glacier retreated. Due to the damming effect of Johnson & Rodine (1984: 266 ff.) angeführt wer- the glacier rim, the sediment succession from a single debris den. Die viele Dekameter mächtigen „Kampferde“- flow is much thicker within a "fankame“ (below) than in a re- Sedimente sind im Gegensatz dazu wohl alle kalt- cent alluvial fan (above). Therefore the successions within zeitlich und bei sinkenden Eisständen abgelagert "fankame“ are poorly stratified. worden. In den Kaltzeiten gab es auf den frisch vom Eis freigegebenen Steilhängen, wo das Lockermate- rial für die Muren mobilisiert werden konnte, keine grenzt wird. Diese Hangverfla chung, auf der auch Vegetation, die den hier liegenden Hangschutt und der Ort Graun liegt, ist letztlich durch die hier vor- Geschiebelehme hätte stabilisieren können, und kommenden kalkig-mer gelig „Zwischenschichten“ auch der sich nach dem Eisrückzug aufbauende Per- bedingt, die besonders leicht erodiert werden konn- mafrost dürfte bald in der ausgehenden Eiszeit zu- ten. Etwa 1 km nördlich von Graun, im Oberen Ge- sammengebrochen sein (Haeberli 1996). Dadurch ist meindewald westlich des Hofes Locherer, liegt eine bei einem einzelnen Ereignis offenbar ungleich nach drei Seiten steil abfallende, einige hundert mehr Material umgelagert worden als heute. Noch Meter breite Hangnase, deren Oberfläche ein auf- dazu konnten sich die Muren auf den Fächern nicht fällig unruhiges Relief trägt. Das dicht bewaldete ausbreiten sondern stauten sich am Eisrand (Abb. 4), Gelände, dessen höchster Punkt 1018 m hoch liegt, was schon bei einem einzigen Ereignis zur Akkumu- zeigt ein kompliziertes System von Wällen mit tie- lation von dekameter mächtigen, intern weitgehend fen, abflusslosen Depressionen dazwischen, die an ungeschichteten Mursedimenten führte (Abb. 5). Toteislöcher erinnern. Ein Teil der wallartigen Rücken scheint sich zu zungenartigen Loben zu- sammenzuschließen. Das Gebiet, das hangaufwärts 2.5 Blockgletscher, Lokalgletscher und in die Schutthalden unter den Schlerndolo mit- Gehängebrekzien Wänden übergeht, besteht selbst ausschließlich aus hoch porösem Dolomitschutt. Fremd material und Seit dem Abschmelzen der Gletscher haben sich gerundete Komponenten fehlen praktisch völlig. Ein vor allem unter den Dolomit-Steilwänden bedeu- etwas kleineres und ca. 50 Höhenmeter tiefer lie- tende Hangschuttmassen akkumuliert. Große gendes Areal mit morphologisch vergleichbaren Schuttmassen haben sich vor allem im oberen Teil Strukturen wird vom Tra miner Höhenweg etwa 1 einer mehr als 1 km breiten Hangverflachung gebil- km weiter im N gequert. det, die oberhalb von Kurtatsch zum Tal hin durch Bei beiden Strukturen dürfte es sich um Block- eine markante Geländestufe aus Contrindolomit be- gletscher handeln, also ehemals gefrorene Schutt-

Geo.Alp, Vol. 2, 2005 11 Abb. 6: Geomorphologisches Übersichtskärtchen des Gebietes zwischen Kalterer See und Oberplanitzing im Überetsch. Die Karte wurde auf der Grundlage von geologisch-geomorphologischen Detailkartierungen im Maßstab 1:10 000 im Gebiet zwischen Eppan und Margreid erstellt. Fig. 6: Simplified geomorphological map showing the region between Kalterer See (Lago Caldaro) and Oberpla nitzing (Pianizza di sopra) at Überetsch (Oltradige, Sella di Appiano-Caldaro). The map was created on base of detailed geological and geomorphological mapping in the region between Eppan (Appiano) and Margreid (Magrè) at a scale of 1:10 000.

12 Geo.Alp, Vol. 2, 2005 massen, die sich kriechend wie ein Gletscher bewe- (1972) sind die „Überetscher Schotter“ nicht älter gen (Abb. 1). Diese Blockgletscher sind fossil und als Eem. Nach Castiglioni & Trevisan (1973) ist das bewegen sich heute mit Sicherheit nicht mehr aktiv, „Conglomerato di Caldaro“ von Schmelzwässern des denn in Höhen um 1000 m ist in den Süd alpen vorstoßenden Etschgletschers aufgeschüttet wor- unter den heutigen Klimabedingungen (Weinbau den. Seine Aufschüttung soll im Val-Caldaro-Inter- bis in über 800 m Höhe!) mit Sicher heit kein Per- stadial erfolgt sein, das mit einem radiometrisch er- mafrost mehr zu erwarten. Sie dürften sich nach mittelten Alter von rund 30.000 Jahren (Fuchs dem Rückschmelzen des Etsch gletschers an der 1969) dem Interstadial von Baumkirchen in den Wende vom Hoch- zum Spätglazial gebildet haben, Nordalpen entsprechen könnte. Auch Klebelsberg vor allem während der spät glazialen Klimadepres- (1926, 1935) und Ebers (1972) gehen davon aus, sionen. Blockgletscher ,aber auch richtige kleine Lo- dass alle größeren Kiesvor kommen im Überetsch kalgletscher, die sich gleichzeitig in Karen unterhalb genetisch identisch sind, eine einheitliche Be- des Mendelkammes gebildet haben könnten, sind deckung von Geschiebe lehmen aufweisen und des- denkbare Aus löser für große Murgänge, die für die halb vor dem Gletscherhöchststand der Würmeis- Genese der oben beschriebenen pleistozänen Mur - zeit entstanden sind. sedi mente verantwortlich waren. So einfach ist die Sache allerdings nicht. Ebers Am Nordhang des Höllentales oberhalb von Tra- (1972) und Castiglioni & Trevisan (1973) subsum- min liegt ein auffälliger Hangvorsprung, der durch mieren unter den Begriffen „Überetscher Schotter“ das Vorkom men einer calcitisch zementierten, hoch und „Conglomerato di Caldaro“ viele Kiese, die hier porösen quartären Brekzie bedingt ist. Diese weit- zu unterschiedlichen Zeiten und unter ganz unter- gehend ungeschichtete Gehängebrekzie, die fast schiedlichen Bedingungen ent standen sind. Castig- ausschließlich aus eckigem Dolomitschutt besteht, lioni & Trevisan (1973) stellen beispielsweise die lagert der Werfen Formation in einer Mäch tigkeit groben Kiese zum „Conglomerato di Caldaro“, die von mindestens 10 m auf, in die die Höllental- früher am Kreithof („Maso Kreit“) westlich des Kal- schlucht eingeschnitten ist. Über das genaue Alter terer Sees in einer Kiesgrube abgebaut worden sind der Brekzie lässt sich nichts aussagen, doch weisen (Castiglioni & Trevisan (1973: 6 ff.). Diese Kiese sind Erosion sowie starke Zementierung des Vorkom- aber Teil eines komplexen Systems von Kamester- mens darauf hin, dass es sich möglicherweise um rassen und Wällen auf der Ostseite der Kalterer präwürmglaziale Bildungen handelt. Weitere Vor- Zunge (siehe oben). Auch die westlich des Kalterer kommen von ähnlichen Gehängebrekzien sind auch Sees gelegenen Kiese vom Vogelmeierhof (Castiglio- nahe dem Hof Steiner am Hang oberhalb des Höl- ni & Trevisan (1973: 6 ff.) gehören zu einem System lentales gegenüber von Tramin oder westlich von St. von komplexen Kamesterrassen, die auf der West- Nikolaus bei Kaltern zu finden. Stacul (1980) stellt seite der Kalterer Zunge im ausgehenden Hochgla- die Bildung des Karbonatschuttes, aus dem die zial der Würmeiszeit akkumuliert worden sind. Da- Gehängebrekzie von St. Nikolaus besteht, in eine neben sind aber auch tatsächlich eindeutig prä- Kaltzeit, unmittelbar nach dem Rück schmelzen des hochglaziale Bildungen zu finden. Etschgletschers. Ihre Verkittung durch „Kalksinter“ Tatsächlich ist die weite Talung von Eppan-Kal- soll hingegen in einem Inter glazial oder einem In- tern von kristallinreichen, teilweise sehr grobkör - terstadial erfolgt sein. nigen, abschnittsweise kaum geschichteten und oft schluffreichen Kiesen erfüllt, die größten teils sehr schlecht aufgeschlossen sind. In den hangenden 2.6 Kalterer Schotter Abschnitten der Kiese sind gekritzte Geschiebe häu- fig; fleckenweise tragen sie sogar eine Decke von Nach Hantke (1983: 233) ist die weite Talung von Geschiebelehmen; östlich von Kaltern sind im Han- Eppan-Kaltern mit mächtigen quartären Kie sen er- genden dieser Kiese sogar wallähnliche Strukturen füllt, die ihrerseits von würmeiszeitlichen Geschie- entwickelt. Da die Kar bonat- und Kristallinkompo- belehmen bedeckt sein sollen. Die Gesamtmächtig- nenten dieser Kiese kaum Verwitterungserscheinun- keit der Schotter von Eppan beträgt nach Blaas gen zeigen, dürften sie vergleichsweise jung sein. (1892) bis zu 200 m. Die Schot ter werden dem Womöglich handelt es sich wenigstens teilweise um „Konglomerat von Kaltern“ gleichgesetzt, obwohl Vorstoß schotter, vor allem in der Umgebung der sie größtenteils nicht verfes tigt sind. Nach Ebers Montiggler Seen, wo die Oberfläche kiesiger Abla -

Geo.Alp, Vol. 2, 2005 13 ge rungen drumlinisiert ist. Vielfach dürfte es sich 2.7 Trockentäler aber wohl auch um Schmelzwasser schotter aus der ausgehenden Eiszeit handeln, die vor der zurück- Die gesamte Talung von Eppan-Kaltern wird von schmelzenden Kalterer Zunge akkumulierten und einem ganzen System von tief eingeschnitte nen, bei einer Eisoszillation nochmals überfahren wur- breiten, kastenförmigen Trockentälern durchzogen den. Sie könnten in einem Totraum abgelagert wor- (Abb. 6). Abschnittsweise werden die Trocken täler den sein, der sich zwischen der nach Norden auch von heutigen Gewässern benutzt, die die alten zurückschmelzenden Kalterer Zunge und dem Talböden teilweise durch Schwemm fächer verschüt- Becken des Kalterer Sees befand (Abb. 6). tet, in einigen Fällen auch ältere Talgenerationen Die Kiese sind gewöhnlich locker und nicht oder anerodiert und zerstört haben. kaum verfestigt und enthalten immer wieder Ein- Die Trockentäler bilden ein mehrfach verzweigtes schaltungen von sandig-schluffigen Laminiten, bei Talsystem, dessen Talachsen größtenteils N-S oder denen es sich um Stillwasserablagerungen handelt. NE-SW-orientiert sind. Das größte und am wenig- Nur in der kleinen Schlucht zwischen Festplatz und sten von jüngeren Schwemmfächern auf gefüllte Kalvarienberg in Kaltern, über die der Bach aus dem Trockental, das Lavasontal, lässt sich von den Reit- Tröpfeltal das Lavasontal erreicht, kommen auf der wiesen am Kalterer See über 6 km nach N verfolgen orographisch linken Tal seite durch calcitische Ze- (Abb. 1, 6). Mehrfach zweigen seitlich einmündende mente fest verbackene, kristallinreiche Konglomera- Trockentäler in nordöst licher Rich tung davon ab te heraus. Diese mit Höhlen und Kavernen durch- (Abb. 6), deren Talböden teilweise vom Haupttal un- setzten Ablagerungen sind wohl das „Konglomerat terschnitten sind. Nördlich des Feld hofes zweigt ein von Kaltern“ im ursprünglichen Sinne. Es handelt breites Tal in NNW’ Richtung vom Lavasontal ab, das sich um gut sortierte, ausgewaschene Schmelz - durch junge Schwemm fächer teilweise stark aufge- wasser sedimente, die zahlreiche Rollkieslagen ent- füllt und dadurch undeutlich geworden ist. Dieses halten. Die Imbrication der Gerölle weist auf einen Tal lässt sich über den alten Bahnhof von Kaltern generellen Sedimenttransport von N hin. Deutliche hinaus nach N verfolgen, wo es sich in mehrere Rin- Verwitterungserscheinungen an den Dolomit kom - nen aufspaltet. Diese Verzweigung des Trockentales po nen ten des Konglomerates lassen Zweifel auf- ist teilweise durch die dichte Bebauung, teilweise kommen, ob es mit den weit verbrei teten Kiesen der aber auch wegen der Erosion durch den Bach aus Umgebung etwas zu tun hat oder ob es nicht doch dem Tröpfeltal undeutlich geworden. Die am weite- älter ist. sten nach N verfolgbare Rinne dieses Systems ist Die fraglichen Vorstoßschotter und die Konglo- diejenige, die von Kaltern nach Oberplanitzing merate sind jedenfalls in der Talung Eppan-Kal tern zieht, das Oberplanitzinger Trockental (Abb. 6). nur bis zu einer Linie flächenhaft verbreitet, die von Folgt man den Tälern aufwärts, steigen sie mit der Kirche von Kaltern nach Montiggl zieht. Weiter meist gleich bleibendem Gefälle an, werden un- im S sind diese und vielleicht auch jüngere Ablage- deutlich und streichen schließlich in die Luft aus, rungen teilweise ausgeräumt und durch ein System was für Schmelzwassertäler typisch ist. Wenn diese von Kiesterrassen ersetzt, die keine Bedeckung von Rinnen abschnittsweise von modernen Gewässern Geschiebelehmen tragen und während des Rück - verwendet werden, fließen diese von der Seite zu; schmelzens der Kalterer Zunge entstanden sein die Quellen liegen niemals am Beginn der Rinnen. müssen. Es lassen sich hier zumindest drei unter - Besonders schön ist das am schluchtartig einge- schiedliche Terrassenniveaus auskartieren und ei- schnittenen Oberplanitzinger Trockental zu sehen, nerseits miteinander, ande rerseits aber auch mit das im Dorfzentrum von Oberplanitzing plötzlich einem System von Trockentälern in Beziehung brin- undeutlich wird und verschwindet. Auch im N des gen, aus denen diese Kiese offenbar zu unter - Lavasontales ist das undeutlich Werden und Ver- schiedlichen Zeiten herausgeschüttet worden sind schwinden der Rinne sehr gut zu beobachten. (Abb. 6). Es gibt auch eine deutliche Beziehung die- Die jüngste Terrasse läuft nach S hin, an den ser Terrassen mit dem Kalterer See: Je höher diese Reitwiesen, auf Seeniveau aus, setzt sich aber nach Terrassen liegen, desto weiter liegen sie vom nördli- N hin ins weithin trockene Lavasontal fort, das sich chen Seeufer entfernt. Die niedrigsten (und ver- erst 6 km weiter im N bei St. Michael ver liert. Die mutlich jüngsten) Terrassen liegen dem See am Trockentäler, die auf die älteste der drei Terrassen nächsten (Abb. 6). auslaufen, Frühlingstalele und Val Fusca, lassen sich

14 Geo.Alp, Vol. 2, 2005 kaum mehr als 1 km nach N verfolgen. Die dazwi- ten, mit einer Breite des ebenen Talbodens zwischen schen liegende Terrasse kor respondiert mit dem 50 und 110 m. Man kann abschätzen, dass alleine in Fondatal und anderen Trockentälern, die weiter im dieser Rinne mindes tens 50 Mill. m3 erodiert und N enden aber nicht so weit zu verfolgen sind, wie nach S verfrachtet worden sind. Angesichts der das Lavasontal (Abb. 6). Um die Gesetzmäßigkeit Größe der Ero sionstäler und der Menge des in den noch mal auf den Punkt zu bringen: je älter die tief eingeschnittenen Tälern erodierten Materials ist Täler sind, desto weniger weit reichen sie nach N, es eigentlich unverständlich, dass der kleine Kalterer desto höher lag offensicht lich auch der Vorfluter im See nicht schon während des Eisrückzuges zugefüllt Bereich des Kalterer Sees. Das zuletzt aktive Tal, das worden ist. Das Material, das in allen Rinnen zusam- Lavasontal, erhielt sein Wasser auch so weit von N men erodiert worden ist, dürfte aus reichen, um wie kein anderes, der Vorfluter, der das Wasser auf- einen See, der um ein Vielfaches größer ist als der nahm, war damals schon fast so tief wie der Kalte- Kalterer See, restlos aufzufüllen. Dabei ist noch rer See. nicht einmal berücksichtigt, dass die erodierenden Penck (in Penck & Brückner 1909: 924) nimmt Schmelzwässer sicher nicht nur das in den Tälern an, dass der Überlauf eines Stausees bei St. Pauls erodierte, „alte“ Material transportiert haben, son- über ein „heute trocken daliegendes Tal, das sich dern sicher auch vom Eisrand her mit „frischem“ östlich von Kaltern zum Kalterer See zieht“ erfolgt Kies, Sand und Schluff überfrachtet waren. sein soll, also wohl über das Lavasontal. Bei Kaltern Um erklären zu können, warum das Becken des soll dieser Ausfluss nach Cas tiglioni & Trevisan Kalterer Sees trotzdem nicht aufgefüllt worden ist, (1973: Abb. 26) in einen weiteren, etwas niedriger benötigt man eine weitere plausible Annahme: Das liegenden Stausee gemündet haben, der südlich des Seebecken könnte durch eine im See becken lie - Kalterer Sees vom Etschgletscher abgedämmt wor- gende große Toteismasse, einem abgetrennten Teil den sein soll, also immer noch deutlich höher gele- der zurückschmelzenden Kalterer Zunge, solange gen haben muss, als der heutige Seespiegel. Das vor dem Sedimenteintrag geschützt worden sein, kann aber nicht sein, wie oben ausführlich darge- bis es nicht mehr durch Schmelzwasser erreicht legt wurde. Zudem kann diese Annahme nur die werden konnte (Abb. 8). Ursprünglich könnte diese Entste hung eines der Trockentäler erklären, für alle Toteismasse auch die weite Senke nördlich des heu- anderen bleibt sie eine Deutung schuldig. tigen Sees ausgefüllt haben. Die Annahme einer Viel plausibler ließen sich sämtliche Beobachtun- solchen langsam abschmelzenden und immer klei- gen interpretieren, wenn man annimmt, dass die ner werdenden Toteismasse würde auch zwanglos Bildung aller Trockentäler und die Entstehung des erklären, warum der Vorfluter sich ständig abge - Terrassensystems am Kalterer See im Zuge des Rück- senkt hat (Abb. 8/ 3-5). Bei dieser Annahme hätten schmelzens der Kalterer Zunge entstanden sind. Bei die Schmelzwässer einen Teil der mittransportierten den Trockentälern würde es sich demnach um ein Grob stoffe seitlich um die Toteismasse herum System peripherer und terminaler Rinnen handeln, führen und im Etschtal selbst ablagern müssen. Das über die die Schmelzwässer der zurückschmelzen- aber sollte sich durch entsprechende Boh rungen den Kalterer Zunge abgeflossen sind (Abb. 8). Mit nachweisen lassen. dem Rückschmelzen waren immer neue Täler in Funktion, während andere trocken fielen. Mit dem weiteren Rückzug der Zunge nach N, in Richtung St. 2.8 Seesedimente Michael, war zuletzt nur noch das tiefst gelegene und die Achse der Talung nachzeichnende Lavason- An einigen Stellen zwischen Eppan und Kaltern tal in Funktion. Als die Gletscherzunge schließlich treten geschichtete, sandig-schluffige Ablage run - über den Sattel bei St. Michael zurückgeschmolzen gen auf, die von Penck (in Penck & Brückner 1909: war, suchten sich die Schmelzwässer neue Wege 924) als „glaziale Mehlsande“ von St. Pauls bezeich- und erreichten den Kalterer See nicht mehr (Abb. 8). net wurden. Sie bedecken vor allem den Nordteil Wie groß war die Menge des hier erodierten Ma- des Überetsch, zwischen Unter rain, Frangart und St. terials? Das hängt unmittelbar mit der Frage nach Pauls und überlagern hier ältere quartäre Ablage- der Dimension dieser Erosionstäler zusammen. Das rungen bzw. Gesteine der Permotrias. Nach Penck Lavasontal ist über 6 km lang, auf 5 km Länge ist es (in Penck & Brückner 1909: 924) wurden diese stel- um 50 bis 75 m tief in die Umgebung eingeschnit- lenweise viele Dekameter mächtigen Sedimente in

Geo.Alp, Vol. 2, 2005 15 einem vom Eis aufgestauten See abgelagert. Glei- diesen Seeablagerungen schlecht erhaltene Pflan- ches gilt auch für ähnliche Bildungen, die sich öst- zenreste zu finden, offenbar Abdrücke von Sten- lich des Kreither Sattels beiderseits der Laimburg geln, Zweigen und Blättern. Das Einschwemmen ober halb des Etschtales (am Stadlhof) erhalten ge- von Pflanzenresten in glaziale Stauseen erscheint blieben sind, ein Vorkommen, das von Castiglioni & im Zuge des Eisaufbaues eher vorstellbar als Trevisan (1973: 19 f.) als das von „Novale al Varco“ während des Rückschmelzens der Gletscher. Ver - oder „Maso Stadio“ bezeichnet wird. Ausführlich gleichbare Seeablagerungen wurden übrigens auch werden diese und die glazilakustrinen Sedimente in einem künstlichen Aufschluss oberhalb eines Ero- von St. Pauls durch Castiglioni & Trevisan (1973: 18 sionstales am Westhang des Lavasontales bei Kal- ff.) beschrieben. Obwohl die Ablagerungen stellen- tern beobachtet. weise durch Eisauflast etwas verdichtet und durch das Eis glazialtektonisch teilweise gestört erschei- nen, müssen sie nach Castiglioni & Trevisan (1973: 3. Rückschmelzen der Kalterer Zunge – 19) ins Spätglazial, also genauer ins Bühl-Stadium ein Rekonstruktionsversuch gestellt werden (Hantke 1983: 234). Der Überlauf des Stausees bei St. Pauls soll nach Der hier vorgestellte Rekonstruktionsversuch des Penck (in Penck & Brückner 1909: 924) über ein „Eisrückzuges“ in der Umgebung von Kaltern „heute trocken daliegendes Tal, das sich östlich von (Abb. 8) wurde auf der Grundlage von geologischen Kaltern zum Kalterer See zieht“ erfolgt sein, also Detailkarten erarbeitet, die bei den drei vom Erstau- wohl über das Lavasontal. Bei Kaltern soll dieser tor betreuten Kar tierungsübungen mit Geologiestu- Ausfluss nach Castiglioni & Trevisan (1973, Abb. 26) denten der TU München in Südtirol entstanden in einen weiteren, etwas niedriger liegenden Stau- waren (siehe oben). Die hier dargestellten Rück- see gemündet haben, der südlich des Kalterer Sees zugsstände (Abb. 8/ 1-5) sind wohl mit dem Eis- vom Etschgletscher abgedämmt worden sein soll. stand von Auer parallelisierbar, der nach Hantke Wie oben schon dargelegt wurde, ist das Lavasontal (1983: 234) demjenigen von Kufstein auf der Al- eher als normales Schmelzwassertal angelegt wor- pennordseite gleichzusetzen sein soll. Nach Jerz den und hat, selbst wenn es später als Überlauf für (1993: 95) entspricht dies einem Alter von etwa einen solchen Schmelzwassersee gedient haben 15.000 bis 16.000 Jahren vor heute. Das Rück- sollte, jedenfalls nicht in einen größeren Schmelz- schmelzen der Zunge von Kaltern muss also insge- wasserstausee im S des Überetsch gemündet. In der samt im ausgehenden Hochglazial bzw. an der Umgebung des Kalterer Sees gibt es, abgesehen von Wende zum Spätglazial der Würmeiszeit erfolgt den Stauseesedimenten östlich des Kreither Sattels, sein. Was man zur Bestätigung der Annahmen und keine See- oder Deltaablagerungen, die die Annah- zur Abrundung des Bildes allerdings noch bräuchte, me eines solchen Sees rechtfertigen würden. ist die Auswertung von hinreichend tiefen Bohrun- Tatsächlich gibt es Hinweise auf einen Stausee im gen in der Talebene südlich des Kalterer Sees. Becken des Kalterer Sees, der aber deutlich älter sein muss und eher mit dem frühwürmeiszeitlichen 1. Die Stirn des Etschgletschers ist im Haupttal bis Eisaufbau des Etschgletschers als mit dessen Rück- etwa nach Auer zurückgeschmolzen. Ein Seiten ast, schmelzen im Spätglazial etwas zu tun hat. Beim die Kalterer Zunge, bedeckt große Teile des Über - Hotel Leuchtenburg in Kreit am Kalterer See sind etsch, die weite Talung von Eppan-Kaltern und oberhalb der Straße Aufschlüsse in schluffig-fein- stirnt etwas südlich des Kalterer Sees. Das Etschtal sandigen, feinschichtigen, etwas eisenschüssigen ist teilweise von Schmelzwasserseen erfüllt. Die Stillwassersedimenten zu finden, die von kaltzeitli- Kalterer Zunge wird von Eis genährt, das über chen, sehr eisrandnah entstandenen, groben Schot- Transfluenzen von N her bei Eppan und von NE tern überlagert werden. Die feinkörnigen Sedimente her über die Montiggler Seen vom Hauptgletscher sind überkonsoli diert und deshalb mit Sicherheit her überquillt (Abb. 7). In dieser Zeit entstehen die eisüberfahren. Bei den überlagernden Schottern höchsten Kamesterrassen an der Barleit südlich könnte es sich um Vorstoßschotter handeln, viel- von Kaltern (Abb. 6) und die Lateralmoräne von leicht sind es aber auch Kiese, die zu den Eisrandab- Fuschgalai am Westhang des Unter berges gegenü- lagerungen von Fuschgalai gehören und somit als ber von Kaltern (Fuschgalai-Stadium, Abb. 6). spätglazial einzustufen sind. Stellenweise sind in

16 Geo.Alp, Vol. 2, 2005 Abb. 7: Rekonstruktionsversuch des Etschtales zwischen Bozen und Neumarkt im ausgehenden Hochglazial der letzten Eiszeit. Deutlich ist zu erkennen, dass sich das Eis des Etschgletschers in zwei Eisloben aufgespaltet. Die Etschtalzunge (ETZ) im E folgt dem eigentlichen Etschtal abwärts, die Kalterer Zunge (KLZ) im W dringt bei Mis sian ins Überetsch ein, folgt der wei- ten Talung von Eppan-Kaltern und stirnt südlich des Kalterer Sees (punktierte Linie). Für die Kalterer Zunge lassen sich zwei Eisstände besonders gut dokumentieren: ein älteres Fuschga- lai-Stadium (dick) und ein jüngeres Stadium von Kaltern (dünn). Unterhalb des Überetsch war das Etschtal in dieser Zeit vermutlich von rasch verlandenden Schmelzwasserseen erfüllt (schwarz). Fig. 7: Attempt to reconstruct the situation within the Etsch (Adige) Valley between Bozen (Bolzano) and Neumarkt (Egna) at the transition from the Pleniglacial to Late Glacial Period. Two separate glacierlobes at the front of the Etsch valley glac- ier are clearly visible. The Etsch valley lobe (ETZ) to the east flows down the Etsch Valley, the ice front of the Kaltern lobe (KLZ) in the west invading the vale of Eppan-Kaltern (Appiano- Caldaro) at Missian (Missiano) is situated directly south of Kalterer See (Lago di Caldaro, dotted line). Two different ice margins of the Etsch Valley lobe are clearly traceable: an older Fuschgalai-substage (thick line) and a younger Kaltern sub- stage (thin line). The Etsch Valley south of these retreating glacier tongues has presumably been filled with rapidly vanish- ing meltwater lakes (black).

2. Der Etschgletscher schmilzt weiter zurück, der Eis- spiegel der Kalterer Zunge sinkt etwas ab. Der größte Teil der Kamesterrassen zwischen Kaltern und dem Kalterer See entsteht, außer dem Kame- sterrassen unterhalb der Lateralmoräne von Fuschgalai und im Leuchtenburger Wald (Stadium von Kaltern, Abb. 6, 7). Beim Absinken des Eisspie- gels werden durch Schmelzwässer parallel zur La- teralmoräne bzw. parallel zur Kamesterrasse süd- lich von Kaltern die Erosions täler des Fuschgalai bzw. am Barleiter Weg eingetieft. dem dadurch bedingten Tieferlegen des Vorfluters 3. Die Kalterer Zunge schmilzt zurück. Durch das Ab- schneiden sich die Schmelz wässer in die zuerst ge- sinken des Eisspiegels dünnt das Eis bei Kaltern so bildeten Kiesflächen ein. In den Rinnen des Lava- weit aus, dass sich von der Kalterer Zunge eine sontales, Val Eusca, Frühlingstalele etc. werden große Toteismasse im Kalterer See abtrennt. Zwi- Schmelzwassersedimente erodiert und nördlich schen der Toteismasse und dem aktiven Eisrand der Toteismasse auf tieferen Niveaus erneut abge- bei Unterplanitzing akkumu lieren flächenhaft lagert. Zunehmend sind weniger Schmelzwasser - Kiese, die bei einem kurzen Vorstoß dieser Zunge rinnen aktiv, am längsten die des Lavasontales und nochmals überfahren werden. Die Schmelzwässer die tief eingeschnittene Rinne von Oberpla nitzing. fließen um die Toteismasse herum und münden Die Schmelzwässer fließen immer noch um die südlich des Kalterer Sees ins Etschtal. Hier entste- Toteismasse herum und münden südlich des Kalte- hen im Niveau des Etschtales vermutlich Deltakie- rer Sees ins Etschtal. se. 4. Mit dem Rückschmelzen der Kalterer Zunge, dem 5. Während die Kalterer Zunge langsam nach Eppan allmählichen Kleinerwerden der Toteis masse und zurückschmilzt, ist zuletzt nur noch die Schmelz-

Geo.Alp, Vol. 2, 2005 17 wasserrinne des Lavasontales aktiv. In dem Maße matrixarmer Karbonatschutt auf, der bei Graun wie sich die Toteismasse im Becken des Kalterer Oberflächenstrukturen zeigt, wie sie für einen (si- Sees verkleinert, vergrößern sich die Kiesflächen cher nicht mehr aktiven) Blockgletscher typisch nördlich und südlich davon. Das Eis im Becken des sind (Abb. 1). Ähnliche Ablagerungen sind im Höl- Kalterer Sees verschwindet erst, als kein Schmelz- lental und oberhalb Kaltern bei St. Anton durch wasser mehr von N her zufließt. Dadurch bleibt karbonatische Zemente zu festen Brekzien verfe- ein Teil der Hohlform bis heute als See erhalten. stigt worden. Mursedimente unterschiedlichen Al- Die eis zeitlichen Ablagerungen werden stellenwei- ters bedecken in überraschend großer Mächtigkeit se erodiert, teilweise auch durch junge Schwemm- weite Flächen an der Ostflanke des Mendelzuges bis und Murfächer überdeckt. hinunter ins Tal, besonders in der Umge bung von Kurtatsch. Tille, diamiktische Sedimente (Taf. 4) und Brekzien unterschiedlicher Zusammensetzung und 4. Schlussfolgerungen Genese werden im Rahmen dieser Arbeit ausführ- lich beschrieben (Abb. 3). In der weiten Talung von Eppan-Kaltern ist ein Die gesamte Talung von Eppan-Kaltern wird von ganzes System von kiesigen Lateralmoränen, breiten tief eingeschnittenen, breiten, kastenförmigen Kamesterrassen (Taf. 1, 2) und peripheren Rinnen Trockentälern durchzogen (Abb. 1, 6). Abschnitts- erkennbar (Abb. 1, 6), mit dessen Hilfe sich unter- weise werden diese Trockentäler auch von heu tigen schiedliche Rückschmelzstadien einer „Kalterer Gewässern benutzt, die die alten Täler teilweise Zunge“ rekonstruieren lassen. Sie muss während des anerodiert und zerstört, in einigen Fällen auch mit Eisstandes von Auer im ausgehenden Hochglazial in ihren Ablagerungen aufgefüllt haben. Die der Talung von Eppan-Kaltern gelegen und knapp Trockentäler bilden ein verzweigtes Tal system, das südlich des heutigen Kalterer Sees gestirnt haben in südlicher Richtung zum Kalterer See hin entwäs- (Abb. 7). Die Kamesterrassen bestehen vor allem aus sert. Das größte und am wenigsten von jüngeren sehr kristallinreichen Schmelzwasserkiesen und - Schwemmfächern zugeschüttete Trockental, das La- sanden, Stillwassersedimenten und zu einem klei- vasontal, lässt sich von den Reitwiesen am Kalterer nen Teil auch aus einer Vielzahl von diamiktischen See über 6 km Richtung N bis nach Eppan (St. Sedimenten, darunter Geschiebelehme (Tille) und Michael) verfolgen. Die Talböden der hiervon ab- Mursedimente (Abb. 3). zweigenden Trockentäler werden teilweise vom Bergwärts gehen die den Eisrand begleitenden, Haupttal deutlich unterschnitten. Bei allen diesen leicht nach Süden hin einfallenden Terrassen stel- Trockentälern handelt es sich um Schmelzwasser- lenweise tatsächlich in stärker geneigte alluviale rinnen, die zu einem Zeitpunkt entstanden, als die Fächer aus karbonatreichem Murschutt über, der „Kalterer Zunge“ nach Norden in Richtung Eppan von den Hängen unterhalb des Mendelzuges zurückschmolz (Abb. 8). stammt. Neben Murfächern, die mit diesen Eis - Das komplexe System aus mächtigen Schmelz- randterrassen direkt verbunden sind (Abb. 2), treten wassersedimenten, erosiven Schmelzwasserrinnen, auch Strukturen auf, die hier „Murkames“ genannt Kamesterrassen und Lateralmoränen in der Talung werden. Es handelt sich um Erosionsreste von stark von Eppan-Kaltern lässt sich nur dann zwanglos geneigten Murfächern, die offen sichtlich direkt deuten, wenn man eine große, langsam abschmel- gegen den absinkenden Eisrand des Etschgletschers zende Toteismasse im Gebiet des Kalterer See- geschüttet wurden. Diese „Murkames“ besitzen auf beckens annimmt (Abb. 8/ 3-5). Diese Toteismasse ihrer talwärtigen Seite einen deutlichen Gefälle- muss während des Rückschmelzens des Etschglet- knick (Taf. 2), eine Sackungskante, die ihre Entste- schers dafür gesorgt haben, dass sich im Norden hung dem Eisrand verdankt, gegen den die Sedi- davon zunächst mächtige Schmelzwassersedimente mente ursprünglich geschüttet worden waren akkumulieren konnten (Abb. 8/ 3), die mit dem (Abb. 4). Daneben gibt es auch jüngere, aktive und langsamen Zurückschmelzen des Toteises und dem inaktive Murfächer, aber ebenso Erosionsreste von dadurch bedingten Absinken des Vorfluters allmäh- deutlich älteren, die offensichtlich vom Eis überfah- lich wieder ausgeräumt wurden (Abb. 8/ 4). Zudem ren und dadurch überkonsolidiert sind (Abb. 6). sorgte sie offensichtlich dafür, dass das Becken des Diese müssen aus der Zeit vor dem Eishöchststand Kalterer Sees, trotz erheblichen Sedimenteintrages, der Würmeiszeit stammen. Stellenweise tritt extrem nicht restlos aufgefüllt werden konnte.

18 Geo.Alp, Vol. 2, 2005 Abb. 8: Das Rückschmelzen der Kalterer Zunge des Etschgletschers an der Wende vom Hoch- zum Spätglazial der Würmeiszeit, dar- gestellt in 5 Etappen. Rekonstruktionsversuch auf der Grundlage von geologischen und geomorphologischen Detailkartierungen im Maßstab 1:10.000. Stand 1 entspricht dem Fuschgalai-Stadium, Stand 2 dem Stadium von Kaltern. Nähere Erläuterungen zu den Rückzugsetappen im Abschnitt 3. Fig. 8: An attempt to reconstruct 5 substages of the ice recession at the transition from the Pleniglacial to Late Glacial Period: the Kaltern lobe (ETZ), part of the Etsch (Adige) svalley glacier. Based on detailed geological and geomor phological mapping in the re- gion between Eppan (Appiano) and Margreid (Magrè) at a scale of 1:10.000. The sketch on the left (1) corresponds to the Fuschgalai substage, the next one (2) to the Kaltern substage. For more information concerning the different substages of ice recession see chapter 2.

5. Conclusions fans to the west (fig. 2), built up entirely by angular fragments of limestone and dolomite, deriving from Within the wide vale of Eppan-Kaltern (Appiano- the steep slopes below the Mendola-Roèn-Ridge Caldaro) at Überetsch (Oltradige, Sella di Appiano- above the terraces. Apart from these structures Caldaro) close to Bozen (Bolzano) in South Tyrol connected with kame terraces isolated erosional (Alto Adige) a complex system of gravelly lateral remnants of steeply inklined debris fans can be moraines, large kame terraces (plate 1, 2) as well as identified, obviously deposited in the gap between erosive peripheral meltwater valleys can be identi- the mountain slope and the western rim of the fied (fig. 1, 6). With the help of these structures it is shrinking glacier. These „fankame“ expose a typical possible to reconstruct different substages of the steep edge at their lower parts (plate 2), generated „Kaltern lobe“, a late Pleniglacial tongue of the by the glacier which formerly served as an abut- Etsch (Adige) valley glacier. Originally the vale of ment for these sedi ments (fig. 4). They have been Eppan-Kaltern was filled with the glacier ice of this deeply cut by erosional valleys since the glacier ice lobe. At the transition from the Pleniglacial to the has disap peared. Late Glacial Period, in a time roughly corresponding Apart from these fossil alluvial fans younger ac- to the stage of Auer (Ora), the front of this glacier tive and inactive fans can be identified. Beyond was situated directly south of present Kalterer See that there are erosional remnants of debris fans, (Lago di Caldaro, fig. 7). The kame terraces are built which are overconsolidated (fig. 6), because they up of meltwater sands and gravel extremely rich in have been overridden by the glacier ice and there- crystalline material, lake sediments and a variety of fore are clearly older. Structures of this type as for different diamictons, for example tills and debris example the hill of St. Jakob in Kastelaz at Tramin flow deposits (fig. 3). (Termeno) should have formed in the time before The kame terraces which dip gently downvalley, the LGM. Thick diamictons of this type which are gradually change into steeper inclined fossil alluvial obviously no tills at all cover great areas around

Geo.Alp, Vol. 2, 2005 19 Kurtatsch (Cortaccia) and Tramin (Termeno). Many nant ice a thick sequence of glaciofluviatile and vineyards are situated on these rigid stony deposits, glaciolacustrine sediments was accumulated for a called „Kampferde“ (which means „soil to fight while (fig. 8/ 3). With the slow downmelting of the with“) by locals. Most of these sediments are pre- stagnant ice the meltwater rivers rather began to sumably debris flow deposits of different ages. erode and several generations of erosional drainage In places coarse grained sediments with an ex- systems were formed here (fig. 8/ 4). The mass of tremely low content of silt and sand occur, consist- stagnant ice may also have prevented the lake basin ing mostly of angular fragments of carbonate rocks. from infill of meltwater sediments. Otherwise Close to Graun (Corona) sediments of this type Kalterer See would not have survived. show morphological surface structures characteris- tic for rock glaciers (fig. 1). Due to their comparably low altitude of only 1000 m above sea level this Literatur rock glacier is probably fossil and not active at pre- sent. Similar sediments within the Höllental (Valle Bestle, K.-H. (2005): Geologie der Höhen westlich des del Inferno) and close to St. Anton near Kaltern Etschtales zwischen Kurtatsch und Fennberg, mit der (Caldaro) were transformed to breccias by carbon- Erstellung eines Gefahrenzonenplanes für diesen Teil ate cementation. Tills, diamictons and breccias of Südtirols.– unveröffentlicht, kombinierte Diplomkar- different composition, origin and age are men- tierung und Diplomarbeit am Lehrst. f. Ingenieurge- tioned above in detail (fig. 3). ologie der TU München, 1 geol. Kt. 1 : 10.000; Mün- Within the large vale of Eppan-Kaltern a variety chen. of erosive meltwater valleys can be identified, Blaas, J. (1892): Beiträge zur Geologie von Tirol. Glaziale deeply incised into a thick and complex sequence of Ablagerungen bei Meran und Bozen. – Bd. 1, Verh. Geol. Pleistocene sediments, forming a branched fossil Reichsanst., 1892 (8), S. 217-222. drainage system (fig. 1, 6). In places modern creeks Bosselini, A. (1998): Geologie der Dolomiten.– 191 S.; use parts of these valleys and have destroyed them Athesia-Verlagsanst., Bozen. both, by erosion and infill of sediments. The Pleis- Brandner,R. & Mostler, H. (1982): Der geologische Aufbau tocene dry valleys mostly show flat bottoms and des Schlerngebietes und seiner weiteren Umge bung. – drain roughly to the south into the basin of Lake Exkursionsführer, Jahrestagung der Österreichischen Kalterer See. The Lavason Valley is the largest and Geologischen Gesellschaft in Seis am Schlern, 108 S.; the best preserved of these meltwater valleys, Österr. Geol. Ges., Seis. tracable from Reitwiesen just north of Lake Kalterer Castiglioni, G.B., Trevisan, L. (1973): La Sella di Appiano- See to St. Michael at Eppan (Appiano) over a dis- Caldaro presso Bolzano nel Quaternario.– Mem. I.G. tance of 6 km. The bottoms of its tributary valleys Min. Univ. Padova, 29, S. 2–34. are clearly cut by the main valley, and therefore Costa, J.E. (1984): Physical geomorphology of debris seem not to have been active for such a long time flows.– In: Costa, J.E. & Fleisher, P.J. [Hrsg.] (1984): De- as the Lavason Valley itself. All these valleys were velopments and applications of geomorphology, formed by meltwater streams of the „Kaltern lobe“ S. 268–317; Springer-Verl., Berlin. in a later substage (fig. 8), when this glacier tongue Costa, J.E. (1988): Rheologic, geomorphic and sedimento- melted slowly back to Planitzing (Pianizza) and logic differentiation of water floods, hyperconcentra- Eppan (Appiano). ted flows, and debris flows.– In: Baker, V.R., Kochel, R.C.. The formation of the whole complicated system & Patton, P.C. [Hrsg.] (1988): Flood geomorphology, of lateral moraines, kame terraces as well as ero sive S. 113–122; Springer-Verl., Berlin. fossil meltwater valleys within the vale of Eppan- Coussot, P., Meunier, M. (1996): Recognition, classification Kaltern, can only be interpretated in a simple and and mechanical description of debris flows, Earth- satisfying way, if a large and slowly vanishing mass Science Reviews, 40, S. 209–227. of stagnant ice is postulated to have existed within Davies, T.R.H. (1988): Debris flows – a laboratory investiga- the basin of Kalterer See (fig. 8/ 3-5). This stagnant tion.– Mitteilungen der Versuchsanstalt für Wasserbau, glacier ice may have been an obstacle for the melt- Hydrologie und Glaziologie an der ETH Zürich, 96, waters, streaming from the retreating glacier 122 S. tongue in the north towards the lake basin in the Ebers, E. (1972): Das Quartär des Überetsch.– Schlern, 46 south. North of this hypothetical abutment of stag- (3), S. 111–119.

20 Geo.Alp, Vol. 2, 2005 Fuchs, F. (1969): Eine erste 14C-Datierung für das Paudorf- Klebelsberg, R. von (1935): Geologie von Tirol.– 872 S.; Interstadial am Alpensüdrand.– Eiszeitalter und Gegen - Gebr. Borntraeger-Verl , Berlin. wart, 20, S. 68–71. Klebelsberg, R. von (1949): Handbuch der Gletscherkunde Geyer, O.F. (1993): Die Südalpen zwischen Gardasee und und Glazialgeologie.– Bd. 2, Historisch-regionaler Teil, Friaul.– Sammlung Geol. Führer, 86, 576 S.; Gebr. Born- 1028 S.; Springer-Verl., Wien. traeger-Verl., Stuttgart. Moser, H. (1996): Blätterbach in Aldein.– 104 S.; Athesia- Gwinner, M.P. (1971): Geologie der Alpen.– 477 S.; Stutt- Verlagsanst., Bozen. gart (Schweizerbart-Verl.). Penck, A. (1907): Interglaziale Ablagerungen im Etschthal- Habbe, K.-A. (1969): Die würmeiszeitliche Vergletscherung gebiet.– Z. dt. Geol. Ges., 59, Monatsber., S. 4–5.f. des Gardasee-Gebietes. – Freiburger geogr. Arb., 3, Penck, A., Brückner, E. (1909): Die Alpen im Eiszeitalter, Bd. S. 1-254. 3.– 1197 S.; Tauchnitz-Verl., Leipzig. Haeberli, W. (1996): Gletscherschwund, Permafrostdegra- Scholz, H. (1984): Westgrönland - ein lebendiges Modell dation und periglaziale Murgänge im hochalpinen Be- für die Eiszeit im Alpenvorland.– Natur u. Museum, 114 reich.– In: Odsson, B. [Hrsg.] (1996): Instabile Hänge (4), S. 89–103. und andere risikorelevante Prozesse, Monte Verità, Scholz, H. (1986): Das Allgäu im Hochglazial – Westgrön- S. 163–181; Birkhäuser-Verl., Basel. land heute: ein Vergleich. – Ber. Naturwiss. Ver. Schwa- Hantke, R. (1983): Eiszeitalter. Die jüngste Erdgeschichte ben, 90 (1), S. 1–26. der Schweiz und ihre Nachbargebiete.– Bd. 3, 730 S.; Stacul, P. (1980): Eine alte Gehängebrekzie am Mendel- Ott-Verl., Thun. hang oberhalb von St. Nikolaus bei Kaltern. – Schlern, Heissel, W. (1982): Südtiroler Dolomiten.– Sammlg. Geol. 54 (6), S. 289–291. Führer, 71, 172 S.; Gebr. Borntraeger-Verl., Stuttgart. Werth, K. (2003): Geschichte der Etsch.– 341 S.; Tappeiner Husen, D. van (1982): Die Ostalpen in der Eiszeit.– 24 S., Verl., Lana. 1 Kt.; Geol. B.-Anst., Wien. Willerich, S. (2005): Geologie der Höhen westlich des Jerz, H. (1993): Das Eiszeitalter in Bayern.– In: Geologie Etschtales zwischen Tramin und Kurtatsch (Penon), von Bayern, Bd. 1, 256 S.; E. Schweizer bart´ sche mit der Erstellung eines Gefahrenzonenplanes für die- Verlags buchhandl., Stuttgart. sen Teil Südtirols. – unveröffentlicht, kombinierte Di- Johnson, A.M., Rodine, J.R. (1984): Debris flow.– In: plomkartierung und Diplomarbeit am Lehrst. f. Inge- Brunsden, D. & Prior, D.B. [Hrsg.] (1984): Slope Instabili- nieurgeologie der TU München, 1 geol. Kt. 1:10 000; ty, S. 257–361; John Wiley & Sons, Chichester, New München. York etc. Klebelsberg, R. von (1926): Über die Verbreitung intergla- zialer Schotter in Südtirol.– Zeitschrift für Gletscher- Manuscript submitted: August 25, 2004 kunde, 14, S. 266–285. Manuscript accepted: February 2, 2005

Geo.Alp, Vol. 2, 2005 21 Tafelerläuterungen / Explanation of plates

1: Blick über die Talung von Eppan-Kaltern nach SE, von der Barleite zum Unterberg. Die begrünte Vereb nungsfläche ist die Kamesterrasse von Kaltern, am Hang des bewaldeten Berges ist die Lateralmoräne von Fusch galai als leicht nach rechts geneigte gerade Linie zu erkennen. Das Tal dahinter ist das Etschtal.

1: View to Unterberg from Barleite in the northwest, across the vale of Eppan-Kaltern (Appiano-Caldaro). The green plain is the kame terrace of Kaltern, the slightly inclined line at the slope of the wooded mountain is the lateral moraine of Fuschgalai. The valley behind that is the Etsch (Adige) Valley.

2: Blick auf Kaltern von S her. Bei der breiten Verebnungsfäche handelt es sich um die Kamesterrasse von Kaltern (vgl. Abb. 2).

2: View to Kaltern from the south. The large green plain is the kame terrace of Kaltern (see fig. 2).

3: Blick von der Mendelpassstraße nach S in Richtung St. Nikolaus. Der bewaldete, nach links (E) gleichmäßig geneigte Rücken ist der Erosionsrest des „Murkames“ oberhalb von Pfuss, das von rechts (W) vom Hang her gegen den Rand des Gletschers geschüttet wurde. Deutlich ist der Gefälleknick an seinem unteren Ende zu erkennen, die Kante, an der das Murkames ursprünglich ans Eis grenzte (vgl. Abb. 4).

3: View to St. Nikolaus (S. Nicolo) to the south from the road from Eppan (Appiano) to Mendelpass (Passo della Mendola). The wooded hill gently dipping from rigt (W) to left (E) belongs to the „fankame“ above Pfuss, originally supplied with debris from the slope on the right hand side (W). There is a typical steep edge at its lower end generated by the glacier which formerly served as an abutment for these sediments (see fig. 4).

4: Straßenaufschlüsse in karbonatreichen, diamiktischen und nahezu ungeschichteten Mursedimenten an der Straße von Kurtatsch nach Penon. Es sind zahlreiche, größere, eckige Dolomitblöcke zu erkennen.

4: Roadside exposures of diamictic and nearly not stratified debris flow sediments ritch in carbonate fragments, at the road from Kurtatsch (Cortaccia) to Penon (Penone). Some of the angular dolomite bolders can be identified.

22 Geo.Alp, Vol. 2, 2005 1 2

3 4

Geo.Alp, Vol. 2, 2005 23 Geo.Alp, Vol. 2, S. 25–29, 2005

THE LATE PLEISTOCENE VERTEBRATE FAUNA FROM AVETRANA (TARANTO, APULIA, SOUTHERN ITALY): PRELIMINARY REPORT

Raffaele Sardella1,2, Claudia Bedetti1, Luca Bellucci1, Nicoletta Conti1, Danilo Coppola3, Emmanuele Di Canzio2, Marco Pavia4, Carmelo Petronio1,2, Mauro Petrucci1 & Leonardo Salari1

With 3 figures

1 Dipartimento di Scienze della Terra, Università di Roma “La Sapienza”; e-mail: [email protected] 2 CNR-IGAG Istituto di Geologia Ambientale e Geoingegneria 3 Dipartimento di Storia, Università “Tor Vergata” di Roma 4 Dipartimento di Scienze della Terra, Università di Torino

Riassunto In una cava inattiva, nei pressi della cittadina di Avetrana, a Est di Taranto (Puglia, Italia meridionale), è stata rinvenuta un ricca associazione faunistica a vertebrati contenuta nel riempimento di una cavità di origine carsica. Nella cava affiora la formazione delle “Calcareniti di Gravina”, compatta di colore gial- lastro, con ricca malacofauna ed echinidi, ascrivibile al Pleistocene inferiore. A seguito di un saggio di scavo condotto nell’ottobre 2003 è stato possibile condurre una prima analisi stratigrafica del riempi- mento carsico, con campionamento dei diversi livelli riconosciuti e recupero di alcuni degli abbondanti reperti fossili affioranti. Attualmente i resti di vertebrati recuperati sono conservati presso la Soprintendenza di Taranto. Nel riempimento della fessura carsica indagata sono stati riconosciuti nove livelli fossiliferi e due tasche. Le specie presenti nel deposito sono riferibili al Pleistocene superiore.

Abstract In an abandoned quarry near Avetrana (Taranto, Apulia, Southern Italy) a fossiliferous karst filling deposit rich in vertebrate remains has been discovered. This deposit fills a wide karst fracture crossing a massive, yel- low marine bio-calcarenite termed “Calcareniti di Gravina” Formation. This formation contains a rich macro- fauna and echinids, referable to the Early Pleistocene. In October 2003, field activities including sampling of the sediments and a preliminary excavation of the fossiliferous levels started. Within the karst filling deposit nine levels and two pockets could be determined. The collected fossils are stored at the “Soprintendenza per i Beni Archeologici per la Puglia” (Taranto, Apulia). This fossiliferous karst deposit can be referred to the Late Pleistocene.

Introduction report the discovery of a new fossiliferous locality in the area of Taranto. It is a karst filling deposit The Salento Peninsula is well known in the rich in fossil bones located in an abandoned cal- palaeontological literature for its Late Pleistocene carenite quarry, in the area of Avetrana, not far vertebrate faunas, mainly in its southern part from Manduria (Fig. 1). (Blanc 1920, De Giuli 1983, Corridi 1987, Di Stefano After a preliminary survey during May 2003, car- et alii 1992, Bologna et alii 1994, Rustioni et alii ried on by some of the authors (D. Coppola and C. 1994 among others). Data available for the Ionian Petronio, in particular), a team of palaeontologists northern part of Salento are quite rare. Here we of the “La Sapienza” University, leaded by Prof.

25 C. Petronio, started the field cam- paign, in accordance with “Soprin - tendenza per i Beni Archeologici per la Puglia”. Field work was con- tinued in October 2003, with activities of sampling sediments and a partial excavation of the fossiliferous levels. The collected fossils are stored at “Soprinten - denza per i Beni Archeologici per la Puglia” (Taranto, Apulia). In the present paper we present a preliminary analysis of the col- lected material and some general outlines of the fossiliferous karst deposit.

Stratigraphy Fig. 1: Location of Avetrana Th e “Calcareniti di Gravina” Formation is a mas- sive bio-calc arenite, rich in molluscs and echinids, that widely outcrops in the central-southern 5) 140 cm of clayey sand with very abundant bones Apulian Peninsula; its age spans the Late Pliocene and rare calcareous pebbles. This layers is char- (Adriatic side) and Early Pleistocene (Ionian side) acterised by a level of bones and pebbles at its (Ciaranfi et alii 1988). In the considered quarry near base and also by a sandy lens with rare bones 20 Avetrana this formation is exposed in a section cm above the base of this layer. which is approximately 10 m thick. The vertebrate 6) 20 cm of sand with abundant bones and cal- fossil bones occur in a karst fissure filling (Fig. 3). careous pebbles. The sediments containing fossil vertebrates are 7) 40 cm of clay with abundant bones and large divided into two parts: the upper part fills the main calcareous boulders, especially at the base of the cavity (layers 1 to 9), the lower part fills a network layer (Fig. 2). of small fissures which opened under the main one. 8) 75 cm of clay and bones, the bones are also con- The small fissures (layer 0 in Fig. 3) are filled with centrated at the base of the layer, separating it orange-yellow nonlaminated sandy clays rich in from the underlying layer. small and medium-sized vertebrate remains. The 9) 70 cm of clay with sparse bones, most of them main cavity is filled with laminated sediments 4,5 to decalcified. 5,5 m thick. From the bottom to the top the follow- ing levels have been determined (Fig 3): Palaeontology 1) 30 cm of clayey sand with rare altered calcare- ous pebbles and bones. A continuous level of Most of the fossil remains found at different lev- calcareous pebbles constitutes the basal part of els of the main cavity are of medium to large size, the layer. mainly referable to Bos primigenius (Fig. 3). The pre- 2) 20 cm of sandy clay very rich in fossil remains. liminary analysis of the fossil material enables us to 3) 20 cm of clayey sand with some bones and rare present the following faunal list: calcareous pebbles. Layer 0: AVES: Perdix perdix, Columba livia, Athene 4) 20 cm of sandy clay rich in fossil bones and cal- noctua, Pyrrhocorax graculus; MAMMALIA: careous pebbles. This layer is separated from Erinaceus europaeus, Lepus europaeus, layer 3 by an erosional surface which is marked Oryctolagus cuniculus, Hystrix cf. H. cristata, by a level of calcareous pebbles and bones. Terricola savi, Felis silvestris.

26 Geo.Alp, Vol. 2, 2005 Layer 1: Bos primigenius. Layer 2: Vulpes vulpes, Canis lupus, Crocuta crocu- ta, Lynx lynx, Stephanorhinus sp., Bos primige- nius, indet., Dama dama, Cervus elaphus. Layer 3: Lepus europaeus, Vulpes vulpes, Canis lupus, Bos primigenius, Dama dama, Cervus ela- phus. Layer 4: Lepus europaeus, Vulpes vulpes, Canis lupus, Bos primigenius, Dama dama, Cervus ela- phus. Layer 5: Vulpes vulpes, Canis lupus, Bos primigenius, Cervus elaphus, Dama dama. Layer 6: Vulpes vulpes, Canis lupus, Bos primigenius, Cervus elaphus, Dama dama. Layer 7: Vulpes vulpes, Canis lupus, Crocuta crocu- ta, Stephanorhinus sp., Bos primigenius, Cervus elaphus, Dama dama, ?Megaloceros giganteus. Layer 8: Vulpes vulpes, Canis lupus, Lynx lynx, Panthera leo, Bos primigenius, Cervus elaphus, Dama dama. Layer 9: fossil bones are absent. Fig. 2: Fossil bones of layer 7 (scale bar: 20 cm). Layer 0 is characterised by the occurrence of small vertebrate remains. Bird remains are repre- The occurrence of a rhino is testified in layers 2 and sented by some limb bones, while are 7. This taxon is represented by one fragmentary mainly represented by teeth. In particular, two molar tooth and one pisiform in every layer. lower molar teeth (M2 and M3) of Erinaceus The faunal assemblage on the whole can be europaeus, 7 well preserved mandibles and some M1 referred to the Late Pleistocene. The occurrence of 1 of Terricola savi, M and two M2 of a porcupine, the fallow (in particular of the modern sub- slightly smaller than the living Hystrix cristata, have Dama dama dama) and of a rhino, generally been recorded. Among lagomorphs the hare and the referable to Stephanorhinus sp., recorded from lay- rabbit occur with some fragments of skull and ers 2 and 7, gives important biochronological con- mandible and some limb bones. Such taxa are also straints. In fact, the modern fallow deer was wide- recorded from the main cavity deposit (from layers spread in Italy at the beginning of the Late 2 to 8) but are poorly represented. The wild cat is Pleistocene, while rhinos referable to the genus represented by fragmentary limb bones of peculiar Stephanorhinus survived until the beginning of the size. Pleniglacial (MIS 3) (Gliozzi et alii 1997). In the main cavity filling, Bos primigenius is the At the moment, only general considerations on the best-represented taxon in each fossiliferous level palaeoenvironmental conditions can be pointed out. (1–8); layers 5 and 6 are very rich in limb bones, in In layer 0, the occurrence of Terricola savii and some cases in anatomical connection. Layer 8 is also Hystrix cf. H. cristata suggests the presence of tem- characterised by the occurrence of skull fragments perate climatic conditions with dry and open and mandibles with jugal teeth. palaeoenvironments. Moreover, such a general Cervids are represented by some isolated teeth framework is supported also by the occurrence of the and limb bones (layers 2–8); two large-sized first avifauna including Perdix perdix and Athene noctua, phalanxes recorded in level 7 can probably be while Columba livia and Pyrrhocorax graculus sug- ascribed to Megaloceros giganteus. Among carni- gest the presence of rocky cliffs. In the sequence fill- vores, the occurrence of the wolf and the red fox is ing the main cavity (layer 1 to 8), large testified by some isolated teeth, occurring from lay- species of a wider ecological significance occur. ers 2 to 8, the lynx and the cave lion are recorded Preliminary taphonomical observations indicate from layer 8 (some teeth and a talus respectively). that the fossil bones seem to be not oriented. This

Geo.Alp, Vol. 2, 2005 27 Fig. 3: Stratigraphy of the fossiliferous deposit

fact suggests quick deposition of the fossil-bearing Nigro, responsible for the Cultural Heritage. The sediments, which is also supported by sedimento- support of Maria Antonietta Gorgoglione, responsi- logical observations. In fact, the different layers are ble for “Soprintendenza per i Beni Archeologici per characterised by a normally graded distribution of la Puglia”, is warmly acknowledged. Moreover, the the sediment, with the heaviest material like big Earth Science Department of the University of Turin bones and calcareous pebbles concentrated in the and the “Museo delle Civiltà Preclassiche delle lowest part of the layer. Frequently such bones and Murge Meridionali” provided facilities for research. pebbles constitute a well defined level at the base We wish to thank Giuseppe “Pippo” Arcidiacono, of the layer to separate one layer from the underly- Francesco Ciminelli, Vincenza Montenegro and ing one. Michael Giagnoni for participating the field work A detailed analysis of the fossil remains has just and, finally, Karl Krainer and Marzia Breda for their begun, in accordance with the “Soprintendenza ai comments and suggestions on the manuscript. Beni Archeologici per la Puglia”, with the aim of providing further palaeontological information and a framework of the palaeoenvironmental evolution References of the area during the Late Pleistocene. Blanc, G. A.(1920): Grotta Romanelli. – Arch. Antrop. Etn., 50(1-4): 1-39. Acknowledgments Bologna, P., Di Stefano, G., Manzi, G., Petronio, C., Sardella, R., Squazzini, E. (1994): Late Pleistocene All phases of fieldwork were financially support- mammals from the Melpignano (Le) „Ventarole“: pre- ed by CNR – IGAG and by the Municipality of liminary analysis and correlations. - Boll. Soc. Paleont. Avetrana. A special mention is due to Francesco It., 33 (2): 265-274.

28 Geo.Alp, Vol. 2, 2005 Ciaranfi, N., Pieri, P., Ricchetti, G. (1988): Note alla Carta Mezzabotta C., Palombo, M. R., Petronio, C., Rook, L., Geologica delle Murge e del Salento (Puglia cen- Sala, B., Sardella, R., Zanalda, E., Torre, D. (1997): tromeridionale). - Mem. Soc. Geol. It., 41(1): 449-460. Biochronology of selected Mammals, Molluscs and Corridi, C. (1987): Faune pleistoceniche del Salento: 2. La Ostracods from the Middle Pliocene to the Late fauna di fondo Cattìe, Maglie, Lecce. - Quaderni del Pleistocene in Italy. The state of the art. – Riv. Ital. Museo Comunale di Paleontologia, 3: 5-74. Paleont. Strat., 103(3): 369-388. De Giuli, C. (1983): Le faune pleistoceniche del Salento: 1. Rustioni, M., Mazza, P., Abbazzi, L., Delfino, M., Rook, L., La fauna di S. Sidero 3. - Quaderni del Museo Petrucci, S., Vianello, F. (1994): The Würmian fauna Comunale di Paleontologia, 1: 45-84. from Sternatia (Lecce, Apulia, Italy). - Boll. Soc. Di Stefano, G., Petronio, C., Sardella, R., Savelloni, V., Paleont. It., 33 (2): 279-288. Squazzini, E. (1992): Nuove segnalazioni di brecce ossifere nella costa fra Castro Marina e Otranto (Lecce). - Il Quaternario, 5 (1): 3-10. Gliozzi, E., Abbazzi, L., Argenti, P., Azzaroli, A., Caloi, L., Capasso Barbato, L., Di Stefano, G., Esu, D., Ficcarelli, Manuscript submitted: December 17, 2004 G., Girotti, O., Kotsakis, T., Masini, F., Mazza, P., Revised manuscript accepted: February 22, 2005

Geo.Alp, Vol. 2, 2005 29 Geo.Alp, Vol. 2, S. 31–51, 2005

THE LADINIAN FLORA (MIDDLE TRIASSIC) OF THE DOLOMITES: PALAEOENVIRONMENTAL RECONSTRUCTIONS AND PALAEOCLIMATIC CONSIDERATIONS

Evelyn Kustatscher1 & Johanna H.A. van Konijnenburg-van Cittert2

With 7 figures and 5 tables

1 Dipartimento di Scienze della Terra, Università degli Studi di Ferrara, C.so Ercole I d’Este 32, 44100 Ferrara, Italy, e-mail [email protected] 2 Laboratory of Palaeobotany and Palynology, Budapestlaan 4, 3584CD Utrecht, Netherlands, e-mail [email protected]

Abstract The study of several plant fossils from the Ladinian of the Dolomites, that either had been described a long time ago or had never been described at all, has led to a revision of this flora. The Ladinian flora now con- sists of the following taxa: Annalepis zeilleri (Lycophyta), Equisetites arenaceus (Sphenophyta), Cladophlebis leuthardtii, C. ruetimeyeri, Neuropteridium elegans, Scolopendrites sp., Gordonopteris lorigae (Pteridophyta), Ptilozamites heeri (Pteridospermae), Bjuvia dolomitica, Dioonitocarpidium moroderi, Pterophyllum jaegeri, ?Pterophyllum sp., Sphenozamites wengensis, Sphenozamites cf. bronnii, Taeniopteris sp. (Cycadophyta), Voltzia dolomitica, V. ladinica, V. pragsensis, V. zoldana, Voltzia sp., Pelourdea vogesiaca und Elatocladus sp. (Coniferophyta). The flora, and especially the large number of specimens housed in the Natural History Museum at Bolzano (I), indicates a dominance of conifers over (in this sequence) seedferns, cycads, ferns and horsetails. Several factors may have caused this: climatic (an arid climate on the mainland), edaphic (immature soil) or tapho- nomic (caused by selection during transport). Quantitative palynological analyses of three localities (Ritberg near Wengen, and Seewald and Innerkohlbach near Prags, indicate a generally warm and humid climate. The dominance of the conifers and seedferns may, therefore, have been caused by their larger resistance during transport rather than by climatic factors. Ladinian palaeoclimatic reconstructions and the plant fossils studies indicate that during the late Ladinian the Dolomites consisted of carbonate or volcanic islands of various sizes, which were covered with several biotopes: coastal and ‚hinterland’; the latter divided into a more humid and a more arid zone.

Zusammenfassung Das Studium verschiedener historischer, ebenso wie bisher unbeschriebener Pflanzenfossilien aus dem Ladin der Dolomiten, die in italienischen und ausländischen Museen aufbewahrt werden, führte zu einigen Erstbeschreibungen und systematischen Revisionen. Die Ladinflora setzt sich nunmehr aus folgenden Arten zusammen: Annalepis zeilleri (Lycophyta), Equisetites arenaceus (Sphenophyta), Cladophlebis leuthardtii, C. ruetimeyeri, Neuropteridium elegans, Scolopendrites sp., Gordonopteris lorigae (Pteridophyta), Ptilozamites heeri (Pteridospermae), Bjuvia dolomitica, Dioonitocarpidium moroderi, Pterophyllum jaegeri, ?Pterophyllum sp., Sphenozamites wengensis, Sphenozamites cf. bronnii, Taeniopteris sp. (Cycadophyta), Voltzia dolomitica, V. ladinica, V. pragsensis, V. zoldana, Voltzia sp., Pelourdea vogesiaca und Elatocladus sp. (Coniferophyta). Die Flora, insbesondere die, die sich im Naturmuseum Südtirol (BZ) befindet, weist eine Dominanz der Koniferen über Samenfarne, Cycadeen, Farne und Schachtelhalmen auf. Eine derartige Zusammensetzung kann auf verschiedenen Faktoren beruhen: (i) Klimatische (arides Klima auf dem Festland), (ii) edaphische

31 (unreife Böden) oder auch (iii) taphonomische (Selektion während des Transportes). Die quantitativen Analysen der Palynofloren der drei Fundorte Ritberg (Wengen), Seewald und Innerkohlbach (Prags) weisen auf ein generell warmes und feuchtes Klima hin. Aus diesem Grund scheint die Dominanz der Koniferen und Samenfarne eher auf die größere Resistenz dieser Pflanzen gegen Zerstörung während des Transports, als auf klimatische Auslese zurückzuführen zu sein. Paläoklimatische Rekonstruktionen aus dem Ladin sowie die Analyse der Pflanzenfossilien weisen darauf hin, dass die Dolomiten im oberen Ladin von karbonatischen oder vulkanischen Inseln verschiedener Größe bedeckt waren, wo sich verschiedene Biotope gebildet hatten: das Küstengebiet und das Hinterland, das sich wiederum in feuchtere und trockener Zonen unterteilen lässt.

Riassunto Rec enti studi sistematici della flora ladinica delle Dolomiti, condotti su collezioni sia storiche che inedite di musei italiani e stranieri hanno portato a nuove segnalazioni e ad alcune revisioni sistematiche. La flora ladinica risulta essere composta dai seguenti taxa: Annalepis zeilleri (Lycophyta), Equisetites arenaceus (Sphenophyta), Cladophlebis leuthardtii, C. ruetimeyeri, Neuropteridium elegans, Scolopendrites sp., Gordonopteris lorigae (Pteridophyta), Ptilozamites heeri (Pteridospermae), Bjuvia dolomitica, Dioonito - carpidium moroderi, Pterophyllum jaegeri, ?Pterophyllum sp., Sphenozamites wengensis, Spheno zamites cf. bronnii, Taeniopteris sp. (Cycadophyta), Voltzia dolomitica, V. ladinica, V. pragsensis, V. zoldana, Voltzia sp., Pelourdea vogesiaca ed Elatocladus sp. (Coniferophyta). La flora, in particolare quella depositata nel Museo di Scienze Naturali dell’Alto Adige (BZ), presenta una generale dominanza delle conifere e pteridosperme, sulle cicadee, felci e sfenofite. Una simile composizione può essere imputabile a vari fattori: climatici (aridità delle terre emerse), edafici (suoli immaturi) e tafono- mici (selezione tassonomica causata da un trasporto prolungato). Le analisi quantitative della palinoflora, effettuate nei tre affioramenti di Ritberg (La Valle), Seewald ed Innerkohlbach (Braies), indicano un clima complessivamente caldo umido. Pertanto, la dominanza delle conifere e pteridosperme sembra essere dovu- ta ad una maggiore resistenza di queste piante ai processi putrefattivi, che avvengono durante il trasporto, piuttosto che a cause climatiche. Sulla base delle ricostruzioni paleogeografiche del Ladinico superiore e sui resti macrofloristici determi- nati, le Dolomiti presentavano una serie di piccole piattaforme carbonatiche emerse e isole vulcaniche, sulle quali si dovevano esistere biotopi differenti: aree costiere, e l’ambiente di entroterra, a sua volta suddivisa in zone più umide e più aride.

1 Introduction However, an extended search and study of local and international plant collections with both The first Ladinian plant remains from the already described and unpublished material from Dolomites have been figured by Wissmann and the Dolomites provided material for a first report Münster (1841). Afterwards several authors men- and some taxonomic revisions of the material tioned and figured plant fossils from the (Kustatscher, 2004; Kustatscher et al., 2004). “Buchensteiner Schichten” and “Wengener Schich - Also several palynological studies have been ten” of various areas in the Dolomites (Mojsisovics, applied during the last 25 years regarding succes- 1879; Arthaber,1903; Ogilvie Gordon, 1927, 1934; sions of Ladinian age from the Dolomites (Cros & Mutschlechner, 1932; P. Leonardi, 1953, 1968; Doubinger, 1982; van der Eem, 1982; Blendinger, Calligaris, 1983, 1986; Jung et al., 1992) and from 1988; Roghi, 1995a, 1995b; Broglio Loriga et al., Sappada (G. Leonardi, 1964) (for more detailed 1999). However, most of the articles use palynolog- information see also, Wachtler & van Konijnenburg ical data only on a biostratigraphic point of view – van Cittert, 2000a, b; Kustatscher, 1999, 2001, (Blendinger, 1988, Roghi, 1995a, 1995b; Broglio 2004). On this account, a high number of different Loriga et al., 1999). Only in one of them (van der plant remains have been described from the Eem, 1982) the palynomorphs are considered also as Dolomites at the end of the last century (Table 1). a source for paleoclimatic data.

32 Geo.Alp, Vol. 2, 2005 2 Material and methods

The historical and often unpublished plant fossil collections are stored in several local and interna- tional museum and universities. In detail, the plant remains figured by Ogilvie Gordon (1927) are kept in the “Paläontologisches Museum” (Munich, D), Mutschlechner’s (1932) material in the “Geologisch- Paläontologisches Institut” of the University of Innsbruck. The plant fossils discussed in Leonardi (1953) are treasured at the “Museum de Gherdëina” (Ortisei, I) and at the “Museo di Geologia e Paleontologia” of the University of Padova (I). Some specimens are kept at the “Museo di Paleontologia e Preistoria P. Leonardi” of the University of Ferrara (I) as also the fossil plants from Sappada figured by G. Leonardi (1964) and the plants figured in Leonardi (1968) and Bosellini (1989, 1996). The neuropterid- Fig. 1: Geographic distribution of the studied sections and fos- ian leaf fragment, figured by Zardini (1980) is sil plant localities cited in the article. 1. Prags / Braies, Seewald, exposed in the “Museo Paleontologico Rinaldo Innerkohlbach; 2. Gadertal / Val Badia, Wengen / La Valle, Rit- berg; 3 St. Leonhard in Abtei / S. Leonardo in Badia, St. Kassian/ Zardini” (Cortina, I). The material discussed and fig- San Cassiano, 4. Grödental / ; 5. Pufels / Bulla, Puf- ured by Calligari (1986) is stored in the Museo di latsch / Bullaccia, Schgaguler Alm / Malga Scagul, / Scienze Naturali (Trieste, I). Finally, the material dis- Alpe di Siusi; 6. Grödner Joch / Passo Gardena, Corvara; 7. cussed by Wachtler & van Konijnenburg – van Monte Sief, Arabba; 8. Forcella Giau, Corvo Alto, Mondeval; 8. Cittert (2000a, 2000b) and Kustatscher (1999, 2001, Laste (Livinallongo); 9. Cercenà, Spiz Agnelessa; 10. Sappada. 2004 p.p.) is stored in the “Museo di Scienze Naturali Alto Adige / Naturmuseum Südtirol” (Bolzano / Bozen, I), in the Museum de Gherdëina For the quantitative analyses at least 300 paly- (Ortisei) and in the “Museo Paleontologico Rinaldo nomorphs have been counted for each sample; the Zardini” (Cortina). Unfortunately the material men- material has been divided into the main groups as tioned by Mojsisovics (1879) seems to have been pollen, spores, fungal remains, algal cysts, acritarchs lost. Additionally unpublished material is stored in and foraminiferous lignins. For the quantitative the Museums discussed above and also at the data the palaeoclimate methods proposed by Museo Ladino Fodom (Livinallongo del Col di Lana, Visscher & van der Zwan (1981) and Abbink (1998) I), the Naturhistorisches Museum, the Geologische have been applied. The frequencies of each group Bundesanstalt (Vienna, I) and at the Geologisches has been plotted with the aid of a specialised pro- Landesamt (Munich, D). gram, named Graph4win. All the material (macrofossil and palynological) For paleoclimatic considerations palynomorph from the plant localities of Ritberg, Seewald and analyses have been carried out for 6 samples col- Innerkohlbach is stored at the Museo di Scienze lected at two plant localities near Braies / Prags Naturali dell’Alto Adige / Naturmuseum Südtirol (Seewald and Innerkohlbach) and one near La Valle (Bolzano / Bozen). (Ritberg), belonging respectively to the upper part of the Fernazza Formation (Ritberg and Seewald) and to the base of the Wengen / La Valle Formation 3 Macrofloral composition (Innerkohlbach) (see Fig. 1). The samples have been crushed into small frag- The Ladinian flora from the Dolomites is composed ments and treated with the standard palynological of the following taxa. The synonymy includes only all techniques, including HCl (37%), HF (40%) and sat- references from the Ladinian of the Dolomites, not urated ZnCl2 solution (D ≈ 2,3 g/ml). Afterwards, from other areas. The localities from which material the slides have been mounted in Canadian balsam. has been recovered, are indicated as well.

Geo.Alp, Vol. 2, 2005 33 DIVISION LYCOPHYTA 1953 Cladophlebis leuthardti Leonardi, p. 11, pl. 2, Order Isoetales figs. 1-5. Annalepis zeilleri Fliche, 1910 1953 Cladophlebis rütimeyeri Heer n.var. heeri – Leonardi, p. 11, pl. 1, fig. 1. 2004 Annalepis zeilleri Fliche – Kustatscher, p. 157, 1964 Cladophlebis sp. - Leonardi, p. 201 pl. 5, fig. 7. pl. 10, fig. 1. 1968 Cladophlebis cfr. denticulata Brongniart – 2004 Annalepis zeilleri Fliche – Kustatscher et al., Leonardi p. 179, pl. 28, fig. 7. p. 58, pl. 1, fig. 1. 1986 Cladophlebis leuthardti – Calligaris, p. 9, fig. Localities: Wengen / La Valle. B29. 1993 Cladophlebis leuthardti – Pozzi, p. 82, fig. 103. 1998 cf. Pecopteris reticulata (Leuthardt) - Stingl & DIVISION SPHENOPHYTA Wachtler, p. 82. Order Equisetales 1999 ?Anomopteris mougeotii Brongniart, 1828 - Family Equisetaceae Kustatscher, p. 43, pl. 1, fig. B; pl. 2, fig. A. Equisetites arenaceus (Jaeger, 1827) Schenk, 1864 2000a Cladophlebis leuthardtii Leonardi - Wachtler & van Konijnenburg – van Cittert, p. 109, pl. 1999 Equisetites arenaceus - Avanzini & Wachtler, 1, fig. 3. p. 118. 2000b Cladophlebis leuthardtii Leonardi - Wachtler 2000aEquisetites arenaceus (Jaeger) Schenk - & van Konijnenburg - van Cittert, p. 117-8, pl. Wachtler & van Konijnenburg - van Cittert, p. 1, fig. 3. 107, pl. 1, fig. 1, 2. 2004 Cladophlebis leuthardtii Leonardi – 2000bEquisetites arenaceus (Jaeger) Schenk - Kustatscher, p. 160, pl. 10, fig. 5; pl. 11, fig. 1. Wachtler & van Konijnenburg - van Cittert, p. Localities: Prags / Braies, Wengen / La Valle, Seiser 116, pl. 1, fig. 1, 2. Alm / Alpe di Siusi, Pufels / Bulla, Grödner 2004 Equisetites arenaceus (Jaeger) Schenk – Joch / Passo Gardena, Corvo Alto, Corvara, Kustatscher, p. 158, pl. 10, fig. 2. Monte Sief, Laste (Livinallongo), Cercenà, Localities: Wengen / La Valle, Sappada. Sappada. cf. Equisetites Cladophlebis ruetimeyeri (Heer, 1877) Leonardi, 1953 1953 Equisetites vel Calamites? – Leonardi, pl. 4, figs. 4–5. 1953 Cladophlebis rütimeyeri Heer - Leonardi, p. 1964 impronta riferibile probabilmente ad 10, pl. 1, fig. 15, pl. 3 figs. 6. Equisetale - Leonardi, pl. 5, fig. 10. 1953 Cladophlebis sp. - Leonardi, pl. 1 figs. 3-4. 1964 frammento di fusto di Equisetale, forse 1994 Pecopteris – Costamoling & Costamoling, p. Neocalamites sp. - Leonardi, pl. 5, fig. 11. 47, fig. 19. 2004 cf. Equisetites – Kustatscher, p. 159, pl. 10, 2004 Cladophlebis ruetimeyeri (Heer) Leonardi – fig. 3. Kustatscher, p. 161, pl. 11, fig. 2. Localities: Pufels / Bulla, Wengen / La Valle, Localities: Seiser Alm / Alpe di Siusi, Col Alto, Seiser Alm / Alpe di Siusi, Arabba, Cercenà, Cercenà. Sappada.

Neuropteridium elegans (Brongniart, 1828) DIVISION PTERIDOPHYTA Schimper, 1869 Order Filicales Family Osmundaceae or indet. 1993 Cladophlebis sp. – Pozzi, p. 85, fig. 107. Cladophlebis leuthardtii Leonardi, 1953 1998 Neuropteridium sp. - Stingl & Wachtler, p. 82. 1999 Neuropteridium grandifolium (Schimper et 1841 Fahrenwedel – Wissmann & Münster, p. 22, Mougeot) Schimper - Kustatscher, p. 44, pl. 2, pl. 16, fig. 10. fig. B.

34 Geo.Alp, Vol. 2, 2005 Fig. 2: Relative abundance of the main plant groups present in the three main macrofloral localities (Seewald, Innerkohlbach, Ritberg).

2000a Neuropteridium grandifolium (Schimper et 1953 cf. Pecopteris sulzensis Schimper - Leonardi, Mougeot) Schimper - Wachtler & van p. 10, pl. 1, fig. 14. Konijnenburg - van Cittert, p. 108, pl. 2, fig. 1. ?1986 Pecopteris sp. - Calligaris, p. 9, fig. A48. 2000bNeuropteridium grandifolium (Schimper et 1998 Anomopteris mougeotii - Stingl & Wachtler, p. 81. Mougeot) Schimper - Wachtler & van 1999 Anomopteris mougeotii – Avanzini & Konijnenburg - van Cittert, p. 117, pl. 2, fig. 1. Wachtler, p. 117. 2004 Neuropteridium elegans (Brongniart) 2000a Anomopteris mougeotii Brongniart - Schimper – Kustatscher, p. 161, pl. 11, fig. 3. Wachtler & van Konijnenburg - van Cittert, 2004 Neuropteridium elegans (Brongniart) p. 108, pl. 1, figs. 4-5. Schimper – Kustatscher et al., p. 59, pl. 1, 2000b Anomopteris mougeotii Brongniart - fig. 2. Wachtler & van Konijnenburg - van Cittert, Localities: Forcella Giau. p. 116, pl. 1, figs. 4-5. 2001 Anomopteris mougeotii - Kustatscher, p. 3. Scolopendrites sp. 2004 ?Filicales indet. – Kustatscher, p. 162-3, pl. 10, fig. 4. 2004 Scolopendrites sp. – Kustatscher, p. 162, pl. 2004 Fern incertae sedis – Kustatscher et al., 11, fig. 4. p. 60-1, pl. 1, fig. 4. 2004 Scolopendrites sp. – Kustatscher et al., p. 60, Localities: Wengen / La Valle, Mondeval, Corvo Alto, pl. 1, fig. 3. Cercenà, Sappada. Localities: St. Kassian / San Cassiano.

DIVISION PTERIDOSPERMATOPHYTA Gordonopteris lorigae van Konijnenburg – Order indet. van Cittert et al. (name in submitted manuscript) Ptilozamites heeri Nathorst, 1878

1953 felce indeterminata - Leonardi, p.13, pl. 1, 1927 Pterophyllum brevipenne Kurr - Ogilvie- figs. 9. Gordon, pl. 8, fig. 1. 1953 Pecopteris cf. (Lonchopteris) reticulata 1980 cfr. Pterophyllum venetum - Zardini, pl.1, Leuthardt - Leonardi, p. 10, pl. 1, fig. 10. fig. 8.

Geo.Alp, Vol. 2, 2005 35 1985 Cladophlebis cf. denticulata Brongniart - 1927 Nilssonia sp. - Ogilvie-Gordon, p. 68, pl. 8, Moroder, p. 27, fig. 21. fig. 6. 1993 Cladophlebis cfr. denticulata – Pozzi, p. 83, 2004 cf. Bjuvia – Kustatscher, p. 165. fig. 105. Localities: Schgaguler Alm / Malga Scagul, Grödner 1999 Ptilozamites heeri - Avanzini & Wachtler, p. Joch / Passo Gardena, Corvara, Sappada. 118. 2000a Ptilozamites heeri Nathorst - Wachtler & van Konijnenburg - van Cittert, p. 108, pl. 2, figs. Sphenozamites wengensis Wachtler et 2-9. van Konijnenburg - van Cittert, 2000 2000b Ptilozamites heeri Nathorst - Wachtler & van Konijnenburg - van Cittert, p. 118, pl. 2, figs. 1999 Sphenozamites - Avanzini & Wachtler, p. 118. 2-9. 2000a Sphenozamites wengensis Wachtler et van 2004 Ptilozamites heeri Nathorst – Kustatscher, p. Konijnenburg - van Cittert, p. 109, pl. 3, 163, pl. 11, fig. 5; pl. 12, fig. 1. figs. 1-2. Localities: Prags / Braies, Wengen / La Valle, Gader- 2000b Sphenozamites wengensis Wachtler et van tal / Val Badia, Grödental / Val Gardena, Corvo Konijnenburg - van Cittert - Wachtler & van Alto. Konijnenburg - van Cittert, p. 119, pl. 3, figs. 1-2. 2004 Sphenozamites wengensis Wachtler et van DIVISION CYCADOPHYTA Konijnenburg - van Cittert – Kustatscher, Order Cycadales p. 166, pl. 12, fig. 4. Bjuvia Florin, 1933 Localities: Prags / Braies, Wengen / La Valle. Bjuvia dolomitica Wachtler et van Konijnenburg - van Cittert, 2000 Sphenozamites sp. cf. S. bronnii (Schenk) 1927 Zamites sp. - Ogilvie-Gordon, p. 68, pl. 8, Passoni & van Konijnenburg - van Cittert, 2003 fig. 4. 1953 Pterophyllum sp. - Leonardi, p. 13, pl. 3, fig. 2. 2004 Sphenozamites cf. bronnii (Schenk) Passoni & 1999 Bjuvia dolomitica Wachtler et van van Konijnenburg - van Cittert – Kustatscher, Konijnenburg - van Cittert (in stampa) - p. 166, pl. 13, fig. 2. Kustatscher, p. 45, pl. 1, fig. C; p. 49, pl. 4, fig. A. 2004 Sphenozamites sp. cf. S. bronnii (Schenk) 1999 Bjuvia dolomitica - Avanzini & Wachtler, p. Passoni & van Konijnenburg - van Cittert – 113. Kustatscher et al., p. 62, pl. 2, fig. 2-6. 2000a Bjuvia dolomitica Wachtler et van Localities: St. Leonhard in Abtei / S. Leonardo in Konijnenburg - van Cittert, p. 110-111, pl. 4, Badia, Laste (Livinallongo). fig. 1-3; pl. 5, fig. 1-5. 2000b Bjuvia dolomitica Wachtler et van Konijnenburg - van Cittert, p. 120-1, pl. 4, fig. Dioonitocarpidium moroderi (Leonardi) 1-3; pl. 5, fig. 1-5. Kustatscher et al., 2004 2004 Bjuvia dolomitica Wachtler et van Konijnenburg - van Cittert – Kustatscher, p. 1953 Cycadeoidea (?) moroderi Leonardi - 165, pl. 12, fig. 3. Leonardi, p. 14, pl. 2, figs. 6-8. Localities: Wengen / La Valle, Grödental / Val 1968 Cycadeoidea (?) moroderi Leonardi - Gardena, Schgaguler Alm / Malga Scagul, Mon- Leonardi, p. 176, pl. 28, fig. 5. deval. 1999 Dioonitocarpidium sp. - Kustatscher, p. 49, 58, pl. 3, fig. A-B. 2000a Dioonitocarpidium sp. - Wachtler & van cf. Bjuvia Konijnenburg - van Cittert, p. 112, pl. 6, fig. 2. 2000bDioonitocarpidium sp. - Wachtler & van 1927 “Zamites sp.“ - Ogilvie-Gordon, p. 68, pl. 8, Konijnenburg - van Cittert, p. 123, pl. 6, fig. 4. fig. 2.

36 Geo.Alp, Vol. 2, 2005 2004 Dioonitocarpidium moroderi (Leonardi) nov 2000a Taeniopteris sp. - Wachtler & van comb. – Kustatscher, p. 168, pl. 13, fig. 5. Konijnenburg - van Cittert, p. 112, pl. 6, fig. 1. 2004 Dioonitocarpidium moroderi (Leonardi) nov 2000b Taeniopteris sp. - Wachtler & van comb. – Kustatscher et al., p. 61-2, pl. 2, fig. 1. Konijnenburg - van Cittert, p. 122, pl. 6, fig. Localities: Schgaguler Alm / Malga Scagul. 1. 2004 Taeniopteris sp. – Kustatscher, p. 171, pl. 13, fig. 1. Order Bennettitales Localities: Prags / Braies, Grödental / Val Gardena, Pterophyllum jaegeri Brongniart, 1828 Gadertal / Val Badia, Corvara, Cercená, Sappada.

1953 Pterophyllum jaegeri Brongniart - Leonardi, p. 13, pl. 2, fig. 12. DIVISION CONIFEROPHYTA 1968 Pterophyllum jaegeri Brongniart - Leonardi, Order Coniferales p. 176, pl. 28, fig. 4. Elatocladus sp. 1989 Pterophyllum – Bosellini, p. 19, fig. 2.1. 1999 Pterophyllum jaegeri - Kustatscher, p. 57, pl. 1968 Pterophyllum sp. - Leonardi, p. 176, pl. 28, fig. 4, fig. B. 2. 1999 Pterophylliium jaegeri - Avanzini & Wachtler, 1985 Pterophyllum - Moroder, p. 31, fig. 26. p. 118. 1989 Pterophyllum sp. - Bosellini, p. 89, fig. 12.9. 2000a Pterophyllum jaegeri Brongniart - Wachtler 1993 Pterophyllum sp. – Pozzi, p. 85, fig. 108. & van Konijnenburg - van Cittert, p. 112, pl. 1996 Pterophyllum - Bosellini, p. 121, fig. 13.8. 3, figs. 3-4. 1999 Elatocladus sp. - Avanzini & Wachtler, p. 119. 2000b Pterophyllum jaegeri Brongniart - Wachtler 1999 Elatocladus sp. - Kustatscher, p. 51, pl. 5, & van Konijnenburg - van Cittert, p. 122-3, fig. A. pl. 3, figs. 3-4. 2000a Elatocladus sp. - Wachtler & van 2001 Pterophyllum jaegeri - Kustatscher, p. 6. Konijnenburg - van Cittert, p. 113, pl. 6, fig. 3. 2004 Pterophyllum jaegeri Brongniart – 2000b Elatocladus sp. - Wachtler & van Kustatscher, p. 168, pl. 12, fig. 2. Konijnenburg - van Cittert, p. 121, pl. 6, fig. 3. 2004 Pterophyllum sp. – Kustatscher, p. 169. 2004 Elatocladus sp. – Kustatscher, p. 172, pl. 14, Localities: Prags / Braies, Wengen / La Valle, St. Kas- fig. 2. sian / San Cassiano, Corvara, Cercenà. Localities: Puflatsch / Bullaccia.

?Pterophyllum sp. Pelourdea vogesiaca (Schimper et Mougeot, 1844) Seward 1917 2004 ?Pterophyllum sp. – Kustatscher, p. 170, pl. 13, fig. 3. 1953 Yuccites vogesiacus Schimper et Mougeot - Localities: Laste (Livinallongo). Leonardi, p.15, pl. 2, fig. 9, 11; pl. 3, figs. 3-4. 1986 Yuccites sp. - Calligaris, p. 15, figs. B21, 42. 1999 Yuccites vogesiacus - Avanzini & Wachtler, Order indet. p. 119. Taeniopteris sp. 2000a Yuccites vogesiacus Schimper et Mougeot - Wachtler & van Konijnenburg – van Cittert, 1927 Taeniopteris angustifolia Schenk - Ogilvie- p. 113, pl. 6, figs. 4, 5. Gordon, p.67, pl. 8, fig. 2. 2000b Yuccites vogesiacus Schimper et Mougeot - 1953 cfr. Taeniopteris sp. - Leonardi, p. 12, pl. I, Wachtler & van Konijnenburg – van Cittert, fig. 18. p. 121-2, pl. 6, figs. 4, 5. 1964 Taeniopteris (Nilssonia ?) - Leonardi, pl. 4, 2004 Pelourdea vogesiaca (Schimper et Mougeot) fig. 3. Seward – Kustatscher, p. 172-4, pl. 13, fig. 4. 1999 Taeniopteris sp. - Kustatscher, p. 57, pl. 2, 2004 Pelourdea vogesiaca (Schimper et Mougeot) fig. C; pl. 3, fig. C. Seward – Kustatscher et al., p. 63, pl. 1, fig. 5.

Geo.Alp, Vol. 2, 2005 37 Localities: Prags / Braies, Wengen / La Valle, Schga- 2000a Voltzia ladinica Wachtler et van guler Alm / Malga Scagul. Konijnenburg - van Cittert, p. 115, pl. 10, figs. 1-5; pl. 11, figs. 1-4 2000b Voltzia ladinica Wachtler et van ?Pelourdea sp. Konijnenburg - van Cittert - Wachtler & van Konijnenburg - van Cittert, p. 125-6, pl. 10, 1953 Yuccites sp. – Leonardi, pl. 3, fig. 5. figs. 1-5; pl. 11, figs. 1-4 2004 ?Pelourdea sp. – Kustatscher, p. 174. 2004 Voltzia ladinica Wachtler et van Localities: Seiser Alm / Alpe di Siusi, Cercenà. Konijnenburg - van Cittert – Kustatscher, p. 176-7, pl. 14, fig. 3. Localities: Prags / Braies, Wengen / La Valle, Gröden- Order Voltziales tal / Val Gardena. Family Voltziaceae Voltzia dolomitica Wachtler et van Konijnenburg - van Cittert, 2000 Voltzia pragsensis Wachtler et van Konijnenburg - van Cittert, 2000 1927 Voltzia recubariensis Schenk - Ogilvie- Gordon, p. 67, pl. 8, fig. 7. 1953 Pagiophyllum cfr. foetterlei Stur - Leonardi, 1932 Voltzia sp. - Mutschlechner, p. 31. p.19, pl. 4, fig. 6, 7, 9. 1953 Pagiophyllum (?) massalongi Zigno - 1986 Pagiophyllum cf. foetterlei Stur - Calligaris, p. Leonardi, p. 18, pl. 3, figs. 8, 10; pl. 4, fig. 2. 17, figs. A58. 1968 Brachyphyllum sp. - Leonardi, p. 176, pl. 28, fig. 1. 1998 Voltzia sp. - Stingl & Wachtler, p. 79. 1986 Pagiophyllum cf. massalongi Zigno - 1999 Voltzia - Avanzini & Wachtler, p. 119. Calligaris, p. 16, figs. A64, B6, B7, B11, B19, 2000a Voltzia pragsensis Wachtler et van B27, B31. Konijnenburg - van Cittert, p. 115, pl. 9, fig. 1995 Voltzia recubariensis Schenk - Jung et al., p. 1-2. 171, fig. 8.3. 2000b Voltzia pragsensis Wachtler et van 1999 Voltzia dolomitica - Avanzini & Wachtler, Konijnenburg - van Cittert - Wachtler & van p. 117, 119. Konijnenburg - van Cittert, p. 125, pl. 9, fig. 2000a Voltzia dolomitica Wachtler et van 1-2. Konijnenburg - van Cittert 2000, p. 113-14, 2004 Voltzia pragsensis Wachtler et van pl. 7, fig. 1-4; pl. 5, fig.1-6. Konijnenburg - van Cittert – Kustatscher, p. 2000b Voltzia dolomitica Wachtler et van 177-8, pl. 14, fig. 4. Konijnenburg - van Cittert - Wachtler & van Localities: Prags / Braies, Wengen / La Valle, Schga- Konijnenburg - van Cittert, p. 123-4, pl. 7, guler Alm / Malga Scagul. fig. 1-4; pl. 5, fig.1-6. 2001 Voltzia dolomitica - Kustatscher, p. 4. 2004 Voltzia dolomitica Wachtler et van Voltzia zoldana Leonardi 1953 Konijnenburg - van Cittert – Kustatscher, p. 175, pl. 14, fig. 1. 1953 Voltzia zoldana - Leonardi, p. 19, pl. 4, fig. 1 Localities: Prags / Braies, Wengen / La Valle, Schga- 1968 Voltzia zoldana Leonardi - Leonardi, p. 176, guler Alm / Malga Scagul, Puflatsch / Bullaccia, pl. 28, fig. 3. Sappada. 2004 Voltzia zoldana Leonardi – Kustatscher, p. 178, pl. 14, fig. 5. Localities: Spiz Agnelessa. Voltzia ladinica Wachtler et van Konijnenburg - van Cittert, 2000 Voltzia sp. 1999 Voltzia ladinica Wachtler et van Konijnenburg - van Cittert (in stampa)- 1927 Voltzia sp. - Ogilvie Gordon, p. 69, pl. 8, fig. 8. Kustatscher, p. 52, pl. 4, fig. C. 1953 Voltzia sp. - Leonardi, pl. 4, figs. 3, 8.

38 Geo.Alp, Vol. 2, 2005 1953 Pagiophyllum (?) massalongi Zigno - attribution of the deposit to the Fernazza Leonardi, p. 18, pl. 4, fig. 2. Formation, narrows its age down to the upper 1964 Ramoscello di Brachyphyllum o Pagiophyllum Longobardian (De Zanche et al., 1993) (for more sp. - Leonardi, pl. 4, fig. 4. information see also Kustatscher, 2004). 1994 Ullmannia Broni – Costamoling & The macrofossil collections, discussed already Costamoling, p. 47, fig. 20. partly in Kustatscher (1999, 2001, 2004), Wachtler & 2004 Voltzia sp. – Kustatscher, p. 178. van Konijnenburg – van Cittert (2002a, 2002b) and Localities: Prags / Braies, Wengen / La Valle, Seiser Kustatscher et al. (2004), permit us to take a closer Alm / Alpe di Siusi, Pufels / Bulla, Cercenà, Sappada. look at the quantitative composition of the Upper Ladinian macroflora (Fig. 2). All three plant localities show a distinct dominance of the conifers (Voltzia, 4 Palaeoclimatic considerations Pelourdea). Also the pteridosperms (Ptilozamites) are well represented in all three floras, whereas horse- Macroflora tails (Equisetites), ferns (Cladophlebis, Gordonopteris) and cycadophytes (Pterophyllum, Most of the studied plant fossil collections are Sphenozamites and Taeniopteris) are rare and occur composed of a few specimens only, collected in var- often only in one or two of the plant deposits. ious and often not well-defined localities. However, the main composition shows a dominance of This composition may be due to various factors conifers, whereas cycads, pteridosperms, ferns and such as climate (aridity), edaphic (immature soils) horsetails occur only occasionally. Only one collec- and taphonomy (i.e. selection due to transport). tion (in Bolzano) is composed of a higher number of Conifers are generally referred to arid environ- specimens (more than 150 specimens). Those plant ments due to their reduced leaf-surface, the thick- remains have been collected at two plant localities ness of their cuticles and the protection of their near Braies / Prags (Seewald and Innerkohlbach) and stomata by papillae. On the base of these consider- one near La Valle (Ritberg), belonging respectively ations, the composition of the Ladinian Flora from to the upper part of the Fernazza Formation the Dolomites might be referred to an arid climate (Ritberg and Seewald) and to the base of the which the slightly imbricate pinnules of Wengen / La Valle Formation (Innerkohlbach). Cladophlebis might indicate as well. The pollen samples collected at those fossil-bear- On the other hand, the fossil material is pre- ing horizons, attribute them to the secatus – vigens served within basinal sediments, and therefore, has phase sensu Van der Eem (1982), or to the been subject to selection due to transport previous- pseudoalatus-baculatus phase sensu Roghi (1995a, ly to its deposition. The high abundance of conifers b). Moreover, the plant deposits of Ritberg and compared with the other groups (Innerkohlbach Innerkohlbach (Fig. 1) belong to the and Seewald above 80%, Ritberg ca. 50%) could be Conbaculatisporites mesozoicus zone sensu Roghi referred to selection caused by transport, as only (1995), referred to the upper part of Neumayri the more woody and resistant plants preserved after Subzone and to the base of Regoledanus Subzone the biostratinomic processes. However, the floral (Protrachyceras Zone, uppermost Longobardian). composition cannot be explained exclusively by The ammonoids (Lecanites glaucus, Protrachyceras means of taphonomy. The thickness of the cuticles cf. ladinum, cf. Protrachyceras, “Eoprotrachyceras” suggests also a certain degree of environmental neumayri, cf. Joannites, cf. Mepinoceras and stress, related to adverse palaeoenvironment. This Megaphyllites sp., det. P. Mietto) collocate the could correspond to climatic or edaphic conditions. localities to the Neumayri Subzone of the The latter would suggest immature soils and shallow Protrachyceras Zone (sensu Mietto & Manfrin, water level. In this case the papillae on the stomata 1995). On the other hand, at Seewald no paly- might protect the stomata from salted sprays. On nomorph zonal marker of Roghi’s scale has been the other hand, the presence of rare specimens of found. Also the collected ammonoid ferns (Cladophlebis, Gordonopteris) and horsetails (Macleanoceras sp., det. P. Mietto) permits to refer (Equisetites), suggests the presence of restricted the locality only to the Protrachyceras Zone humid microenvironments in the terrestrial habitats (Longobardian). However, the lithostratigraphic as understorey and small ponds.

Geo.Alp, Vol. 2, 2005 39 Microflora the bottom to the top of this section, the B group, while still dominating, decreases in abun- The hypothesis of an arid climate during the dance. A concomitant increase of the Ovalipollis upper Ladinian is also in conflict with palynological complex (H, especially in RI 3), the Triadispora data available from literature. Van der Eem (1982) complex (L) and alete (proto)bisaccate pollen suggests a progressive increase in humidity during grains (I) can be observed. This would suggest an the Ladinian, opposed to the arid environmental increase of the aridity from the bottom to the top conditions at the end of the Anisian. These environ- of the section. ments are however considered to be local, due to the considerable amount of elements derived from Also Abbink’ s palynomorph quantitative analysis xerophytic plant-communities often present as well (1998) has been applied to the plant fossil deposits (van der Eem, 1982, p. 72). (Table 5). Seewald shows a dominance of the Additionally palynological data are known also Coastal SEG, whereas Upland, Lowland, River and from the plant deposits (Kustatscher, 2004); in the Tidal SEGs are less abundant. At Innerkohlbach, on small outcrops of Seewald (SW) and Innerkohlbach the other hand, the more hygrophytic SEGs, such as (IK) one pollen sample each has been studied, while River and Lowland, dominate. However, as there is from the more extensive outcrop of Ritberg (RI) four only one sample per outcrop, no extended consider- samples have been analysed. ations can be deduced. Observing the main groups (spores, pollen grains, More information can be obtained from the algal cysts, acritarchs), Seewald is clearly dominated Ritberg section. This outcrop shows an upwards by pollen grains, Innerkohlbach by spores whereas increase of the Coastal and Tidal SEGs, while the in the Ritberg section an upwards increase of the Lowland and Upland SEGs decrease. This trend can pollen fraction is observed (Table 2). These quantita- be interpreted as an increase of the distance tive palynomorph fluctuations could be interpreted between the coastal line and the area of plant both as climatic oscillations, and as variations in the deposition (a transgression event) and thus it seems distance between the coast and the marine sedi- to support that the palynomorph fluctuations may mentary environment, caused by sea level changes. be mostly due to sea level changes. Observing in detail the Lowland SEG, the most Applying the proposal of Visscher & Van der sensible one to climatic changes (Abbink 1998), Zwan (1981) for palaeoclimatic analysis, the paly- almost only taxa considered to be “more humid” can nomorphs have been divided into 15 groups (Table be distinguished (Table 5). This suggests a prevailing 3). Some of the groups such as A - monolete aca- humid climate during the late Ladinian. vate spores, F – Porcellispora complex and J – Samaropollenites complex are absent. Taxa, such as The hypothesis of sea level changes seems to be Vallasporites ignacii and Enzonalasporites vigens, confirmed also by the marine palynomorphs. referred by Visscher & Van der Zwan (1981) and van Although acritarchs and algal cysts are only addi- der Eem (1982) to the vesicate pollen grains (M) are tional elements (less than 20%), the acritarchs, con- now attributed to the (proto)monosaccate pollen sidered as elements of open marine environments, grains (N). increase from the bottom to the top of the Ritberg The pollen sample from Seewald (SW) is domi- section, while algal cysts decrease (Table 2). nated by the Triadispora complex (L), trilete acavate laevigate or apiculate spores (B) and alete The hypothesis of taphonomic selection interact- (proto)bisaccate pollen grains (I). Trilete laevigate or ing with the Ladinian macrofloral deposition is sup- apiculate spores (B), on the other hand, dominate ported also by the comparison between the abun- the Innerkohlbach (IK) sample. This would suggest a dance of the main groups (divisions) on macrofloris- more arid climate during deposition of the sedi- tic and microfloristic levels (Table 4). The conifers, ments corresponding with the Seewald plant represented by 50 to more than 80% in the deposit, and a more humid climate when the macroflora, never exceed 45% in the microflora Innerkohlbach flora has been deposited. (max. 42,3 % at Seewald). Also pollen attributed to Trilete laevigate or apiculate spores (B) dominate the pteridosperms (2,6-17,9%) and cycads also in the Ritberg outcrop. Furthermore, from (microflora 0-1,3%) are less abundant than the

40 Geo.Alp, Vol. 2, 2005 macrofloral remains of these groups (respectively Po Plain („Southern Mobile Belt“ of Brusca et al. 7,8-28,3% and 0-10,9%). 1981). On the other hand, ferns are much more impor- Following the palaeogeographic reconstructions tant in the microflora (20,9 – 50,8%) than in the of the uppermost Ladinian known from the litera- macroflora (0-8,7%), becoming the most important ture (Assereto et al., 1977; Brusca et al., 1981; sporomorph group. This may be due to the high Gianolla, 1993; Bosellini, 1996), Ritberg is situated fragility of the pinnate fern leaves, which are easily in a basin surrounded to the west by the carbonate destroyed during transport. Considering on the platforms of Putia / Peitler and Odle / Geißler and to other hand, that spores are generally underestimat- the northeast by the carbonate platform which ed in basinal sediments (Neves effect, Chaloner & forms today the Piz da Peres. Southwards this basin Muir, 1968) this dominance is even more important. was bounded by the carbonate platforms of Additionally, the lycophytes are quite abundant Sassolungo / Langkofel, Sella, Tofane and in the microflora with 3,3 to 17,2 %, while only one Marmolada. Additionally the volcanic complex of macrofloral species attributed to the lycophytes Monzoni and Predazzo were exposed southwards as (Annalepis zeilleri) is known from the Ladinian of well (Fig. 3). Some of these carbonate platforms and the Dolomites. Spores (especially Uvaesporites), the volcanic complex were subaerically exposed however, are often preserved in tetrads probably during the time of deposition of the Fernazza due to environmental stress of the mother-plants Formation and, therefore, subject to erosion (i.e. (Looy et al., 2001). In any case, this abundance sug- Gianolla, 1993). The plant remains could have been gests that the lycophytes were better represented in transported from the carbonate islands in the the Ladinian of the Dolomites than suggested by northeast or west, or together with the volcano- the macrofloral remains alone. clastic turbidites from the south. Very abundant is also the genus Ovalipollis, Seewald and Innerkohlbach, on the other hand, which botanical attribution is still unknown, as it are positioned in a basinal environment west of the has been never found in situ. Tre Cime di Lavaredo / Drei Zinnen and east of the Observing the separate plant localities in detail Piz da Peres platform. These platforms produced (Table 4), Seewald is dominated by conifers (42,3%), carbonate sediments, whereas the terrigenous followed closely by ferns (20,9%) and pteridosperms material came from the south, from the volcanic (17,9%). At Innerkohlbach, on the other hand, ferns complex of Predazzo/Monzoni and perhaps also (50,8%) dominate among the lycophytes (17,1%) from source areas more southwards than the and conifers (13,8%). At Ritberg, from bottom to Valsugana line. top lycophytes and ferns decrease in number (respectively12,2 - 7,1% and 35,5 – 21,7%), where- Considering the palaeogeographic reconstruc- as pteridosperms (5 – 13,2%) and conifers increase tions known from the literature and the paleocli- (19,7 – 31,%). mate discussed also in this article, the Ladinian plants grew probably on more or less expanded car- Concluding, it can be suggested that the plants bonate or volcanic islands. On these islands various grew in a general warm and humid local climate. environments developed: the coastal belt and the The high abundance of conifers and pteridosperms so-called ‘hinterland’. The latter can be distin- and respectively low abundance of horsetails, ferns guished in more humid and more arid areas (Fig. 4). and lycophytes in the macroflora seem to be more The coastal environment (Fig. 5) was occupied due to local edaphic conditions and taphonomic mainly by lycophytes (Annalepis) and pteridosperms selection than to climate. with thick cuticles (Ptilozamites). The Annalepis scales were probably inserted on the top of some centimetres high and thick stems with robust roots 5 Palaeoenvironmental reconstructions (Grauvogel-Stamm & Lugardon, 2001), whereas Ptilozamites was likely a shrubby plant, although no During the late Ladinian, the Southern Alps were reconstruction is so far known for this genus. characterized by wide carbonate platforms bound- The hinterland, on the other hand, might have ed by more or less extended basins and were locat- been composed of ferns (Neuropteridium, Gor don - ed north of an emerged land now buried under the opteris, Cladophlebis), cycads (Bjuvia, Spheno -

Geo.Alp, Vol. 2, 2005 41 Fig. 3: Palaeogeographic reconstruction of the Dolomites during the late Ladinian (after Gianolla, 1993; Bosellini, 1996, mod.). RI- position of Ritberg, BR- position of the outcrops of Seewald and Innerkohlbach near Braies/Prags.

zamites), Bennettitales (Pterophyllum) and conifers cycads such as Sphenozamites (Mägdefrau, 1948). (Voltzia, Pelourdea). Additionally, also some shrubby conifers such as Bjuvia is probably an arborescent form as dis- Pelourdea might have grown in the understorey cussed in the literature (Florin, 1933; Taylor & (Mägdefrau, 1948; Seward, 1917, 1959). Taylor, 1993), just as Pterophyllum (Mägdefrau, In the more humid local environments (Fig. 7), 1948; Kräusel & Schaarschmidt, 1966). Therefore, surrounding temporary ponds and swamps or along these two taxa might have formed the canopy (Fig. 6) a small river, larger ferns (Gordonopteris) with up to of the more arid hinterland flora together with the 50 cm long leaves could have grown together with arborescent Voltzia, which, following Gall & the above mentioned ferns of small to medium size Grauvogel-Stamm (2000) could reach a height of (Neuropteridium, Cladophlebis). Shrubby cycads several meters. The shaded and more humid micro- (Sphenozamites) and Bennettitales with higher environment of the understorey might have been stems might also have inhabited the more humid occupied by ferns of small to medium dimensions areas. Exclusively in this environments horsetails such as Neuropteridium, but also some herbaceous (Equisetites), with heights of up to 6-8 m, might

42 Geo.Alp, Vol. 2, 2005 Fig. 4: Reconstruction of a hypothetical environment of the Ladinian plants from the Dolomites. 1 – coastal belt, 2 – ‘hinterland’, 3 – more humid environments.

Fig. 5: Reconstruction of the coastal belt vegetation with halophytic lycophytes such as Annalepis (1) and shrubby pteridosperms such as Ptilozamites (2).

Geo.Alp, Vol. 2, 2005 43 However, the outcrops of Seewald and Innerkohlbach, since they con- sist of one horizon only, do not per- mit to extrapolate any climatic con- siderations. It is possible that the increase of the spores and algal cysts and decrease of pollen and acritarchs at Innerkohlbach com- pared to Seewald is due to an increase of humidity, or an approach of the coastal line to the deposition- al area. The reduction of the acritarchs in favour of the algal cysts, however favours more the sec- ond hypothesis, variations of the sea level, as would a comparison with the sequence stratigraphy. The Seewald outcrop is positioned at the top of the Fernazza Formation, cor- responding to the HST (Highstand Systems Tract) of the depositional sequence La3, composed of the basi- nal Zoppè Sandstone, the Acquatona and the Fernazza Formation and the Sciliar 3 platform (De Zanche et al., 1993; Gianolla, 1993). Innerkohl - bach, on the other hand, belongs to Fig. 6: Reconstruction of the more arid ‘hinterland’ vegetation with herbaceous the base of the La Valle / Wengen (Sphenozamites, 1) and arboreous cycads (Bjuvia, 4), high stemmed Bennettitales Formation, and is, therefore, corre- (Pterophyllum, 3), shrubby (Pelourdea, 5) and arborescent conifers (Voltzia, 2). sponding to the LST (Lowstand Systems Tract) and TST (Transgressive Systems Tract) of the following depositional have grown as well (Frentzen, 1933; Mägdefrau, sequence (Car1, sensu De Zanche et al., 1993; 1948, 1953; Kelber & Hansch, 1995; Kelber, 1999; Gianolla, 1993), to which also the base of the S. Gall & Grauvogel-Stamm, 2000). Cassian Formation and the Cassian Dolomite 1 plat- form belong. The lowering of the sea level between these two depositional events could be, therefore, 6. Discussion the principal factor of the observed quantitative variation between these two outcrops. Quantitative variations of organic material (both At the outcrop of Ritberg, on the other hand, plant fossils and palynomorphs) within an outcrop the four samples indicate an increase of pollen depend on various factors. For those observed grains throughout the section (Table 2), and also between the three studied plant deposits two dif- an increase of the Coastal SEG, corresponding to a ferent hypotheses have been proposed; climatic decrease of the Lowland and River SEGs (Table 5). oscillations of reduced time extension, or oscilla- Also in this case the most accredited hypothesis is tions of the sea level and, therefore, of the relative a transgression. This hypothesis is confirmed by distance between the coast line and the point of the increase of the acritarchs, especially at Rit - deposition. berg 4 (Table 2). These (para)autochtonous marine Throughout the Ritberg section and between the palynomorphs seem quite sensible to bathy metric Seewald and the Innerkohlbach sections, composi- and salinity variations, but not to climatic varia- tional variations have been observed (Tables 2-5). tions.

44 Geo.Alp, Vol. 2, 2005 7. Conclusions

The study of historical and inedited material stored in various collections of Italian and international Museums and Institutions gives new insights into the composition of the Ladinian macroflora of the Dolomites. The palaeoenvironmental recon- struction based on both macro- and microfloral data shows more or less expanded carbonate or volcanic islands divided into various environ- ments: the coastal belt and the so- called ‘hinterland’; the latter subdivid- ed into more humid and more arid areas. Additionally, the integrated quanti- tative analyses (macro- and microflo- ral) suggest that the dominance of the conifers results mostly from tapho- nomic selection. The flora probably grew under environmental stress due to salted spray, immature soils and shallow water level, but in a locally humid climate. Quantitative palynological analysis suggests also that the variations in frequency between spores and pollen or algal cysts and acritarchs are prob- Fig. 7: Reconstruction of the more humid flora of the ‘hinterland’ environment ably closer related to sea level changes with high stemmed Bennettitales (Pterophyllum, 3), arboreous horsetails (Equise- than to climatic changes. At present tites, 4) and herbaceous ferns (Neuropteridium, 1; Gordonopteris, 2) and cycads (Sphenozamites, 5). the limited extensions of the fossil horizons do not permit to ex clude the possibility of climate changes. the Museo di Geologia e Paleontologia (University of Padova), W. Resch and R. Brandner from the Acknowledgments Geologisch-Paläontologisches Institut (University of Innsbruck), H.A. Kollmann from the Natur - The systematic revision would not have been pos- historisches Museum, F. Stojaspal from the sible withouth the assistence of the various muse- Geologische Bundesanstalt (both Vienna), H. Mayr ums and institutions visited by one of the authors, from the Paläontologisches Museum and T. Sperling particularily by B. Baumgarten from the from the Geologisches Landesamt (both Munich). Naturmuseum Bozen / Museo di Scienze Naturali Alberto Riva and Stefano Furin assisted during the Alto Adige (Bolzano), the family Moroder from the field work, Paolo Mietto determinated the Museum de Gherdëina (Ortisei), P. Fedele and A. ammonoids found in the plant localities. We are par- Menardi from the Museo Paleontologico “R. Zardini” ticulary thankful to Renato Posenato and Guido (Cortina), F. Deltedesco from the Museo Ladino Roghi for ample discussions which permitted to Fodom (Livinallongo del Col di Lana), R. Pancaldi improve noticable the PhD-thesis on which this work from the Museo di Paleontologia e Preistoria P. is based. The paleoenvironmental reconstructions Leonardi (University of Ferrara), M. Fornasiero from have been drawn by Mattia Guberti.

Geo.Alp, Vol. 2, 2005 45 This work was supported by the “Progetto Giovani Costamoling, H., Costamoling, H. (1994): Fossilien des Ricercatori 2001” with the titel “The terrestrial flora Gadertales. – 111 pp., Verlagsanstalt Athesia Ges. from the Middle Triassic of the Dolomites: system- m.b.H., Bolzano. atic, biostratigraphy and palaeoclimate”. Cros, P., Doubinger, J. (1982): Etudes palynologiques de sediments terrigénes et pelagiques du Trias Moyen des Dolomites italiennes, relation avec le paléoenvironne- References ment. – Sci. Geol. Bull., 35: 157-182. De Zanche V., Gianolla P., Mietto P., Siorpaes C., Vail P. R. Abbink, O.A. (1998): Palynological identification in the (1993): Triassic sequence stratigraphy in the Dolomi- of the North sea region. – PhD-tesis, 191 pp., tes (Italy). - Mem. Sci. Geol., 45: 1-27. Univ. Utrecht. Florin, C. (1933): Studien über die Cycadales des Meso- Arthaber von, G. (1903): Die alpine Trias des Meditterran- zoicums nebst Erörterungen über die Spaltöffnungs- Gebietes. – In: Frech, F. (ed.): Lethaea geognostica. apparate der Bennettitales. – Kungl. Svensk. Akad. Handbuch der Erdgeschichte, pp. 223-472, Verlag der Handl., ser. 3, 12(5): 1-119. E. Schweizerbart’schen Verlagsbuchhandlung, Stutt- Frentzen, K. (1933): Equisetaceen des germanischen Keu- gart. per. – Palaeont. Z., 15/1-4: 1-355. Assereto R., Brusca A., Gaetani M., Jadoul F. (1977): Le Gall, J.C., Grauvogel-Stamm, L. (2000): L’Arenaria mineralizzazioni Pb-Zn nel Triassico delle Dolomiti: («GRES») a Voltzia. – In: Pinna, G. (ed.): Alle radici della quadro geologico ed interpretazione genetica. – L’In- storia naturale d’Europa, seicento milioni di anni at- dustria Mineraria, 28: 367-402. traverso i grandi giacimenti paleontologici, pp. 71-77, Avanzini, M., Wachtler, M. (1999): Dolomiten, Reisen in Jaca Book, Milano. die Urzeit - 150 pp., Verlagsanstalt Athesia Ges. Gianolla, P. (1993): Le successioni stratigrafiche ladinico- m.b.H., Bolzano. carniche nel Sudalpino orientale. – Unpubl. PhD. the- Blendinger, E. (1988): Palynostratigraphy of the Late Ladi- sis, 199 pp., Univ. Padova. nian and Carnian in the south-eastern Dolomites, Italy. Grauvogel-Stamm, L., Lugardon, B. (2001): The Triassic – Rev. Paleobot. Palynol., 53: 329-348. Lycopsids Pleuromeia and Annalepis: Relationships, Bosellini, A. (1989): La storia geologica delle Dolomiti. – Evolution, and Origin. – Amer. Fern J., 91(3): 115-149. 148 pp., Ed. Dolomiti, Pordenone. Jung W., Selmeier A., Schaarschmidt F., Velitzelos E., Bosellini, A. (1996): Geologia delle Dolomiti. – 192 pp., Ver- Dernbach U. (1995): Versteinerte Wälder, Ed. D’Oro, lagsanstalt Athesia Ges. m.b.H., Bozen/Bolzano. 188 pp., Heppenheim. Broglio Loriga C., Cirilli S., De Zanche V., Di Bari D., Gia- Kelber, K.-P. (1999): Neue Befunde über die Schachtel- nolla P., Laghi G. F., Lowrie W., Manfrin S., Mastradrea halme des Keupers. – In: Hauschke, N., Wilde, V. (eds.): A., Mietto P., Muttoni G., Neri C., Posenato R., Reichi- Trias – eine ganze neue Welt, pp. 355-370, Verlag Dr. chi M., Rettori R., Roghi G. (1999): The Prati di Stuo- Friedrich Pfeil, München. res/Wiesen Section (Dolomites, Italy): a candidate glo- Kelber, K.-P., Hansch, W. (1995): Keuperpflanzen. Die Ent- bal Stratotype section and Point for the base of the rätselung einer über 200 Millionen Jahre alten Flora. – Carnian stage. - Riv. It. Paleont. Strat., 105/1: 37-78. Museo, 11: 1-157. Brusca C., Gaetani M., Jadoul F., Viel, G. (1981): Paleogeo- Kräusel, R., Schaarschmidt, F. (1966): Die Keuperflora von grafia ladino-carnica e metallogenesi del Sudalpino. - Neuewelt bei Basel. IV. Pterophyllen und Taeniopteri- Mem. Soc. Geol. It. 22: 65-82. den. – Schweiz. Paläontol. Abh., 84: 1-64. Calligaris, R. (1983): Resti vegetali in terreni ladinico Kustatscher, E. (1999): La Flora Ladinica (Triassico Medio) della Val di Braies. – Tesina in Paleobotanica, 6 pp., delle Dolomiti. – tesi di laurea AA 1998-1999, 95 pp., Univ. Trieste. Univ. Ferrara. Calligaris, R. (1986): Geologia della Val di Braies e seg- Kustatscher, E. (2001): Flora continentale del Ladinico nalazione di nuovo località fossilifere a vegetali nel delle Dolomiti. – PaleoItalia, 4: 2-7. Ladinico superiore. – Atti Museo Civ. St. Nat., 24/1: 1- Kustatscher, E. (2004): Macroflore terrestri del Triassico 64. Medio delle Dolomiti e loro inquadramento biocrono- Chaloner, W.G., Muir, M. (1968): Spores and flora.– In: stratigrafico e paleoclimatico mediante palinmorfi. – Murchison, Westoll (eds.): Coal and Coal-bearing unpubl. PhD-Thesis, 220 pp., Univ. Ferrara. strata, p. 127-146, Edinburgh. Kustatscher, E., Wachtler, M., Van Konijnenburg-Van Cit- tert, J.H.A. (2004): Some additional and revised taxa

46 Geo.Alp, Vol. 2, 2005 from the Ladinian Flora of the Dolomites, Northern Roghi, G. (1995b): Analisi palinologica della sezione di Italy. – Geo.Alp 1: 57-70, Bolzano/Bozen. Stuores Wiesen (Prati di Stuores, Dolomiti): dati preli- Leonardi, G. (1964): Note stratigrafico-sedimentologiche minari. – In: Loriga Broglio, C., Neri, C. (eds.): Verso sul Ladinico della conca di Sappada (Belluno). – Ann. una definizione del limite Ladinico-Carnico nel Sudal- Univ. Ferrara (n. s.), sez. 9, Sci. Geol. Mine., 3 (10): 187- pino orientale. - Ann. Univ. Ferrara, 5 (suppl.): 37-40. 209. Seward, A.C. (1917): Fossil plants, III Pteridospermae, Cy- Leonardi, P. (1953): Flora continentale Ladinica delle Do- cadofilices, Cordaitales, Cycadophyta. – 559 pp., Uni- lomiti. - Mem. Ist. Geol. Min., 18: 1-20. versity Press, Cambridge. Leonardi, P. (1968): Le Dolomiti. Geologia dei monti tra Seward, A.C. (1959): Plant life through the ages – A geo- Isarco e Piave. – 1019 pp., Ed. Manfrini, Rovereto. logical and botanical retrospect – 603 pp., Hafner Pu- Looy C.V., Twitchett R.J., Dilcher D.L., van Konjinenburg - blishing Co., New York. van Cittert J.H.A., Visscher H. (2001). Life in the end- Stingl, V., Wachtler, M. (1998): Dolomiten, Das Werden Permian dead zone. - Proc. Nat. Acad. Sci. U.S., 98(14): einer Landschaft. - 147 pp., Verlagsanstalt Arthesia 7879-7883. Ges. m.b.H., Bolzano. Mägdefrau, K. (1948): Vegetationsbilder der Vorzeit. – Taylor, T.N., Taylor, E.L. (1993): The Biology and Evolution 18 Tafeln, Gustav Fischer Verlag, Jena. of fossil Plants. – 982 pp., Prentice Hall, New York. Mägdefrau, K. (1953): Paläobiologie der Pflanzen. – 549 Van der Eem, J.G.L.A. (1982): Palynological investigations pp., Gustav Fischer Verlag, Jena. in the Ladinian and Lower Karnian of the Western Do- Mietto, P., Manfrin, S. (1995): A high resolution Middle lomites, Italy. – PhD thesis, 105 pp., Univ. Utrecht. Triassic ammonoid standard scale in the Tethys Realm. Visscher, H., Van der Zwan, C.J. (1981): Palynology of the A preliminary report. – Boll. Soc. Géol. Fr., 166/5: 539- circum-Mediterranean Triassic: phytogeographical 563. and palaeoclimatological implications. – Geol. Mojsisovics, E. (1879): Die Dolomit-Riffe von Südtirol Rundsch., 70(1-2): 625-634. und Venetien: Beiträge zur Bildungsgeschichte der Wachtler, M., van Konjinenburg van Cittert, J.H.A. Alpen. - 551 pp., A. Hölder Verlag, Wien. (2000a): The fossil flora of the Wengen Formation (La- Moroder, R. et al. (1985). L’Museo de Gherdëina – Il dinian) in the Dolomites (Italy). – Beitr. Paläont., 25: Museo della Val Gardena, Panoramica dell’ambiente 105-141. naturale, della preistoria e dell’arte. - Ed. Museo della Wachtler, M. & van Konjinenburg van Cittert, J.H.A. Val Gardena. (2000b): La flora fossile della Formazione di La Valle – Mutschlechner, G. (1932). Geologie der St. Vigiler Dolo- Wengen (Ladinico) nelle Dolomiti (Italia). – Studi miten. - Jb. Geol. Bundesanst., 82: 163-273. Trent. Sci. Nat., 75 (1998): 113-146. Ogilvie Gordon, M. M. (1927): Das Grödner-, Fassa- und Wissmann, H.L., Münster, G. Graf von (1841): Beiträge zur Enneberggebiet in den Südtiroler Dolomiten. – Abh. Geognosie und Petrefactenkunde des südöstlichen Ti- Geol. Bundesanst., 24(2): 1-376. rol’s vorzüglich der Schichten von St. Cassian. – pp. Ogilvie Gordon, M. M. (1934): Geologie von Cortina 152, Buchner’sche Buchhandlung, Bayreuth. d’Ampezzo und Cadore. – Jahrb. Geol. Bundesanst., 84: Zardini, R. (1980): Geologia e fossili attorno a Cortina 60-215. d’Ampezzo. – 26 pp., Ed. Ghedina, Cortina d’Ampezzo. Pozzi, E. (1993): Die Fossilien der Dolomiten - 175 pp., Tappeiner Verlag, Lana. Roghi, G. (1995a): Analisi palinologica del Trias medio del Manuscript submitted: August 25, 2004 Sudalpino. – PhD thesis, pp. 121, Univ. Padova. Manuscript accepted: March 11, 2005

Geo.Alp, Vol. 2, 2005 47 ., et al 2004 1927 1953, 1968 P. Leonardi, Calligaris, 1983 Calligaris, 1986 Ogilvie Gordon, Konijnenburg - Wachtler & Van Mojsisovics, 1879 Kustatscher, 2004 Kustatscher G. Leonardi, 1964 Van Cittert 2000a, b Mutschlechner, 1932 Annalepis zeilleri Fliche x x Anomopteris mougeotii Brongniart x Asplenites roesserti Münster cf. Bjuvia dolomitica Wachtler et Van Konijnenburg-Van Cittert x x x cf. Bjuvia x Brachyphyllum sp. x x Braiescycas leonardii Calligaris x Calamites meriani Brongniart x Chiropteris lipoldi Stur x Chiropteris pinnata Stur x Cladophlebis gaillardoti Brongniart cf. Cladophlebis leuthardti Leonardi, x x x x x Cladophlebis ruetimeyeri Heer x x x Cladophlebis ruetimeyeri Heer var. heeri Leonardi x Cladophlebis sp. x Dioonitocarpidium moroderi (Leonardi) Kustatscher et al. cf. cf. x x cf. Cycadeoidea x Cordaicarpus sp. x Cycadeospermum sp. x Cycadites rectangularis Brauns cf. Danaeopsis marantacea (Presl) Schenk x Dioonitocarpidium sp. x Elatocladus sp. x x x Equisetites arenaceus (Jaeger) Schenk x x x x cf. Equisetites x Equisetites sp. ? x ?Equisetostachys x Fern incertis sedis x ?Filicales indet. x Frenelopsis hoheneggeri Schenk x Ginkgo sp. x Lomatopteris sp. x Lycopodites sp. x ?Neocalamites x Neuropteris elegans Brongniart cf. x x Neuropteris gaillardoti Brongniart. cf. Neuropteridium grandifolium (Schimper et Mougeot) x Schimper Neuropteris ruetimeyeri Heer cf. Neuropteridium sp. x x x x cf. Neuropteridium x Nilsonia sp. x Odontopteris sp. x Pagiophyllum foetterlei Stur cf. cf. x cf. Pagiophyllum massalongi De Zigno x x cf. Pagiophyllum peregrinum (Lindley et Hutton) Seward x Pagiophyllum sp. x Pecopteris (Lonchopteris) reticulata Leuthardt cf. Pecopteris gracilis Heer x

48 Geo.Alp, Vol. 2, 2005 Pecopteris sulzensis Schimper cf. Pecopteris triascia Heer x Pecopteris sp. x Pelourdea vogesiaca (Schimper et Mougeot) Seward x x x x Pelourdea sp. x x Pterophyllum brevipenne Kurr x Pterophyllum giganteum Schenk x Pterophyllum jaegeri Brongniart x x cf. x x x Pterophyllum sp. x x x x ?Pterophyllum sp. x Ptilozamites heeri Nathorst x x x Sagenopteris lipoldi Stur x Scolopendrites sp. x x Sphenozamites wengensis Wachtler et Van Konijnenburg-Van x x x Cittert Sphenozamites cf. bronnii Passoni et Van Konijnenburg-Van x x Cittert Taeniopteris angustifolia Schenk x Taeniopteris sp. x cf. x x x ?Taeniopteris sp. x Thinnfeldia richthofeni Stur x ?Thyrsopteris x Tingia sp. x Voltzia dolomitica Wachtler et Van Konijnenburg-Van Cittert x x x Voltzia cf. dolomitica Wachtler et Van Konijnenburg-Van x Cittert Voltzia ladinica Wachtler et Van Konijnenburg-Van Cittert x x Voltzia cf. ladinica Wachtler et Van Konijnenburg-Van Cittert x Voltzia pragsensis Wachtler et Van Konijnenburg-Van Cittert x x x Voltzia cf. pragsensis Wachtler et Van Konijnenburg-Van x Cittert Voltzia recubariensis Schenk x Voltzia zoldana Leonardi x x x Voltzia sp. x x x x x x x x x ?Voltzia x Zamites sp. x ? Sporofillo di cicadea o bennettitale x

Tab. 1. Plant fossils of Ladinian age described and figured in the literature (Mojsisovics, 1879; Ogilvie Gordon, 1927; Mutschlech- ner, 1932; P. Leonardi, 1953, 1968; G. Leonardi, 1964; Calligaris, 1983, 1986; Wachtler & van Konijnenburg - van Cittert 2000a, b; Kustatscher 2004; Kustatscher et al., 2004).

SW % IK % RI 1 % RI 2 % RI 3 % RI 4 % spores 40.42 68.86 44.52 46.13 33.28 35.95 pollen 59.58 31.14 55.48 53.87 66.72 64.05 Algal cysts 1.48 3.99 4.75 7.83 3.35 2.85 acritarchs 7.94 0.74 5.73 1.60 5.71 15.25

Tab. 2: Relative abundance of the main palynomorph groups (SW = Seewald, IK = Innerkohlbach, RI 1-4 = Ritberg).

Geo.Alp, Vol. 2, 2005 49 SW % IK % RI 1 % RI 2 % RI 3 % RI 4 %

A - monolete acavate spores 0.00 0.00 0.00 0.00 0.00 0.00 B - trilete acavate laevigate 24.84 66.53 47.20 47.09 30.74 29.49 or apiculate spores C - trilete acavate murornate 1.27 1.77 1.44 2.69 0.67 1.15 spores D - trilete cingulate and 0.85 0.82 2.24 0.00 0.40 1.98 zonotrilete spores E - Aratrisporites group 0.21 0.14 0.64 0.45 0.13 0.33 F - Porcellispora complex 0.00 0.00 0.00 0.00 0.00 0.00 G - monosulcate pollen 0.21 0.14 0.00 0.15 0.00 1.48 grains H - Ovalipollis complex 13.59 13.47 22.72 20.48 28.05 18.95 I - alete (proto)bisaccate 21.02 5.58 7.52 7.92 12.21 12.36 pollen grains J - Samaropollenites 0.00 0.00 0.00 0.00 0.00 0.00 K - taeniate (proto)bisaccate 3.61 0.14 1.28 0.60 1.48 2.47 pollen grains L - Triadispora complex 31.00 6.53 9.12 13.90 20.40 26.36 M - vesicante pollen grains 0.00 0.00 0.00 0.00 0.00 0.00 N - (proto)monosaccate 2.97 2.18 4.64 5.08 3.49 3.13 pollen grains O – Circumpolles group 0.42 2.72 3.20 1.64 2.42 2.31

Tab. 3. Palynological composition of the palynomorph groups proposed by Visscher & van der Zwan (1981); SW = Seewald, IK = Innerkohlbach, RI 1-4: Ritberg.

50 Geo.Alp, Vol. 2, 2005 SW 1% IK 1% RI 1% RI 2% RI 3% RI 4% Upland 8.4 5.5 7.4 7.3 6.6 4.5 Lowland 11.0 29.1 23.7 23.8 14.5 16.4 Coastal 34.0 9.0 14.6 16.3 25.7 29.4 River 13.4 37.9 23.9 24.9 16.3 17.9 Tidal 12.6 1.9 2.9 5.1 6.2 7.9 Ovalipollis 13.9 13.5 22.8 20.5 28.1 19.0 Not attributed 6.7 3.0 4.8 1.9 2.6 5.0

Lowland SW IK RI 1 RI 2 RI 3 RI 4 “more humid” 10.82 27.22 19.23 20.39 13.32 13.22 “more arid” 0.22 1.92 4.49 3.45 1.21 3.14

Tab. 4. Abundance of the main floral groups within the microflora; SW = Seewald, IK = Innerkohlbach, RI 1-4: Ritberg.

SW % IK % RI 1 % RI 2 % RI 3 % RI 4 % Lycophyta 3.3 17.1 12.2 16.9 7.4 7.1 Sphenophyta 0.0 0.1 0.5 0.1 0.1 0.2 Pteridophyta 20.9 50.8 35.5 32.5 23.1 21.7 Pteridospermae 17.9 2.6 5.0 5.7 9.4 13.2 Cycadophyta 0.0 0.1 0.8 0.0 0.1 1.3 Ginkgophyta 0.0 0.1 0.3 0.1 0.1 1.2 Ovalipollis 13.9 13.5 22.8 20.5 28.1 19.0 Coniferophyta 42.3 13.8 19.7 22.9 30.4 31.8 altro 1.7 1.8 3.2 1.0 1.1 4.5

Tab. 5. Relative abundance of the different SEGs within the plant deposits; SW = Seewald, IK = Innerkohlbach, RI 1-4: Ritberg.

Geo.Alp, Vol. 2, 2005 51 Geo.Alp, Vol. 2, S. 53–60, 2005

ITALIAN FOSSIL CHIROPTERAN ASSEMBLAGES: A PRELIMINARY REPORT

Cristiana Tata & Tassos Kotsakis

With 2 figures and 1 table

Dipartimento di Scienze Geologiche, Università Roma Tre, L.go S. L. Murialdo 1, 00146 Roma Italy; e-mail: [email protected], [email protected]

Abstract This work is a preliminary report on Italian fossil chiropteran faunas. During the Paleogene just one sam- ple of Early age, pertaining to an extinct species, has been reported. A few findings have been reported from the Neogene. Just one complete assemblage from the Late site of Brisighella has been examined and has allowed palaeoecological inferences, whilst specimens from Late Miocene localities of Baccinello V0 (Tuscany) and peninsula (Apulia) need a revision. A Late Pliocene assemblage has been collected in Montagnola Senese (Tuscany) but it still needs a systematic revision. During the Quaternary and most of all since the Middle Pleistocene the fossil record becomes richer. Some assemblages testify a Mediterranean climate analogous to the present one. The most significant are: the Early Pleistocene ones from Pirro Nord (Apulia) and Ghar Dalam Cave (Malta), the early Middle Pleistocene ones from Slivia (Venezia Giulia) and Spinagallo Cave (Sicily) and the Late Pleistocene ones from Punta Padre Bellu (Sardinia) and Breuil Cave (Latium). In other cases the species represented in the assemblages are typical of colder climate and then they make it possible to infer cooler conditions in Italy during some periods. Good examples in this sense are the Middle Pleistocene assemblage from Vento Cave (Marche) and the Late Pleistocene one from Cittareale Cave (Latium). A distributuion chart of all fossil bats from Italy and Malta is also presented.

Introduction can be considered as good environmental markers. In addition, just because of the low rates of evolu- Nowadays it is quite common to support tion, living species are mostly analogous to fossil palaeoenvironmental reconstructions using samples ones. Since the present distribution and the cli- from fossil mammal (especially micromammal) matic context of their life are known it is reason- assemblages as palaeoecological and/or palaeocli- able to make palaeoclimatic and palaeoecological matic markers. inferences from studying species pertaining to fos- Among micromammals bats are really meaning- sil assemblages. However first of all it is necessary ful in this respect but, especially in Italy, although to review chiropteran assemblages and this work when they are found they are really abundant represents a preliminary approach to this research (especially from Pleistocene sites), they are often project. lacking. The lack of interest in this group is caused by the bradytelic evolution of these that makes them useless for biochronological studies Tertiary chiropteran assemblages that, in the past decades, have been attracting and their palaeoecological meaning palaeontologists attention. Anyway it has to be underlined that bats, Just one species of bat is known from Paleogene because of their peculiar ecological habits are sediments in Italy: Archaeopteropus transiens strongly influenced in their distribution by climat- Meschinelli, 1903. It has been collected in the early ic and ecological parameters and this is why they Oligocene (MP 21) lignites of Monteviale (Veneto)

53 this same site. On the other hand the remaining three genera, Megaderma, Hipposideros and Asellia now live in tropical and subtropical areas. In partic- ular the presence of Megaderma is indicative of minimum temperatures higher than 14-15°C all around the year, while the presence of Asellia is indicative of subdesertic conditions (Sigé, 1974). From the species represented here a littoral sandy habitat has been inferred (Kotsakis & Masini, 1989). Another finding from the Italian Miocene is from Gargano Peninsula (Apulia) from karst fissure fill- ings characterized by the Hoplitomeryx and Microtia assemblage and ascribed to the Late Miocene – ?Early Pliocene. Here a single species, not definitely studied yet, has been collected and previ- ously ascribed to the genus Megaderma but an attri- bution to other megadermatid genera is possible Fig.1: Map of main fossiliferous localities of Italy and Malta. (Kotsakis et al., 1997). As in the preceding case the 1- Monteviale (Veneto); 2- Baccinello V0 (Tuscany); 3- Brisig- presence of this genus, now inhabiting hot regions, hella (Romagna); 4- Gargano (Apulia); 5- Montagnola Senese has suggested tropical temperatures in this area. (Tuscany); 6- Pirro Nord (Apulia); 7- Ghar Dalam Cave (Malta); Another Neogene assemblage is from the Late 8- Spinagallo Cave (Sicily); 9- Slivia (Venezia Giulia); 10- Vento Pliocene (MN17, Middle Villafranchian Mammal Age Cave (Marche); 11- Punta Padre Bellu (Sardinia); 12- Breuil Cave (Latium); 13- Monte Cucco Cave (Marche); 14- Cittareale or Late Villanyian Micromammal Age, Costa San Cave (Latium). Giacomo Faunal Unit/Olivola Faunal Unit; Kotsakis et al., 2003) fissure fillings of Montagnola Senese (Tuscany) (Fondi, 1972). It includes four species: (Meschinelli, 1903; Kotsakis et al., 1997) (Figs. 1, 2). Myotis blythii (Tomes, 1857), M. gr. schaubi Kormos, It is a large chiropteran classified in its own sub- 1934 – rapax Heller, 1936, Myotis sp. and ? Tadarida family, Archaeopteropodinae, and considered by sp. The fauna needs a systematic revision and it is some authors (Russel & Sigé, 1970) to belong to the impossible to infer palaeoecological informations. suborder Microchiroptera and by others (Smith & Storch, 1981) to the suborder Megachiroptera. Unfortunately the original sample has been lost Quaternary chiropteran assemblages during the Second World War and only some rather and their palaeoecological meaning good casts are available. Archaeopteropus was part of an assemblage that, if considered as a whole, During the Pleistocene, particularly in the Late shows a tropical character. Pleistocene, an increase in the Italian fossil record is In the Italian Miocene the presence of Chiroptera observed. Among various sites under study at pre- indet. has been signalled from clays of Baccinello V0 sent the most meaningful are Pirro Nord (Gargano, (Tuscany - MN11) (Kosakis et al., 1997). Just one Apulia), Spinagallo Cave (Sicily), Punta Padre Bellu Miocene assemblage is known, coming from (Alghero, Sardinia), Breuil Cave (Monte Circeo, Monticino Quarry (Brisighella, Romagna) karst fis- Latium), Monte Cucco Cave (Perugia, Umbria) and sures. The assemblage is of Late Turolian age (MN13) Cittareale Cave (Rieti, Latium). One assemblage from and it is composed of six species: Megaderma cf. M. the late Early Pleistocene/earliest Middle Pleisto - mediterraneum Sigé, 1974, Rhinolophus cf. R. cene from the Ghar Dalam Cave (Malta) is strongly kowalskii Topál, 1979, Rhinolophus sp., Hipposideros related to Italian faunas. (Syndesmotis) cf. H. (S.) vetus (Lavocat, 1961), The oldest chiropteran assemblage is Pirro Nord, Asellia cf. A. mariaetheresae Mein, 1958 and Myotis ascribed to the early Pleistocene (Late Villafranchian cf. M. boyeri Mein, 1964 (Kotsakis & Masini, 1989). M.A. or Early Biharian Micromammal Age, Pirro F.U.) Three species, the two rhinolophids and the vesper- (Gliozzi et al., 1997). A rich assemblage has been col- tilionid, are similar to living forms now inhabiting lected from one of the karst fissures in the area. It is

54 Geo.Alp, Vol. 2, 2005 Fig. 2: Biochronological scheme of localities bearing fossil bats of Italy and Malta.

Geo.Alp, Vol. 2, 2005 55 composed of six species: Rhinolophus ferrume- the first being decisely dominant. In the higher stra- quinum (Schreber, 1774), R. birzebbugensis Storch, tum all the species, except M. capaccinii, are repre- 1974, Myotis blythii, M. capaccinii (Bonaparte, sented. M. schreibersi is always dominant although 1837), Miniopterus schreibersi (Kuhl, 1819) and less numerous than in the lower stratum. On the Miniopterus n. sp. (Masini et al., 1996; Tata, 2003). whole the assemblage has a Mediterranean charac- Among them the living species R. ferrumequinum, ter although forms such as M. mystacinus and B. M. blythii, M. capaccinii and M. schreibersi are pre- barbastellus usually have a more northern distribu- sent in Europe in the central and southern part of tion. All but one species are still living in Sicily, M. the continent (except for R. ferrumequinum that bechsteini and B. barbastellus are less widespread extends to more northern latitudes). The remaining then the others (Kotsakis & Petronio, 1980). R. blasii two species R. birzebbugensis and Miniopterus n. sp. has a recent eastern Mediterranean distribution and cannot be considered as strong palaeoclimatic mark- is present in the easternmost province of Italy near ers since the rhinolophid is known as a fossil only the Italian-Slovenian boundary (Lanza & Agnelli, from a few localities (Malta, Bulgaria and probably 1999). Palaeoecological conditions similar to those Spain) (Storch, 1974; Popov, 2004; Tata & Kotsakis, of Ghar Dalam can be inferred. in prep.) while the miniopterid has been collected At several fossil localities a small number of bat here for the first time. Considered as a whole the species has been collected; usually the specimens assemblage has a strong Mediterranean character. A represented there belong to recent species now liv- different assemblage including three species has ing in the same areas. A good example is the early been collected from another fissure filling in the Middle Pleistocene (Early Galerian M.A., Slivia F.U.) same area (De Giuli & Torre, 1984): Rhinolophus gr. R. assemblage collected in Slivia karst fissure (Trieste, euryale Blasius, 1853, Myotis cf. M. blythii and Myotis Venezia Giulia) where two species have been recog- sp. (small size). From a climatic point of view the nized: Rhinolophus ferrumequinum and Mini - assemblage does not differ from the previous one. opterus schreibersi (cfr. Ambrosetti et al., 1979). In Close in age to the previous assemblage is that other cases some elements indicating colder condi- collected in the Ghar Dalam Cave (strata with Leithia tions have been recognized in mammal assemblages cartei; Storch, 1974) including ten species: as for example in the late Middle Pleistocene (Early Rhinolophus hipposideros (Bechstein, 1800), R. Aurelian M.A.) deposit from Vento Cave (Ancona, birzebbugensis, R. blasii Peters, 1866, Myotis exilis Marche), where two species are found: Rhinolophus Heller, 1936, M. bechsteini robustus Topál, 1963, M. ferrumequinum and Myotis dasycneme (Boie, 1825) ghardalamensis Storch, 1974, M. capaccinii, (Esu et al., 1990). Among them particularly signifi- Eptesicus praeglacialis Kormos, 1930, Pipistrellus cant in this respect is the presence of M. dasycneme, pipistrellus (Schreber, 1774) and Miniopterus typical of cold conditions, known at present by just schreibersi. The assemblage shows a Mediterranean one erratic individual in the north-eastern part of character with forested and open habitats and the the Italian peninsula . presence of fresh water. In the Late Pleistocene the findings are abun- Also the assemblage from the Spinagallo Cave, dant, isolated remains are often reported ascribed to the early Middle Pleistocene (Elephas fal- (Lombardy, Santi, 2000; Sardinia, Abbazzi et al., coneri Faunal Complex) (Bonfiglio et al., 2003) is 2004), but systematic analysis has been conducted quite rich including ten species: R. ferrumequinum, only on a few cave deposits. R. hipposideros, R. mehelyi Matschie, 1901, R. cf. R. The assemblage from Punta Padre Bellu, collect- blasii, Myotis mystacinus (Leisler in Kuhl, 1819), M. ed in a destroyed cave near Alghero, has been bechsteini (Leisler in Kuhl, 1819), M. capaccinii, ascribed to the Late Pleistocene and is composed of Eptesicus serotinus (Schreber, 1774), Barbastella bar- six species: R. ferrumequinum, R. hipposideros, bastellus (Schreber, 1774) and M. schreibersi (cfr. Myotis myotis (Borkhausen, 1797), M. capaccinii, Kotsakis & Petronio, 1980). Very probably the new Nyctalus cf. N. lasiopterus (Schreber, 1780) and M. species of Miniopterus collected in Pirro Nord is also schreibersi (cfr. Kotsakis, 1987). All the species with present in the Spinagallo Cave assemblage. the exeption of N. lasiopterus (that however is quite The species are derived from two different strata; rare in the peninsula today) are still living in in the lower one only three species are represented: Sardinia suggesting a climatic context similar to the M. schreibersi, R. ferrumequinum and M. capaccinii, present one.

56 Geo.Alp, Vol. 2, 2005 Bat species Recent Late Pliocene Late Miocene Early Oligocene Late Pleistocene Early Pleistocene Middle Pleistocene Archaeopteropus transiens+ X Megaderma mediterraneum+ cf. Megaderma (s.l.) sp.+ X Rhinolophus kowalskii+ cf. Rhinolophus ferrumequinum X X X X Rhinolophus euryale X X X Rhinolophus birzebbugensis+ X X Rhinolophus mehelyi X X X Rhinolophus blasii X X X Rhinolophus hipposideros X X X X Rhinolophus sp.+ X Hipposideros vetus+ cf. Asellia mariaetheresae+ cf. Myotis boyeri+ cf. Myotis bechsteini X X X Myotis bechsteini robustus+ X Myotis myotis X X Myotis ghardalamensis+ X Myotis blythii ? X X X X M. nattereri X X Myotis gr. M. schaubi-M. rapax+ X Myotis emarginatus X X Myotis exilis+ X Myotis mystacinus X X Myotis brandti X Myotis daubentoni ? X Myotis capaccinii X X X Myotis dasycneme X X X!* Myotis sp. X X Barbastella barbastellus X X X Plecotus auritus X X Plecotus austriacus X Plecotus sp. X Pipistrellus pipistrellus X X Pipistrellus nathusii X Pipistrellus kuhlii X Pipistrellus sp. X Hypsugo savii X X Nyctalus leisleri ? X Nyctalus noctula X X Nyctalus lasiopterus cf. X Amblyotus nilssonii X X Eptesicus praeglacialis+ X Eptesicus serotinus X X X Vespertilio murinus X X Miniopterus n. sp. + X ? Miniopterus schreibersi X X X X Tadarida teniotis X X Tadarida sp. X

14 * It has been reported just one specimen captured in Northern Italy in 1881.

Tab. 1: Distribution chart of fossil bats from Italy and Malta. + = extinct species or subspecies. Pipistrellus pygmaeus, Myotis punicus, Plecotus alpinus and Plecotus n. sp. are not included among living species.

Geo.Alp, Vol. 2, 2005 57 The rich assemblage from Breuil Cave (Monte been increased in the last years by new researches: Circeo, Latium) collected in two strata (stratum “e” Pipistrellus pygmaeus (Leach, 1825) (Russo & Jones, and stratum “d”) must be referred to the Late 2000); Myotis punicus Felten, 1977 (Castella et al., Pleistocene (OIS 3). Among micromammals bats are 2000; Beuneux, 2004); Plecotus alpinus Kiefer & well represented with five species: R. ferrume- Veith, 2001 (Trizio et al., 2003); Plecotus n. sp. from quinum, M. myotis, Nyctalus noctula (Schreber, Sardinia (Mucedda et al., 2002) have been added in 1774), M. schreibersi and Tadarida teniotis the list of bats of Italy. However for an attribution (Rafinesque, 1814). All these species are present in of Italian fossil material to these species a complete the lower part of the stratum “e”, while only R. fer- systematic revision is necessary. rumequinum is represented in the upper part of the The number of Italian Tertiary fossil species is stratum “d” (Kotsakis, 1989). The assemblage much less; it has been calculated to include 12 derived from stratum “e” is constituted partly by species, among them 11 are surely extinct, but also typical Mediterranean species such as M. schreiber- the twelwth, which has been attributed to a living si and T. teniotis (that are more aboundantly repre- species, needs a systematic revision. sented) and partly by species having a more north- During the Quaternary an increase in the number ern distribution such as N. noctula. If this assem- of species is observed with at least 31 represented; blage is considered in the general faunal context it 5 of this number are extinct (R. birzebbugensis, M. becomes quite clear that its interstadial character ghardalamensis, M. exilis, E. praeglacialis and denotes a woodland environment with moist areas Miniopterus n. sp.). A fossil subspecies has also been in the neighbourhood of the cave. reported M. bechsteini robustus. Another species Another Late Pleistocene (OIS 2) chiropteran has to be mentioned pertaining to the genus assemblage is that from the Monte Cucco Cave Rhinolophus, R. botegoi Regàlia, 1893 described by (Perugia, Umbria) (Capasso Barbato & Kotsakis, Regàlia (1893), from fossil remains collected in 1986), including five species: R. ferrumequinum, M. Colombi Cave (Palmaria Island, Liguria). Its validity myotis, M. blythii, M. bechsteini and M. emargina- seems to be improbable, but in any case the mater- tus (E. Geoffroy, 1806). The absence of Miniopterus ial needs to be revised. In the fossil record of Italian schreibersi is interesting because it is a usual com- bats the presence of troglophilous species is domi- ponent of Italian cave- dwelling faunas. The assem- nant, whilst non-cave dwelling species are not well blage does not show any peculiar characteristics represented (see Table 1). that allow palaeoclimatic inferences. The analysis of the chiropteran assemblages con- The chiropteran assemblage from Cittareale Cave firms that during the time span between the (Rieti, Latium) is clearly colder and ascribed to the Miocene and Pleistocene the Italian peninsula has Late Pleistocene (OIS 2, Younger Dryas?); five been subjected to a general decrease of tempera- species are present: R. ferrumequinum, R. hip- ture. This inference comes from the observation posideros, M. myotis, M. bechsteini and M. dasyc- that species typical of tropical and subtropical envi- neme (cfr. Argenti et al., in press). Particularly ronments present in the Neogene assemblages are meaningful in a climatic sense is the presence of M. completely lacking from more recent assemblages. dasycneme that suggests the attribution of the It has to be emphasised that in some cases the pres- assemblage to a cold interval, presumably to the ence of a single species with peculiar ecological Younger Dryas period. In addition all the species, requirements gives clear palaeoecological informa- with the exeption of M. myotis that usually prefers tion whilst in other cases it is the assemblage as a open and slightly wooded terrain, are common in whole (considering the percentage composition of wooded areas suggesting then, for the assemblage, each single species) that allows palaeoecolgical a forested environment with open space and ponds. inferences.

Conclusions Acknowledgments

Among the recent mammalian faunas of Italy We wish to thank Prof. G. Tichy of Salzburg and Malta, Mitchell-Jones et al. (1999) indicate the University for reviewing the manuscript and Dr. presence of 28 species of bats. This number has D. Harrison of Harrison Institute for the helpful dis-

58 Geo.Alp, Vol. 2, 2005 cussions about bat systematics with the first author Pleistocene in Italy. The state of the art. – Riv. Ital. and the correction of the English. Paleont. Strat., 103: 369-388. Kotsakis, T. (1987): Les chiroptères du Pléistocène supé- rieur des environs de Alghero (Sardaigne, Italie). – References Geol. Romana, 26: 103-108. Kotsakis, T. (1989): Late Pleistocene fossil microverte- Abbazzi, L., Angelone, C., Arca, M., Barisone, G., Bedetti, brates of Grotta Breuil (Monte Circeo, Central Italy). – C., Delfino, M., Kotsakis, T., Marcolini, F., Palombo, Quaternaria Nova, 1: 325-332. M.R., Pavia, M., Piras, P., Rook, L., Torre, D., Tuveri, C., Kotsakis, T., Abbazzi, L., Angelone, C., Argenti, P., Barisone, Valli, A., Wilkens, B. (2004): Plio-Pleistocene fossil G., Fanfani, F., Marcolini, F., Masini, F. (2003): Plio- vertebrates of Monte Tuttavista (Orosei, E. Sardinia, Pleistocene biogeography of Italian mainland micro- Italy), an overview. — Riv. Ital. Paleont. Strat., 110: mammals. – In Reumer J.W.F. & Wessels W. (Eds.): 613-638. Distribution and migration of Tertiary mammals in Ambrosetti, P., Bartolomei, G., De Giuli, C., Ficcarelli, G., Eurasia. A volume in honour of Hans de Brujin. Torre, D. (1979): La breccia ossifera di Slivia (Aurisina Deinsea, 10: 313-342. – Sistiana) nel carso di Trieste. – Boll. Soc. Paleont. Kotsakis, T., Barisone, G., Rook, L. (1997): Mammalian Ital., 18: 207-220. biochronology in an insular domain: the Italian Argenti, P., Kotsakis, T., Sabatini, F. (in press): The latest Tertiary faunas. – Mém. Trav. E. P. H. E. Inst. Pleistocene bats of Cittareale Cave (Rieti, Latium, Montpellier, 21: 431-441. Central Italy). Kotsakis, T., Masini, F. (1989): Late Turolian bats from Beuneux, G. (2004): Morphometrics and ecology of Brisighella (Northern Italy). Boll. Soc. Paleont. Ital., 28: Myotis cf. punicus (Chiroptera, Vespertilionidae) in 281-285. Corsica. – Mammalia, 68: 269-273. Kotsakis, T., Petronio, C. (1980): I chirotteri del Pleistocene Bonfiglio, L., Di Maggio, C., Marra, A. C., Masini, F., superiore della grotta di Spinagallo (Siracusa, Sicilia). Petruso, D. (2003): Biochronology of Pleistocene ver- Boll. Serv. Geol. Ital., 101: 49-76. tebrate faunas of Sicily and correlation of vertebrate Lanza, B., Agnelli, P. (1999): Chirotteri. – In Spagnesi, M., bearing deposits with marine deposits. – Il Toso, S. (Eds.): Iconografia dei mammiferi d’Italia. Quaternario, 16 (1bis): 102-114. Istituto Nazionale per la Fauna Selvatica “Alessandro Capasso Barbato, L., Kotsakis, T. (1986): Les chiroptères Chigi”, 44-142. du Pléistocène supérieur de la Grotte de Monte Cucco Masini, F., Rook, L., Abbazzi, L., Ambrosetti, P., Azzaroli, A., (Italie Centrale). – Geol. Romana, 25: 309-316. Ficcarelli, G., Gentili, S., Kotsakis, T., Sala, B., Torre, D. Castella, V., Ruedi, M., Excoffier, L., Ibáñez, C., Arlettaz, R., (1996): Mammalian faunas of selected Villafranchian Hauser, J. (2000): Is the Gibraltar Strait a barrier to localities of Italy. – In Carraro F. (Ed.): Revisione del gene flow for the bat Myotis myotis (Chiroptera : Villafranchiano nell’area tipo di Villafranca d’Asti. Il Vespertilionidae)? – Mol. Ecol., 9: 1761-1772. Quaternario, 9, tab. 2. De Giuli, C., Torre, D. (1984): A microfauna with Meschinelli, L. (1903): Un nuovo chirottero fossile Allophaionys pliocaenicus from Gargano (Southern (Archaeopteropus transiens Mesch.) delle ligniti di Italy). – Palaeontogr. Ital., 73: 115-128. Monteviale. – Atti R. Ist. Veneto Sci. Lett. Arti, 62: Esu, D., Galdenzi, S., Kotsakis, T. (1990): Molluschi e 1329-1344. microvertebrati del deposito pleistocenico della Grotta Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., del Vento (Gola della Rossa, Ancona). – Nota prelimi- Kryštufek, B., Reijnders, P.J.H., Spitzenberger, F., nare. Mem. Ist. Ital. Spel., 4: 193-198. Stubbe, M., Thissen, J.B.M., Vohralík, V., Zima, J. (1999): Fondi, R. (1972): Fauna cromeriana della Montagnola The atlas of European mammals. Academic Press, 484 senese. Palaeontogr. Ital., 68: 1-27. pp.. Gliozzi, E., Abbazzi, L., Argenti, P., Azzaroli, A., Caloi, L., Mucedda, M., Kiefer, A., Pidinchedda, E., Veith, M. (2002): Capasso Barbato, L., Di Stefano, G., Esu, D., Ficcarelli, A new species of long-eared bat (Chiroptera, G., Girotti, O., Kotsakis, T., Masini, F., Mazza, P., Vespertilionidae) from Sardinia (Italy). – Acta Mezzabotta, C., Palombo, M.R., Petronio, C., Rook, L., Chiropterol., 4: 121-135. Sala, B., Sardella, R., Zanalda, E., Torre, D. (1997): Popov, V. (2004): Pliocene small mammals (Mammalia, Biochronology of selected mammals, molluscs and Lipotyphla, Chiroptera, Lagomorpha, Rodentia) from ostracods from the Middle Pliocene to the Late Muselievo (North Bulgaria). – Geodiversitas, 26: 403-491.

Geo.Alp, Vol. 2, 2005 59 Regàlia, E. (1893): Sulla fauna della «Grotta dei Colombi» Storch, G. (1974): Quartäre Fledermaus-Faunen von der (Is. Palmaria, Spezia). – Nota paleontologica. Arch. Insel Malta. – Senckenberg. Lethaea, 55: 407-434. Antropol. Etnol., 23: 257-366. Tata, C. (2003): Fauna a chirotteri del Villa franchiano Russel, D. E., Sigé, B. (1970): Révision des chiroptères luté- superiore del Gargano (Puglia, Italia meridionale). – tiens de Messel (Hesse, Allemagne). – Palaeo verte - Unpublished Laurea Thesis, University Roma Tre. brata, 3: 83-182. Tata, C., Kotsakis, T. (in prep.): A chiropteran fauna from Russo, D., Jones, G. (2000): The two cryptic species of Early Pleistocene of Gargano Peninsula (Apulia, Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) Southern Italy). occur in Italy: evidence from echolocation and social Trizio, I., Patriarca, E., Debernardi, P., Preatoni, A., Tosi, G., calls. – Mammalia, 64: 187-197. Martinoli, A. (2003): The alpine long-eared bat Santi, G. (2000): Remains of Würmian Myotis into Ursus (Plecotus alpinius Kiefer and Veith, 2001) is present spelaeus skull from Buco dell’Orso Cave (Laglio: Como also in Piedmont region: first record revealed by DNA – Lombardy, Italy). – Atti Ticin. Sci. Terra, 41: 41-47. analysis. – Hystrix, n. s., 14: 113-115. Sigé, B. (1974): Presence d’un Megaderma (Mammalia, Chiroptera) dans le Pléistocène inférieur à Sète (Hérault). – Géol. Méditerr., 1: 97-104. Smith, J.D., Storch, G. (1981): New Middle Eocene bats from “Grube Messel” near Darmstadt, W-Germany. (Mammalia: Chiroptera). – Senckenberg. Biol., 61: Manuscript submitted: December 12, 2004 153-167. Revised manuscript accepted: March 30, 2005

60 Geo.Alp, Vol. 2, 2005 Geo.Alp, Vol. 2, S. 61–70, 2005

CERVUS ELAPHUS SICILIAE FROM PLEISTOCENE LACUSTRINE DEPOSITS OF ACQUEDOLCI (NORTH-EASTERN SICILY, ITALY) AND ITS TAPHONOMIC SIGNIFICANCE

Gabriella Mangano

With 6 figures and 12 tables

Dipartimento di Scienze della Terra, Università degli Studi di Messina; e-mail: [email protected]

Abstract Systematic excavations carried out on the Pleistocene lacustrine deposits of Acquedolci (North-Eastern Sicily, Italy) yelded a very rich fossil vertebrate assemblage, containing thousands of remains of Hippopotamus pentlandi, the endemic hippo of the Siculo-Maltese archipelago, associated with remains of Cervus elaphus siciliae and scarce remains of Ursus cf. arctos, Canis lupus, Testudo cf. hermanni, Elephas mnaidriensis and Aves. This paper presents a morphological, biometrical and taphonomical analysis of Cervus elaphus siciliae remains. Morphological and biometrical features are in the range of the variability of Cervus elaphus siciliae Pohlig, the endemic deer of Sicily which is characterized by a slightly smaller size compared to the populations of the Italian peninsula. Taphonomical features, such as spatial distribution and orienta- tion of the remains, composition of the skeletal part, age distribution, degree of skeletal articulation, frag- mentation and bone modification, indicate that Cervus elaphus siciliae remains did not accumulate “in situ”, unlike the autochthonous remains of Hippopotamus pentlandi, but probably they were occasionally deposit- ed in the lacustrine basin as fragments of carcasses belonging to the animals inhabiting the surrounding area.

Introduction Most of the collected remains come from the trench F, which was deepened for 6 m. In the other The lacustrine sediments of Acquedolci are trenches, which have a maximum depth of about 2 located on the northern flank of the Nebrodi range m, the fossil bones have been partially preserved in (North-Eastern Sicily), at the base of the high ver- situ because of their spectacular abundance, in tical cliff of the Pizzo Castellaro carbonatic massif, order to establish a field Museum. on which the well-known S. Teodoro Cave opens. A total number of 3.016 remains of Hippo - The deposit is composed of silt, gravel and pebbles potamus pentlandi, the endemic hippo of the of variable size, probably fallen from the adjacent Siculo-Maltese archipelago, together with 104 cliff. It is superimposed on a Late Pleistocene remains of the endemic deer of Sicily, Cervus ela- marine terrace located 131 m a.s.l. and represents phus siciliae, and very scarce remains of Ursus cf. the remains of a late Middle Pleistocene lacustrine arctos (15), Canis lupus (7), Testudo cf. hermanni basin (Bonfiglio, 1985; 1987; 1989; 1992). During (6), Elephas sp. (1) and Aves (2) were collected the years 1982-1987 systematic excavations were (Bonfiglio, 1995). One of the two remains of Aves carried out and seven trenches of different width belongs to Gyps melitensis Lydekker, an extinct vul- and depth have been excavated over an area of ture (griffon) species (Pavia, 2001). 104 m2 (Fig. 1). About 130 m3 of sediments were This faunal assemblage belongs to the “Elephas removed and the entire succession of the deposit, mnaidriensis Faunal Complex”, one of the five which was originally about 14 m thick, was investi- Pleistocene faunal complexes recognized in Sicily, gated. In trench G the lacustrine sediments con- referred to the late Middle Pleistocene-early Late taining fossil remains are absent. Pleistocene (Bonfiglio et al., 2001; 2002). Amino-

61 Skeletal element N.R. skull 3 antler 23 vertebrae 7 ribs 15 scapula 1 humerus 4 radius 11 femur 2 tibia 4 podials 5 metapodials 22 phalanges 7 Total 104

Tab. 1: Composition of the skeletal part of Cervus elaphus siciliae remains from Acquedolci.

Fig. 1: Topography of the Acquedolci area and location of the excavation trenches (A-G) (modified from Bonfiglio, 1987). acid racemization dating yielded an age of 200 + 40 Ky for the Hippopotamus pentlandi remains of Acquedolci (Bada et al., 1991).

Morphological and biometrical descriptions

A total number of 104 strongly fragmented remains of Cervus elaphus siciliae were collected. The only complete and well preserved bones are represented by two metacarpals. Antlers and metapodials are the most frequent skeletal elements (Tab. 1). A morphological and biometrical compari- son with the remains of Cervus elaphus siciliae Pohlig from different Pleistocene deposits of Sicily, described by Gliozzi et al. (1993), is presented. At Fig. 2: Right shed antler of Cervus elaphus siciliae, internal present, the data published by Gliozzi et al. (1993) view. about the remains of Cervus elaphus siciliae from Sicily are the only available ones. The remains from Acquedolci do not have a catalogue number.

ANTLER right (Gliozzi et al., 1993) transverse diameter of the burr 47 – antero-posterior diameter of the burr 63 min 51 – max 67 transverse diameter of the beam above the bez-tine 37 – antero-posterior diameter of the beam above the bez-tine 42 min 34 – max 44

Tab. 2: Measurements (mm) of the antler of Cervus elaphus siciliae from Acquedolci compared with the dimensions of antlers described by Gliozzi et al., 1993.

62 Geo.Alp, Vol. 2, 2005 SCAPULA right transverse diameter of the glenoid cavity 33 antero-posterior diameter of the glenoid cavity 37 antero-posterior diameter of the neck 31 antero-posterior diameter of the articulation surface 49

Tab. 3: Measurements (mm) of the scapula of Cervus elaphus siciliae from Acquedolci.

between 33.4 and 41 mm (Gliozzi et al., 1993). Another fragment of skull from the Villafranca Tirrena deposit (Messina) has an antero-posterior diameter of the pedicle measuring 43 mm (Mangano, 2000). Antlers. A total number of 23 antler fragments were recovered: 7 fragments of tines, 9 fragments of beams and 7 shed antler fragments with burr. The only measurable remain is a right shed antler frag- ment, which was strongly fractured and recon- structed by restoration (Fig. 2). The burr and the first portion of the beam are preserved, the brow- tine and bez-tine are broken. The burr is moderate- ly developed and formed by little pearls. The approximate measurements of this specimen are listed in Tab. 2. The dimensions of the antero-poste- rior diameter of the burr and of the beam above the bez-tine are in the range of the variability of Cervus elaphus siciliae (Gliozzi et al., 1993). Vertebrae. 6 vertebrae are present. They are frac- tured and incomplete. Two fragments belong to Fig. 3: Right distal humerus of Cervus elaphus siciliae; a) ante- young individuals. rior view, b) posterior view. Ribs. 15 fragments of ribs lacking the articulation surface were recovered. Scapula. The scapula is represented only by one Skull. The skull remains are represented by 3 proximal right fragment (Tab. 3). The glenoid cavity pedicle fragments only. The most complete of these is slightly ovoidal in shape with a well developed bones is a left pedicle, which is rather short and concave surface. The glenoid tubercle is very strong. strong. The antero-posterior diameter is 44 mm, The neck is rather short and slender. The remains of while the transverse diameter is 41 mm. The skulls scapula of Cervus elaphus siciliae recovered in the of Cervus elaphus siciliae collected in the Puntali Fata Donnavilla Cave (Messina) display the same Cave (Palermo) have antero-posterior diameters of morphological features (Gliozzi et al., 1993). the pedicles varying between 34.8 and 40.6 mm, Humerus. The humerus is poorly represented by 4 and the transverse diameter of the pedicles ranging fragmentary specimens: 2 distal fragments preserv-

HUMERUS right left (Gliozzi et al., 1993) transverse diameter of the distal end 48 42 min 40 – max 49.2 antero-posterior diameter of the distal end 49 43 min 37.5 – max 46 transverse diameter of the trochlea 45 40 –

Tab. 4: Measurements (mm) of the humerus of Cervus elaphus siciliae from Acquedolci compared with the dimensions of the remains described by Gliozzi et al., 1993.

Geo.Alp, Vol. 2, 2005 63 Fig. 5: Tibia of Cervus elaphus siciliae; a) left proximal frag- ment, posterior view; b) left distal fragment, posterior view.

rior diameter of the distal end is slightly larger (Tab. 4). Radius. 10 remains of radius were recovered, including 1 semicomplete right radius with a broken distal end (Fig. 4, a-b-c), 5 proximal fragments and 4 distal fragments including one juvenile remain. The posterior face of the diaphysis has a deep radio- ulnar groove. The proximal articulation surface is sub-rectangular with a wide sigmoid notch which Fig. 4: Semicomplete right radius of Cervus elaphus siciliae; separates it into two very unequal articulation a) anterior view, b) posterior view, c) proximal articulation. facets, whose medial one is very large. Most of the remains, particularly the semicomplete right radius, have a larger size than those described by Gliozzi et ing the articulation surface, 1 small fragment of the al. (1993) (Tab. 5). Since other biometric data on distal articulation and 1 fragment of the shaft. The Cervus elaphus siciliae are lacking in the literature, diaphysis seems to have a great torsion. The olecra- these differences in dimensions at present cannot non fossa is deep and triangular in shape; the be correctly evaluated. trochlea is developed and medially inclined (Fig. 3, Femur. Only 2 femur fragments are present: 1 a-b). The transverse diameter of the distal end is fragment of the proximal articulation (head) and 1 within the range of the values of Cervus elaphus fragment of the distal articulation. The head is not siciliae (Gliozzi et al., 1993) while the antero-poste- fused. The condyles of the distal articulation are less

64 Geo.Alp, Vol. 2, 2005 RADIUS right right right left right right left (Gliozzi et al., 1993) greatest length 270 ------min 206 – max 237 transverse diameter 54 44 42 50 - - min 39 – max 44.7 of the proximal end antero-posterior diameter 29 23 25 27 - - - min 21 – max 24.5 of the proximal end transverse diameter 31 20 - - - - - min 22 – max 26.5 at half length of the shaft antero-posterior diameter 19 10 - - - - min 12.5 – max 16 at half length of the shaft transverse diameter - - - - 43 46 45 min 27 – max 39 of the distal end antero-posterior diameter - - - - 29 33 30 min 25.5 – max 29.1 of the distal end

Tab. 4: Measurements (mm) of the humerus of Cervus elaphus siciliae from Acquedolci compared with the dimensions of the remains described by Gliozzi et al., 1993.

RADIUS right right right left right right left (Gliozzi et al., 1993) greatest length 270 ------min 206 – max 237 transverse diameter 54 44 42 50 - - min 39 – max 44.7 of the proximal end antero-posterior diameter 29 23 25 27 - - - min 21 – max 24.5 of the proximal end transverse diameter 31 20 - - - - - min 22 – max 26.5 at half length of the shaft antero-posterior diameter 19 10 - - - - min 12.5 – max 16 at half length of the shaft transverse diameter - - - - 43 46 45 min 27 – max 39 of the distal end antero-posterior diameter - - - - 29 33 30 min 25.5 – max 29.1 of the distal end

Tab. 5: Measurements (mm) of the radius of Cervus elaphus siciliae from Acquedolci compared with the dimensions of the remains described by Gliozzi et al., 1993.

developed and separated by a wide intercondylar variability of Cervus elaphus siciliae (Gliozzi et al., fossa. The medial condyle is strongly laterally 1993) (Tab. 6). inclined. The remains are not measurable. Podials. Only 5 podial bones are present: 2 carpal Tibia. Tibia remains are represented by 1 proxi- bones (scaphoid, lunar) and 3 tarsal bones (1 mal, 1 medio-proximal and 2 distal fragments (Fig. cuneiform, 2 astragali). The two astragali are broken. 5, a-b). The proximal articulation surface is wide The lateral lenght and the lateral antero-posterior and two very concave condylar facets are present. diameter of the two astragali are within the range of The edges of the condylar facets bordering the the values reported by Gliozzi et al. (1993) (Tab. 7). intercondylar area, which is narrow, are raised into Metapodials. 22 metapodial fragments were col- two prominent crests. The tuberosity of the diaph- lected: 9 metacarpal remains, 6 metatarsal remains ysis is well developed and shows a great torsion. The and 6 undeterminable metapodial remains. distal articulation surface is irregularly trapezoidal Metacarpal remains include 2 complete and well in shape. The edge of the lateral cochlea ends with preserved bones (Fig. 6, a-b-c-d), 1 proximal frag- a prominent hook. The morphological and biometri- ment, 1 distal fragment and 5 shaft fragments. cal features of the remains are in the range of the Metatarsal remains are represented by 2 distal frag-

Geo.Alp, Vol. 2, 2005 65 TIBIA left left left right (Gliozzi et al., 1993) transverse diameter of the proximal end 63 59 - - min 48.5 – max 63.5 antero-posterior diameter of the proximal end - 57 - - min 50 – max 64 transverse diameter at half length of the shaft 26 - 23 - min 21 – max 28.6 antero-posterior diameter at half length of the shaft 24 - 20 - min 19 – max 27.5 transverse diameter of the distal end - - 37 46 min 33 – max 49 antero-posterior diameter of the distal end - - 30 32 min 24.5 – max 35

Tab. 6: Measurements (mm) of the tibia of Cervus elaphus siciliae from Acquedolci compared with the dimensions of the remains de- scribed by Gliozzi et al., 1993.

PODIAL BONES SCAPH. LUNAR CUNEIF. ASTR. ASTR. (Gliozzi et al., 1993) right right left right left transverse diameter 27 23 30 - - – lateral lenght - - - 47 - min 41.3 – max 47.8 medial lenght - - - 44 42 – transverse diameter of the distal end - - - 28 27 – lateral antero-posterior diameter - - - 25 - min 24 – max 32 medial antero-posterior diameter - - - 25 21 –

Tab. 7: Measurements (mm) of the podial bones of Cervus elaphus siciliae from Acquedolci compared with the dimensions of the re- mains described by Gliozzi et al., 1993.

METACARPAL right left left left (Gliozzi et al., 1993) greatest lenght 221 222 - - min 195 – max 226 transverse diameter 33 34 33 - min 29 – max 35.6 of the proximal end antero-posterior diameter 23 24 24 - min 19 – max 26 of the proximal end transverse diameter 18 20 - - min 16 – max 23.7 at half length of the shaft antero-posterior diameter 21 22 - - min 18 – max 22.4 at half length of the shaft transverse diameter 34 35 - 34 min 27 – max 38.8 of the distal end antero-posterior diameter 22 22 - 22 min 19 – max 24.4 of the distal end

Tab. 8: Measurements (mm) of the metacarpal of Cervus elaphus siciliae from Acquedolci compared with the dimensions of the re- mains described by Gliozzi et al., 1993.

METATARSAL right left (Gliozzi et al., 1993) transverse diameter 35 34 min 29 – max 35 of the distal end antero-posterior diameter 24 22 min 18 – max 23.4 of the distal end

Tab. 9: Measurements (mm) of the metatarsal of Cervus elaphus siciliae from Acquedolci compared with the dimensions of the re- mains described by Gliozzi et al., 1993.

66 Geo.Alp, Vol. 2, 2005 ments and 4 shaft fragments, including one juvenile teeth are absent; skulls, short bones and phalanges specimen. The metacarpals are very slender. The pal- are rare. The minimum number of individuals, based mar surface of the diaphysis is poorly channelled; on the most abundant long bone (the radius), is 5. the ventral surface has a wide furrow along the entire length of the diaphysis. At the proximal end, the articulation facet for the magnum is wide, while the articulation facet for the unciform is very small; at the distal end, the two lateral condyles are sepa- rated by a narrow intercondylar notch. On the con- trary, the palmar surface of the metatarsals diaph- ysis has a well developed central channel, and the lateral condyles of the distal end are separated by a wide intercondylar notch. The morphological fea- tures and the dimensions of the metapodials (Tabs. 8-9) are comparable with those detected by Gliozzi et al. (1993) on other Sicilian specimens of Cervus elaphus siciliae. Phalanges. 7 remains were recovered: 4 fragmen- tary first phalanges and 3 complete second phalanges, including one juvenile specimen. The dimensions of the remains (Tabs. 10-11) are in the range of the vari- ability of Cervus elaphus siciliae (Gliozzi et al., 1993).

Taphonomical observations

Some taphonomical features, such as spatial dis- tribution and orientation of the fossil remains, com- position of the skeletal part, age distribution, degree of skeletal articulation, fragmentation and bone modification have been considered in order to determine the biological processes that influenced the accumulation of Cervus elaphus siciliae bones (Badgley & Behrensmeyer, 1980; Behrensmeyer, 1975; Behrensmeyer Dechant Boaz, 1980). In the lacustrine deposits of Acquedolci the num- ber of Cervus elaphus siciliae fossil remains is very low, with respect to the number of the remains of Hippopotamus pentlandi. The remains of deer were collected in all the excavated trenches, with the exception of trench G which is sterile, and about half of them come from trench F. In each trench the remains are distributed over the entire thickness of the sediments. The bones are not concentrated and their spatial distri- bution is absolutely random, without preferential orientation. Almost all the skeletal remains are very fragmentary and fractured; complete specimens are very rare. Articulated skeletal elements are absent. Fig. 6: Left metacarpal of Cervus elaphus siciliae; a) anterior Adult specimens are absolutely prevailing over juve- view; b) posterior view; c) proximal articulation; d) distal arti- nile remains, which are very scarce. Mandibles and culation.

Geo.Alp, Vol. 2, 2005 67 FIRST PHALANX (Gliozzi et al., 1993) transverse diameter 18 - - 17 – of the proximal end antero-posterior diameter 22 - - 22 – of the proximal end transverse diameter 13 15 12 - min 11 – max 15.7 at half length of the shaft antero-posterior diameter 17 18 - - – at half length of the shaft transverse diameter - 17 15 - – of the distal end antero-posterior diameter - 10 13 - – of the distal end

Tab. 10: Measurements (mm) of the first phalanx of Cervus elaphus siciliae from Acquedolci compared with the dimensions of the remains described by Gliozzi et al., 1993.

SECOND PHALANX (Gliozzi et al., 1993) greatest lenght 37 34 min 33 – max 38 transverse diameter 18 16 – of the proximal end antero-posterior diameter 23 21 – of the proximal end transverse diameter 13 13 min 10 – max 15 at half length of the shaft antero-posterior diameter 15 16 – at half length of the shaft transverse diameter 14 14 – of the distal end antero-posterior diameter 19 20 – of the distal end

Tab. 11: Measurements (mm) of the second phalanx of Cervus elaphus siciliae from Acquedolci compared with the dimensions of the remains described by Gliozzi et al., 1993.

Cervus elaphus siciliae Hippopotamus pentlandi Number of Remains 104 3.016 Spatial distribution random random absence of orientation absence of orientation absence of concentration extreme concentration Minimum Number of Individuals 5 33 Age distribution predominantly adult, rare juvenile adult, juvenile, infantile Skeletal part composition absence of mandibles and teeth all skeletal parts represented rare skull, short bones and phalanges Skeletal articulation disarticulated bones anatomical connection Degree of fragmentation very high very low Bone modification cracking, abrasion (not frequently) no

Tab. 12: Comparison between taphonomical features of Cervus elaphus siciliae and Hippopotamus pentlandi remains from Acque- dolci deposit (taphonomic data about Hippopotamus pentlandi from Bonfiglio, 1995).

68 Geo.Alp, Vol. 2, 2005 Bone modifications are observed at about 20 % of ical reading of the manuscript and the precious ad- the remains, showing traces of cracking (stage 1, vises, and to Prof. K. Krainer, for the helpful sugges- according to Behrensmeyer, 1978) and/or abrasion. tions in the revision of the English version. A comparison between taphonomical features of Cervus elaphus siciliae and Hippopotamus pentlan- di remains from the Acquedolci deposit is shown in References Tab. 12. From a taphonomical point of view, the small Bada, J. L., Belluomini, G., Bonfiglio, L., Branca, M., Burgio, number of recovered remains of Cervus elaphus E., Delitala, L. (1991): Isoleucine epimerization ages of siciliae, with respect to the extension of the deposit quaternary mammals of Sicily. – Il Quaternario, vol. 4 and to the number of the hippo remains, their ran- (1a): 5-11. dom distribution over the entire thickness of the Badgley, C., Behrensmeyer, A. K. (1980): Paleoecology of deposit, the lack of skeletal articulation, the pres- Middle Siwalik sediments and faunas. – Palaeo geo - ence of selected skeletal elements and the degree of graphy, Palaeoclimatology, Palaeoecology, vol. 30: fragmentation, indicate an allochthonous fossiliza- 133-155. tion, although the slight traces of abrasion and Behrensmeyer, A. K. (1975): The taphonomy and paleoe- cracking suggest a minimal transportation and/or a cology of Plio-Pleistocene vertebrate assemblages of short period of subaerial exposure. Lake Rudolf, Kenya. – Museum of Comparative The taphonomical analysis indicates that the Zoology Bulletin Harvard, vol. 146: 473-578. remains are allochthonous and probably were Behrensmeyer, A. K. (1978): Taphonomic and ecologic deposited in the lacustrine basin as fragments of information from bone weathering. – Paleobiology, carcasses from animals living in the area, vol. 4(2): 150-162. testifying, therefore, a different accumulation Behrensmeyer, A. K., Dechant Boaz, D. E. (1980): The process in comparison with the remains of recent bones of Amboseli National Park, Kenya, in Hippopotamus pentlandi, which accumulated and relation to East African paleoecology. – In: fossilized “in situ”, in the lacustrine basin where the Behrensmeyer A. K., Hill A. P. (eds.): Fossils in the hippos have lived (Bonfiglio, 1995). making, 72-93. University of Chicago Press, Chicago. Bonfiglio, L. (1985): Prima campagna di scavo dei depo- Conclusion siti a mammiferi pleistocenici dell’area della grotta di S. Teodoro (Acquedolci, Messina, Sicilia). – Geologica The morphological and biometrical features of Romana, vol. 22: 271-285. the remains are in the range of the variability of Bonfiglio, L. (1987): Primi elementi di stratigrafia del Cervus elaphus siciliae POHLIG, the Pleistocene talus della grotta di S. Teodoro (Acquedolci, Messina, endemic deer of Sicily which is characterized by a Sicilia). – Il Naturalista Siciliano, s. 4, vol. 10 (1-4): moderately reduced size compared to the popula- 43-57. tions of the Italian peninsula. Bonfiglio, L. (1989): Distribuzione quantitativa dei resti di The small number of specimens belonging to Hippopotamus sp. del deposito di bacino del talus deer, as well as those belonging to the other associ- della grotta di S. Teodoro (Acquedolci, Messina, ated species, if compared with the very large num- Sicilia). – Atti 3° Simposio di Ecologia e Paleoecologia ber of the recovered hippo remains, probably is to delle Comunità bentoniche: 299-317. correlate with the different accumulation processes Bonfiglio, L. (1992): Campagna di scavo 1987 nel deposi- of the remains and it does not reflect the real com- to pleistocenico a Hippopotamus pentlandi di position of the faunal populations living in the area. Acquedolci (Sicilia nord-orientale). – Bollettino della Società Paleontologica Italiana, vol. 30 (2): 157-173. Bonfiglio, L. (1995): Taphonomy and depositional setting Acknowledgments of Pleistocene mammal-bearing deposits from Acquedolci (North-Eastern Sicily). – Geobios, M. S., Work supported by grants CoFin MURST 2003 vol. 18: 57-68. “Faunal turnover in Sicily during the two last Bonfiglio, L., Mangano, G., Marra, A. C., Masini, F. (2001): Glacial cycles”. Thanks to Dr. R. Sardella, for the crit- A new late Pleistocene vertebrate faunal complex

Geo.Alp, Vol. 2, 2005 69 from Sicily (S. Teodoro Cave, North-Eastern Sicily, Mangano G. (2000): Nuovi resti di elefante e revisione di Italy). – Bollettino della Società Paleontologica alcuni resti di mammiferi del Pleistocene superiore Italiana, vol. 40 (2): 149-158. della Sicilia nord-orientale. – Giornale di Geologia, Bonfiglio, L., Marra, A. C., Masini, F., Pavia, M., Petruso, D. Supplemento, serie 3a, vol. 62: 103-109. (2002): Pleistocene faunas of Sicily: a review. – In: Pavia, M. (2001): The Middle Pleistocene fossil avifauna Waldren W. H., Ensenyat J. A. (eds.): World Islands in from the “Elephas mnaidriensis Faunal Complex” of Prehistory, International Insular Insular Investigations, Sicily (Italy): preliminary results. – In: Cavarretta G., 428-436. BAR International Series, 1095. Gioia P., Mussi M., Palombo M. R. (eds.): La Terra degli Archaeopress, Oxford. Elefanti, 497-501. Consiglio Nazionale delle Ricerche, Gliozzi, E., Malatesta, A, Scalone, E. (1993): Revision of Roma. Cervus elaphus siciliae Pohlig, 1893, Late Pleistocene endemic deer of the Siculo-Maltese district. – Manuscript submitted: December 14, 2004 Geologica Romana, vol. 29: 307-354. Revised manuscript accepted: April 8, 2005

70 Geo.Alp, Vol. 2, 2005 Geo.Alp, Vol. 2, S. 71–76, 2005

EXCAVATIONS OF 2003 AT THE S. TEODORO CAVE (NORTH-EASTERN SICILY, ITALY): PRELIMINARY FAUNISTIC AND STRATIGRAPHIC DATA

Gabriella Mangano1, Laura Bonfiglio1 & Daria Petruso2

With 2 figures and 2 tables

1 Dipartimento di Scienze della Terra, Università degli Studi di Messina; e-mail: [email protected]; [email protected] 2 Dipartimento di Geologia e Geodesia, Università degli Studi di Palermoe-mail: [email protected]

Abstract Systematic excavations have been carried out at the S. Teodoro Cave since 1998. Two trenches have been excavated on the eastern side of the cave. The “1998 trench”, located between 9 and 13 meters from the entrance, covers an area of 25 m2. The “2002 trench” was located between 30 and 32 meters from the ent- rance and covers an area of 9 m2. The 2003 excavations included the 2002 trench, which has been deepened for 1 m and enlarged by ad- ding new squares. Remains of Cervus elaphus siciliae, Bos primigenius siciliae, Elephas mnaidriensis, Crocuta crocuta spelaea, Equus hydruntinus, small mammals, birds, reptiles, invertebrates and plant remains have been recovered. The composition of the faunal assemblage and the lithologic features of the deposit, which is composed of clayey sands and gravels, are similar to those recognized in the 1998 trench. Fragmentation of remains, damages on almost all large mammal bones and abundant hyena coprolites testify an intense hyena activity. Complete and not damaged remains of elephant and deer have also been collected and ac- tually represent a taphonomic novelty. A new sedimentary unit of clayey sands and gravels which does not contain fossil remains has been detected in the southern part of the trench. The age and the environmental significance of this new sedimentary unit are to be clarified.

Introduction deposits and to a better knowledge of the faunal assemblages, especially the older one. The 1998 The San Teodoro Cave opens in Jurassic lime- trench has been located on the eastern side of the stone at an altitude of 150 m a.s.l.; it has huge cave at a square surface of 25 m2, between 9 and dimensions (about 60 m long, 20 m wide and up to 13 meters from the entrance (coordinates 9-13/E-I) 20 m high) and a total surface of more than 1.000 (Fig. 1) and it has been deepened for 1.40 m. The m2. In previous excavations the authors (Anca, investigated unit B is composed of clayey sands and 1860; Vaufrey, 1928, 1929; Tricomi, 1938; Maviglia, gravels containing a highly diverse assemblage of 1941; Graziosi, 1943, 1947; Graziosi and Maviglia, vertebrates, invertebrates (molluscs) and plant 1946) distinguished an upper sedimentary unit, remains. The large mammal assemblage which con- Late Glacial in age, containing human feeding tains elephant (Elephas mnaidriensis), wild ox (Bos remains (mammal bones) associated with late primigenius siciliae), deer (Cervus elaphus siciliae), Upper Palaeolithic (Epigravettian) stone artifacts wild boar (Sus scrofa), wolf (Canis lupus), hyena (unit A in Bonfiglio et al., 2001), and a lower sedi- (Crocuta crocuta spelaea), fox (Vulpes vulpes), asso- mentary unit (unit B in Bonfiglio et al., 2001) con- ciated with the equid Equus hydruntinus and the taining late Pleistocene endemic mammals. small mammal taxa Microtus (Terricola) ex gr. savii, The 1998 excavations were devoted to the Apodemus cf. sylvaticus, Erinaceus cf. europaeus reconstruction of the stratigraphy of the cave and Crocidura cf. sicula, has been attributed to a

71 Fig. 1: Plan of the S. Teodoro Cave with the location of the excavation areas of 1998 and 2002-2003. The black arrow indicates the cave entrance. new faunal complex in the Pleistocene of Sicily, level lowstand) existed, perhaps more than once named “S. Teodoro Cave-Pianetti” faunal complex, during the last glaciation (Bonfiglio et al., 2002). which contain some endemic taxa surviving from Pollen spectra from samples of coprolites from the previous faunal complex (“Elephas mnaidriensis unit B show the existence of a vegetation which F.C.”) associated with non-endemic taxa (Equus was mainly dominated by grass with moderate hydruntinus, Microtus (Terricola) ex gr. savii, arboreal taxa (Artemisia, Ephedra) and low percent- Erinaceus cf. europaeus) (Bonfiglio et al., 2001). ages of mesophilous pollen taxa (Quercus, Betula, The various evidences of cave frequentation by Abies, Alnus, Pistacia, among others) which depict a spotted hyena populations are the most prominent glacial landscape (Yll et al., in press). taphonomic feature of this deposit. Evidence comes During the 2002 excavations a new trench has from the occurrence of several Crocuta skeletal ele- been located on the inner eastern side of the cave ments (skull, teeth, limb bones), an impressive quan- at a square surface of 9 m2, between 30 and 32 m tity of coprolites, and from ubiquitous traces of from the entrance (coordinates 30-32/B-D) (Fig. 1), crushing, gnawing, chewing and digestion that have in order to verify the extension of the evidences of been detected on almost all the large mammal the frequentation by spotted hyenas in the inner remains (Bonfiglio et al., 1999, 2001). These tapho- part of the cave. The 2002 trench has been deep- nomic characters have been found so far only in a ened for about 40 cm. The sediments of unit B are few cave deposits of the Italian peninsula (“Grotta again composed of clayey sands and gravels and dei Moscerini”, Stiner, 1990-91; “Buca della Iena”, contain several carbonatic concretion levels often Pitti and Tozzi, 1971; Stiner, 1990-91; “Grotta incorporating fossil remains. Remains of the same Guattari”, Piperno and Giacobini, 1990-1991; Stiner, large mammals collected during the 1998 excava- 1990-91; “Tana delle iene”, Giaccio and Coppola, tions have been found together with small mam- 2000) and are actually a novelty for insular envi- mals (Microtus (Terricola) ex gr. savii, Crocidura cf. ronments. sicula, Myotis sp.), birds, reptiles and hyena copro- Geochemical and radiometric data are not avail- lites. The taphonomic features are very similar to able for the deposits of the S. Teodoro Cave; the dis- those detected in the 1998 trench and confirm the persal to Sicily of the ground vole, which has a fos- extension of the deposit as far as 32 m from the sorial habit, and of horses, that prefer open land- entrance of the cave, as well as the intense and scapes, might imply that a fully exposed connection extensive frequentation by hyenas (Mangano and (a temporary land bridge related to an eustatic sea- Bonfiglio, 2003).

72 Geo.Alp, Vol. 2, 2005 2002 trench 1998 trench 2003 excavations 2002 excavations 1998 excavations Coprolites 1064 291 4271 Bones 543 132 2228 Unidentifiable bones 437 94 1686 Identifiable bones 106 38 542 Cervus elaphus siciliae 75 24 392 Bos primigenius siciliae 6 1 21 Equus hydruntinus 5 5 41 Elephas mnaidriensis 11 1 26 Crocuta crocuta spelaea 9 3 38 Sus scrofa 2 14 Vulpes vulpes 1 7 Canis lupus 1 3

Tab. 1: Number of recovered remains during the three excavation surveys at S. Teodoro Cave.

Excavations of 2003 (G. Mangano) Cervus elaphus siciliae Pohlig, 1893. The endemic red deer of Sicily is the most aundant species: 8 During the 2003 excavation the “2002 trench” shed antlers, 13 antlers, 2 skull fragments, 3 hemi- has been deepened for 1 m and enlarged by adding mandibles, 18 teeth, 3 scapulae, 8 anterior limb two new squares on the southern side (coordinates bones, 9 metapodials, 5 podials and 6 phalanges 33/E-F) (Fig. 1). have been recovered. Morphological and biometri- Stratigraphic data cal features ascribe them to Cervus elaphus siciliae Besides unit B containing the fossil remains, in (Gliozzi et al., 1994). Particularly, two almost com- the southern area of the trench (squares 32B/C/D, plete right shed antlers, different in size, have been and part of the squares 31B and 31C) a new unit of recovered arranged side by side. They were totally clayey sands and gravels lacking fossil remains has covered by carbonatic concretions. The largest one been detected. In this unit numerous white-yellow- is 1.20 m long and actually is the largest antler frag- ish pisolith-like elements with phosphatic composi- ment belonging to this species so far recovered (Fig. tion, diameters between 1 and 5 cm and lacking 2, a). Teeth grooves which cannot be ascribed cer- crystalline structure, are scattered. A subvertical, tainly to hyenas are present on the surface of these quite irregular surface separates the fossiliferous antlers. unit B from the sterile deposit and suggests that an Elephas mnaidriensis A.L. Adams, 1870. The ele- erosional phase cut the sterile deposit unit before phant is represented by a small fragment of a deposition of unit B. Age and precise environmental mandible, 3 teeth, 2 vertebrae, 1 rib, 1 pelvis, 1 significance of this new sedimentary unit are to be anterior limb bone, 1 posterior limb bone and 1 clarified by deepening the trench. metapodial. Teeth include one large fragment of Faunistic data incisor and two very worn molar fragments belong- A total number of 543 large mammal bones and ing to an adult specimen. A complete and not dam- 1064 coprolites have been recovered (Tab.1). Almost aged right tibia, absolutely lacking typical damages all the skeletal remains are strongly fragmented, not produced by hyenas, is also preserved (Fig. 2, b). articulated and horizontally and vertically scattered Morphological features and biometrical data allow without preferential orientation. A very large num- to identify these specimens as Elephas mnaidriensis ber of them (437) is represented by unidentifiable (Ambrosetti, 1968; Bonfiglio and Berdar, 1979). bone splinters. The composition of the skeletal part Bos primigenius siciliae Pohlig, 1911. The endem- is characterized by the abundance of isolated teeth ic wild ox of Sicily is represented by 2 hemi- and antlers (Tab. 2). mandibles, 1 femur shaft, 1 tibia, 1 metatarsal bone

Geo.Alp, Vol. 2, 2005 73 Bos Crocuta Cervus elaphusprimigenius Equus Elephas crocuta siciliae siciliae hydruntinus mnaidriensis spelaea shed antlers 8 antlers 13 skull 2 1 mandible 3 2 1 1 4 teeth 18 4 3 3 axis 3 girdles 3 1 anterior limb 8 1 posterior limb 2 1 metapodials 9 1 1 1 podials 5 1 phalanges 6

Tab. 2: Skeletal element distribution of large mammals recovered in the excavations of 2003 at S. Teodoro Cave. and 1 scaphoid bone. M/1, M/2 and M/3 are pre- served on mandibular fragments. M/3 has a slightly scooping out of cancellous bone (Sutcliffe, 1970; inclined hypoconulid. The femur shaft belongs to a Brain, 1981; Bunn, 1983). Nevertheless, some com- juvenile specimen. The proximal end of the left tibia plete and undamaged bones of elephant (tibia) and was totally removed by crunching of the hyenas deer (antlers) have also been recovered and actual- (Fig. 2, c). The dimensions of remains are within the ly represent a taphonomic novelty. range of the variation of Bos primigenius siciliae (Brugal, 1987). Equus hydruntinus Regàlia, 1904. The small equid Conclusion is represented by 1 right mandible fragment includ- ing the tooth row from M/2 to P/2 (Fig. 2, d), 2 Fossil remains collected during the 2003 excava- upper molars and 2 deciduous premolars. The upper tions at the S. Teodoro Cave belong to the same molars have a short protocone and a well marked pli taxa previously recovered. caballin. In the lower cheek teeth the pli caballin is Most of the remains are fragmentary and less evident. unequivocally damaged by hyenas, but some com- Crocuta crocuta spelaea (Goldfuss, 1832). The plete and undamaged bones are also present. spotted hyena is the only carnivore recovered dur- The cave is confirmed as a very large hyena den ing the 2003 excavations. One small maxillar bone and the spotted hyena is assumed to be the main fragment, 4 heminandibles, 3 isolated teeth collecting agent of the skeletal elements of unit B, (canines) and 1 metapodial small fragment are pre- although some new recognized features could indi- sent. Two right hemimandibles include the tooth cate the existence of a different accumulation row from M/1 to C (Fig. 2, e). Lower premolars are process of the faunal remains. sturdy and oval in section. A new sterile sedimentary unit has been discov- The preliminary study of mammal remains indi- ered, but its age and environmental significance are cates the predominance of the non-endemic species to be clarified. Microtus (Terricola) ex gr. savii. The recovered taxa belong to the “S. Teodoro Cave-Pianetti” faunal complex, late Pleistocene in Acknowledgments age, just recognized for the first time at the S. Teodoro Cave (Bonfiglio et al., 2001). Work supported by grants CoFin MURST 2003 Almost all large mammal bones are fragmentary “Faunal turnover in Sicily during the two last Glacial and show typical damages produced by the activity cycles” . The excavations have been supported by of hyenas, such as strong fragmentation, ragged University of Messina (2003, extraordinary con- edges, tooth grooves, tooth pits, digestion traces, tribute to L. Bonfiglio) and by Acquedolci

74 Geo.Alp, Vol. 2, 2005 Fig. 2: a) Cervus elaphus siciliae, right antler, external view; b) Elephas mnaidriensis, right tibia, posterior view; c) Bos primigenius siciliae, left tibia, posterior view; d) Equus hydruntinus, right mandible, occlusal view; e) Crocuta crocuta spelaea, right mandible, external view. Scale bar = 10 cm (a, b, c); 5 cm (d, e).

Geo.Alp, Vol. 2, 2005 75 Commune. Thanks are due to Dr. G.F. Villari, endemic deer of the Siculo-Maltese district. – Superintendent to Archaeological and Cultural Geologica Romana, vol. 29: 307-353. Heritage of Messina and to Dr. U. Spigo, responsible Graziosi, P. (1943): Gli scavi dell’Istituto Italiano di of the Archaeological Service. A particular acknowl- Paleontologia Umana nella grotta di S. Teodoro edgment to Prof. A. Kotsakis for the critical reading (Messina): nota preliminare. - Atti Società Toscana of the text and for the revision of English version, Scienze Naturali, Memorie, vol. 52: 82-99. and to Prof. K. Krainer for the helpful suggestions in Graziosi, P. (1947): Gli uomini paleolitici della grotta di S. the revision of the final text. Teodoro (Messina). - Rivista di Scienze Preistoriche, vol. 2 (2-3): 123-224. Graziosi, P., Maviglia, C. (1946): La grotta di S. Teodoro References (Messina). - Rivista di Scienze Preistoriche, vol. 1 (4): 227-283. Ambrosetti, P. (1968): The Pleistocene dwarf elephants of Mangano, G., Bonfiglio, L. (2003): Campagna di scavo Spinagallo (Siracusa, south eastern Sicily). – Geologica 2002 nei depositi pleistocenici della Grotta di Romana, vol. 7: 277-398. S. Teodoro (Acquedolci, Messina – Sicilia nord-orien- Anca, F. (1860): Note sur deux nouvelles grottes ossifères tale). Giornate di Paleontologia 2003, Alessandria découvertes en Sicile en 1859. - Bulletin de la Société 22-25 maggio 2003, abstract book: 31. Géologique de France, vol. 17: 684-695. Maviglia, C. (1941): Scheletri umani del Paleolitico supe- Bonfiglio, L., Berdar, A. (1979): Gli elefanti delle ghiaie riore rinvenuti nella grotta di S.Teodoro. - Archivio per pleistoceniche di Messina. - Quaternaria, vol. 21: l’Antropologia e l’Etnologia, vol. 70: 94-104. 139-177. Piperno, M., Giacobini, G. (1990-1991): A taphonomic Bonfiglio, L., Mangano, G., Marra, A.C. (1999): Late study of the paleosurface of Guattari Cave (Monte Pleistocene hyaena den from a large cave deposits of Circeo, Latina, Italy). - Quaternaria Nova, vol. 1: Sicily (Italy). - INQUA XV International Congress, 143-161. Durban 3-11 August 1999, abstract book: 27-28. Pitti, C., Tozzi, C. (1971): La Grotta del Capriolo e la Buca Bonfiglio, L., Mangano, G., Marra, A.C., Masini, F. (2001): della Iena presso Mommio (Camaiore, Lucca). - Rivista A new Late Pleistocene vertebrate faunal complex di Scienze Preistoriche, vol. 26 (2): 213-258. from Sicily (S. Teodoro cave, north-eastern Sicily, Stiner, M. (1990-1991): The Guattari faunas then and Italy). - Bollettino Società Paleontologica Italiana, now. - Quaternaria Nova, vol. 1: 163-192. vol. 40 (2): 149-158. Sutcliff, A. J. (1970): Spotted hyena: crusher, gnawer, Bonfiglio, L., Mangano, G., Marra, A.C., Masini, F., Pavia, digestor and collector of bones. – Nature, vol. 227: M., Petruso, D. (2002): Pleistocene Calabrian and 1110-1113. Sicilian bioprovinces. – Geobios, M. S., vol. 24: 29-39. Tricomi, G. (1938): Cenni su un recente assaggio nella Brain, C. K. (1981): The hunters or the hunted? An intro- grotta di S. Teodoro in provincia di Messina. - duction to African cave taphonomy. - pp. 1-365, Bollettino Società Scienze Naturali ed Economiche, Chicago University Press, Chicago. vol. 20: 1-4. Brugal, J.P. (1987): Cas de „nanisme“ insulaire chez l’au- Vaufrey, R. (1928): Le Paléolithique Italien. - Archives de rochs. - In: 112th Congrès National des Sociétés l’Institute de Paléontologie Humaine, Mémoire, vol. 3: savants, Lyon, vol. 2: 53-66. 1-196. Bunn, H.T. (1983): Comparative analysis of modern Vaufrey, R. (1929): Les éléphants nains des iles mediter- bone assemblages from a San hunter-gatherer camp ranèennes et la question des isthmes pléistocènes. - in the Kalahari Desert, Botswana, and from a spot- Archives de l’Institute de Paléontologie Humaine, ted hyena den near Nairobi, Kenya. - and Mémoire, vol. 6: 1-220. Archaeology, BAR International Series, vol. 163: Yll, R., Carrion, J. S., Marra, A.C., Bonfiglio, L. (in press): 143-148. Pollen in Late Pleistocene hyena coprolites from San Giaccio, B., Coppola, D. (2000): Note preliminari sul con- Teodoro Cave (Sicily, Italy). - Palaeogeography, testo stratigrafico e paleoecologico del sito “Tana delle Palaeoclimatology, Palaeoecology, Special volume, iene” (Ceglie Messapica, Brindisi, SE Italia). - Il Elsevier. Quaternario, vol. 13 (1/2): 5-20. Ghiozzi, E., Malatesta, A., Scalone E. (1994): Revision of Manuscript submitted: December 14, 2004 Cervus elaphus siciliae Pohlig, 1893, Late Pleistocene Revised manuscript accepted: April 8, 2005

76 Geo.Alp, Vol. 2, 2005 Geo.Alp, Vol. 2, S. 77–90, 2005

LOWER PERMIAN PALAEOICHNOLOGY FROM THE OROBIC BASIN (NORTHERN ITALY)

Giuseppe Santi

With 4 figures and 2 plates

Dipartimento di Scienze della Terra, Via Ferrata 1, 27100 Pavia (Italia). e-mail: [email protected]

Abstract The Lower Permian palaeoichnofauna of the South-Alpine region comes from the Collio Formation only, and mainly crops out in the Orobic and Trompia basins. It consists of traces of vertebrates (amphibians and reptiles) and invertebrates (insects, arthropods, burrowing, probable myriapods, gastropods, freshwater jelly- fishes, conchostraceans and freshwater bivalves). It is poor in taxa and similar to the coeval ichnoassociation of Central Europe, N. America and Argentina. Inside the trophic pyramid relevant to the biodiversity of the lower unit of the Collio Fm., the top carnivore is absent. This role is partially occupied by reptiles (e.g. araeos- celids) having features similar to true lizards. Shifting from the sediments of the lower part of the Collio For- mation to the upper part, impoverishment of the ichnocoenosis composition is linked either to a climatic shift (from more humid towards drier), or to tectonic activity that prevented the persistence of biotope for- mation. The Upper Permian uplift marks a strong ichnofaunistic change with the introduction of Triassic components.

Introduction Brief stratigraphical framework

In the South-Alpine region the continental For a long time it has been known that the Lower Permian is characterized by vertebrate and Palaeozoic of the Alps is very poor in vertebrate invertebrate ichnofossils and by rare floral remains remains, with the only exception being the ich- (macroplants, spores and pollen). They come nites, which have recently become a great strati- almost exclusively from the Collio Fm. cropping graphical tool (Avanzini et al., 2001). Recent out in the Orobic and Trompia (= Collio) basins, detailed research on the Permian of Europe (main- with the exception of rare fossiliferous remains ly in France and Germany) has enlarged our from the Tregiovo Basin. The features, problems knowledge, particularly of the invertebrates, and and hypotheses relating to the composition, distri- of the stratigraphical-chronological role played by bution and behavioural features of the trackmak- them (Gand et al., 2001 with references therein). ers and the ichnocoenosis variation are also dif- The South-Alpine region is characterized by a ferent, moving from the lower “Collio” to the series of basins created from W to E, as inherited upper unit of the same formation, and from this Hercynian structures have produced structural to the Upper Permian when the faunistic change highs of a metamorphic or igneous nature is profound. These aspects are very clear from (Cassinis & Perotti, 1994; Cassinis et al., 1999 with analysing the fossil beds of the Collio Fm. in the references therein; Perotti, 1999). The main basins Orobic Basin; this article will review the ichnofau- are the Orobic Basin and, to the east, the Trompia nistic assemblages from this basin and discuss Basin (Fig. 1), but other smaller basins are impor- their significance and the problems inherent to tant for their ichnofossil content (Tregiovo Basin, them. Tione Basin) (Conti et al., 1997).

77 Fig. 1: Schematic non-palinspastic section of the main Permian basin distribution of the South-Alpine region (Conti et al., 1997, mod.). 1 – Pre-Permian basement, 2 – Volcanic deposits, 3 – Clastic units of the first cycle of sedimentation (Basal Conglomerate, Collio Fm, Ponteranica Conglomerate), 4 – Verrucano Lombardo-Val Gardena Sandstone complex, 5 – Bellerophon Fm.

Permian sediments occur in two tectono-sedi- Gardena Sandstone complex (Fig. 2). With their mentary cycles separated by an uncertain age gap deposition the Palaeozoic ended. (between 14 and 25 My, according to the most recent data in Cassinis et al., 2002a). The first cycle, The question of the use of a two- or three-fold of ?Upper –Lower Permian age, is subdivision of the Permian System for dating of composed of a continental succession of volcanic continental successions has been debated for a deposits (from intermediate to acid chemistry) and long time. A detailed discussion relating to dating by alluvial-to-lacustrine sediments that comprise of the Permian continental beds in the South- the Basal Conglomerate, the Collio Fm, the Alpine region was recently carried out by Cassinis Tregiovo Fm, the Ponteranica Conglomerate, the (2003), Cassinis and Ronchi (2001) and Cassinis et Dosso dei Galli Conglomerate and the Auccia al. (2002b). The traditionally adopted Permian sub- Volcanics. The second cycle is assigned to the division for research in the South-Alpine area is Upper Permian and is composed of the reddish “Lower Permian” (from about the Asselian to clastic deposits of the Verrucano Lombardo-Val Kungurian) and “Upper Permian” (from the

78 Geo.Alp, Vol. 2, 2005 Fig. 2: 1 - Chronostratigraphical sketch of the Permian of the Orobic Basin. 2 - Chronostratigraphical sketch of the Permian of the Trompia Basin.

Ufimian to Tatarian, according to the Cis- er referred to the Upper Permian) is evident can Uralian/Russian Standard Scale), and this last rarely the use of the marine stages be justified. For these includes the Middle Permian, corresponding reasons, and in agreement with Cassinis (2003), in approximately to the Guadalupian Series this study the continental Permian “Lower” and (Menning, 2001; Cassinis, 2003, Fig. 1). It is based “Upper” subdivisions are used. on the palaeontological data from macroplants, Therefore, it is Lucas’s opinion (pers. comm.) palynomorphs, tetrapod footprints, and the radio- that in this study the term “Upper Permian” should metric and palaeomagnetic investigations. include the “Middle Permian” (Ufimian and Therefore, the stratigraphical resolution is rather Kazanian), and only the Tatarian should really be poor compared with the marine equivalents; so the “Upper Permian”. As such, it may be better to uti- absence of detailed data and of the wider correla- lize the marine timescale terms (Roadian, Wordian, tions for the continental beds prevents the use of Capitanian, Wuchiapingian, etc.) and not the old the three-fold subdivision of the Permian System Russian terms. The utilized chronostratigraphy into “Lower”, “Middle” and “Upper”. Only in those (Cisuralian and Russian stages) for the Early places where the lateral transition between the Permian represents the international subdivision of continental and marine deposits (i.e. in the the Permian System, but in the dating of the con- Dolomite region between the Val Gardena tinental beds, to leave out the post-Kungurian Sandstone and the Bellerophon Formation, togeth- Russian terms that, in Lucas’s opinion (pers.

Geo.Alp, Vol. 2, 2005 79 Fig. 3: Permian stratigraphy (SCPS = Sub-Commission of Permian stratigraphy) (Vachard & Argyriadis, 2002. mod.)

comm.), are only the regional stages for the marine cracks, raindrop imprints, ripple marks and fossil timescale, is more difficult for the reasons plant remains, as well as vertebrate and inverte- advanced above. Fig. 3 shows the different scales brate ichnites. of the Permian stratigraphy. This formation is interfingered with the Ponteranica Conglomerate (Casati & Gnaccolini, In the classic succession of the Trompia Valley 1965, 1967). Utilising the fossils collected in the (Collio Basin) the COLLIO FORMATION was deposited on Trompia Basin, the Collio Fm. is referred to the volcaniclastic rocks (ignimbrites) which do not Lower Permian based on chronological data pro- crop out with continuity within the Orobic Basin, vided by macroflora (Geinitz, 1869; Jongmans, but are abundant in other areas (e.g. in the 1960; Remy & Remy, 1978; Kozur, 1981; Visscher et Acquaduro Valley –Introbio- and in the Cedrino al., 1999), pollen (Clement-Westerholf et al., 1974; Pass) (Sciunnach, 2001) and in the mainly “berga- Cassinis & Doubinger, 1991, 1992) and tetrapod mask” sector of the same basin (Jadoul et al., footprints (Ceoloni et al., 1987; Conti et al., 1991, 2000). Other subdivisions of lithofacies have been 1997), and also for its position below the angular proposed on a petrographical basis by Cassinis et unconformity ascribed to the main post-Saalian al. (1988), Cadel et al. (1996), Forcella et al. (2001) phase (Palatine) of the Hercynian orogenesis. and Sciunnach (2001). The Collio Fm. can be infor- mally subdivided into two units: the lower one is composed of grey-green and black sandstones and Vertebrate and invertebrate ichnocoenoses of the siltstones, while the upper unit is defined by main- Orobic Basin ly reddish sandstones and pelites of volcanic ele- ments with quartz, plagioclase and muscovite. It is In Italy, early knowledge of vertebrate foot- well stratified and locally contains some conglom- prints from the Collio Fm. in the Trompia Valley eratic beds. The typical arenaceous zones frequent- was advanced by Geinitz (1869) and Curioni ly contain fragments of black clay (clay chips) and (1870). Later, these fossils were studied by Gümbel display planar lamination, while in the pelitic (1880); the same ichnofauna from the Orobic Basin intervals there are different structures such as mud was analysed by Dozy (1935) and later re-exam-

80 Geo.Alp, Vol. 2, 2005 ined by Haubold (1971). The studies of Berruti enter in the so-called “red-bed ichnofacies” (1968), Haubold (1996, 2000), Haubold & Stapf (defined as a variety of fluvial, deltaic, lacustrine (1998), Casati & Gnaccolini (1967), Ceoloni et al. and marginal marine environments; Haubold & (1987), Conti et al. (1991, 1997, 1999), Nicosia et Lucas, 1999), typically different from the al. (2000) and Santi & Krieger (2001) have “Chelichnus ichnofacies” related to the desert advanced our knowledge of the vertebrate ichno- environment and aeolian facies (Lockley et al., fauna of the Lower Permian. Footprints from both 1994; Lockley & Meyer, 2000; Lucas, 2002). the Orobic Basin and the Trompia Valley are of A great affinity between the ichnocoenoses of amphibians and reptiles, and they come from dif- the two basins is evident, with the only exception ferent parts of the volcano-sedimentary deposits being Ichniotherium cottae and Dromopus didac - of the Collio Formation (Conti et al., 1991; Santi, tylus presenting together inside the Collio Basin, 2003) relating to main vegetated areas, to other but lacking in the Orobic Basin. This last ich- alluvial zones, to more emergent humid areas, and nospecies is present not only in the highest strata others with shallow water. of the Collio Fm. in the Trompia Valley, but it is also Together with small- to medium-sized verte- a monotypic taxon of the Tregiovo Basin (Conti et brates, lived insects and arthropods (Bifurculapes al., 1997; Nicosia et al., 2000). At present I. cottae Hitchcock, 1858, Dendroidichnites elegans should be a local taxon of the Trompia Basin. Demathieu, Gand & Toutin-Morin, 1992, cfr. Besides, there is the problem linked to the validity Heteropodichnus variabilis Walter, 1983, of the ichnogenus Camunipes, namely if it effec- Eisenachichnus sp. (= Secundumichnus), Tambia tively should be a true ichnogenus, or should be spiralis Müller, 1956, Permichnium Guthörl, 1934, considered a synonym of Erpetopus. A discussion burrowing invertebrates (?Scoyenia White, 1929), of this taxonomic problem is advanced by Haubold gastropods (Paleobullia sp. vel. ?Cochlea sp.), prob- & Lucas (2001, 2003) and Santi (2004). On the ably myriapods and some unidentified trails, whole, the Lower Permian ichnocoenosis actually bivalves (Anthracosiidae), small crustaceans consists of mostly reptiles and one amphibian (“Estheria”) and freshwater jellyfish (Medusina (Batrachichnus); among the former we have a rel- limnica Müller, 1978 and Medusina atava (Pohlig, evant “large” herbivore component, while the oth- 1892, Walcott, 1898) (Ronchi & Santi, 2003) (Pl. 1). ers are of smaller size. Up to now, from these former data the compo- sition of the invertebrate ichnocoenosis shows: (a) The time interval into which the tetrapod ich- imprints are typically of freshwater animals, (b) a nofauna is limited is between 286/283 Ma at the dominance of surface traces and not infaunal bur- base and 278/273 Ma at the top (Avanzini et al., rows, (c) low biodiversity, (d) a lack of monospeci- 2001). In agreement with the Permian subdivision fity, and (e) the ichnodiversity and the taxonomic effected by Menning (2001), this ichnoassociation composition suggest a terrestrial-freshwater ori- may belong to the Artinskian and Kungurian, but gin. other scales (i.e. Harland et al., 1990; Odin, 1994; Gradstein & Ogg, 1996) consider these values to be The tetrapod ichnofauna of the Collio Basin Sakmarian and upper Asselian. The South-Alpine consists of: Batrachichnus sp., Camunipes cassinisi ichnoassociation has a similarity to that of North Ceoloni et al., 1987, Amphisauropus imminutus America, with strong Wolfcampian affinities show- Haubold, 1970, Amphisauropus latus Haubold, ing a great interaction between W-Central Europe 1970, Varanopus curvidactylus Moodie, 1929, and this continent. Dromopus lacertoides (Geinitz, 1861), Dromopus It is a mostly homogeneous association, but didactylus Moodie, 1930 and Ichniotherium cottae also very poor in taxa, and even more reduced in (Pohlig, 1885). That of the Orobic Basin is com- the highest strata of the Collio Fm. In the Orobic posed of: “Batrachichnus” salamandroides (Geinitz, Basin, the passage between the lower unit of this 1861), Camunipes cassinisi Ceoloni et al., 1987, formation and the upper is marked among the Amphisauropus imminutus Haubold, 1970, tetrapod palaeoichnofauna by the absence of Amphisauropus latus Haubold, 1970, Varanopus Batrach ichnus, Camunipes (Erpetopus) and A. curvidactylus Moodie, 1929 and Dromopus lacer- imminutus, and by the presence of only A. latus, D. toides (Geinitz, 1861) (Pl. 2). The ichnocoenoses re- lacertoides and V. curvidactylus, and among the

Geo.Alp, Vol. 2, 2005 81 invertebrates, Dendroidichnites and Medusina Paucity in taxa could depend on internal prop- atava are present. In agreement with the “Global erties and external conditions: Permian series of the marine Permian System”, the a) linked to niche dimensions for vertebrates and above-mentioned ichnoassociation is considered invertebrates. In fact, the species with the nar- coeval with the “Lower Permian Cisuralian” rowest niches have high probabilities of specia- (Cassinis et al., 2002). tion either because species are unstable and have patchy populations, or because there are On the whole, factors producing the taxonomic potential new niches to invade through evolu- compression of the Lower Permian palaeoichnofau- tionary divergences. The “Collio” area was na are different (Lucas, 1998), but regionally, the undoubtedly large and less ecologically diversi- “deposition time compression” hypothesis (Nicosia fied, and this should favour rather et al., 2000) can be advanced on the basis of radio- than speciation. metric data presented by Schaltegger & Brack b) Species with small and patchy populations tend (1999) in the volcanic beds at the base and at the to isolate frequently; consequently this pattern top of the Collio Fm. s.s. (= sedimentary “Collio”) in of species has a greater probability of extinction the Trompia Valley. According to these authors, (Stanley, 2001). The orogenic forces and climat- about 700 m of sediments were laid down in 4–5 ic changes probably operated above a very brit- My: a very high rate linked to strong tectonic activ- tle biodiversity with low numbers, and deter- ity. In my opinion this would prevent the establish- mined their extinction. Only the ability of some ment of useful biotopes for the survival of animals. taxa to disperse and to colonize different A clear example is shown near to the Pizzo del biotopes might have allowed them to survive Diavolo (Brembana Valley) neighbouring the (Amphisauropus, Dromopus, Varanopus), but Bocchetta di Poddavista (“Podavit”) where the lower probably the attempt did not occur completely unit of the Collio Fm. (600 m up) is well exposed. In within an unstable framework (coeval orogene- its lower portion abundant “signatures” of the tec- sis + climatic changes). tonic activity are well evident. Repeated pyroclastic fall intercalations and the soft sediment deforma- In the palaeo-European domain, documented tions (seismites), sedimentary dykes, “ball & pillow” examples of terrestrial environments with fossilif- and slumping structures, were probably triggered by erous assemblages have been described (e.g. synsedimentary tectonics and frequent volcano- Debriette & Gand, 1990; Schneider, 1994; Gand et seismic activity. Only in the homogeneous silty- al., 1997 a, b, c; Eberth et al., 2000). It is notewor- muddy part (last ten of metres) did the tectonic thy that in many European Lower Permian basins, “peace” allow the development of more firm which can represent excellent analogues to those biotopes. Only in this position were the taxa of the of the central Southern Alps, the facies distribu- “orobic” ichnoassociation identified. tions and environmental settings record, from base Furthermore, the orogenic activity is not the to top, an evolution from grey-black alluvial-to- cause, but one cause of the taxonomic paucity, lacustrine deposits to reddish flood-plain and together with climatic change (Santi, 2004). playa sediments. Over a large part of Western Partially in agree with the opinion of Lucas Europe, Early Permian times were characterised by (pers. comm.) that the global paucity in Permian a climatic shift from warm, with alternating wet ichnotaxa reflects the conservative nature of the and dry seasons, to semi-arid, up to the very warm footprint structure (Santi, 2004), the ichnoassocia- and hot conditions of the Late Permian (Ori, 1988; tion of the South-Alpine region is very similar to Dickins, 1993; Parrish, 1993; Golonka & Ford, the other European and extra-European countries 2000). Thus, during the mid to late Early Permian (see later): then a priori it is not possible to exclude (Artinskian–Kungurian?), a regional and geologi- the hypothesis that it could accurately reflect the cally rapid decrease in the rate of precipitation and original vertebrate biodiversity. Overall, local geo- the onset of oxidising climatic conditions were logical events could have played a crucial role for suggested by both lithofacies and biofacies the original biodiversity composition in this sector changes. In the Orobic Basin (at least in its western of Palaeoeurope (“deposition time compression” sectors), the dominant alluvial-to-lacustrine dark- hypothesis). coloured facies pass quite abruptly, towards the

82 Geo.Alp, Vol. 2, 2005 stratigraphic top of the succession, to reddish fine significant indicator of the original vertebrate and sediments. The former dark deposits suggest that a invertebrate biodiversity. This would not explain higher groundwater level produced reducing con- why the trophic pyramid should effectively be that ditions, while the red fines indicate muddy playa here carried out, but until now the ichnocoenosis conditions with high evaporation rates and an oxic composition and the frequency with which some environment. A similar environmental–climatic footprints are discovered (i.e. Batrachichnus is very transition could also be envisaged in the western rare compared with the reptiles, and among these Val Trompia Basin, where the Collio Fm. fluvial and Amphisauropus latus and Dromopus lacertoides are lacustrine scenario evolves from the proximal to clearly much frequent in comparison with distal alluvial-fan facies (Dosso dei Galli Varanopus) allows us to propose the hypotheses Conglomerate) and up-section to the lateral and advanced here. This is rather different to Lucas’s bioturbated, purple-red, fine sandstones and silt- opinion (pers. comm.) referring to the Moenkopi stones (Pietra Simona Mb.). The consequences ichnoassociation from the Triassic of the USA: were, at the beginning of the Upper Permian, a “…The tracks are almost all of archosaurs (chi- clear change in fauna with more modern features rotheres), but the bones from the same formation (Conti et al., 1999); its origin is contained in the are almost all of amphibians…”. regional temporal gap which divides the first cycle Not withstanding the paucity of taxa of the from the second. tetrapod ichnofauna, the ichnocoenoses have not been utilised to examine the behavioural features of the trackmakers. A similar gap is also underlined by Behavioural features of Kramer et al. (1995) referring to the ichnites from the Early Permian tetrapods the Coconino Sandstone (North America): “…behav- ioural aspects of extinct animals cannot be tested “ It seems opportune to talk about the problem of (Brand, 1978 p. 81) (Kramer et al., 1995 p. 245). the behavioural features of the trackmakers. The Furthermore, behavioural evidence from trackmak- rarity of fossil remains of vertebrates in the conti- ers can be discussed when studying “terminated nental deposits of the Permian of Central and South trackways” sensu Kramer et al. (1995), or those that Europe makes a discussion about their behavioural suddenly change direction. From the “orobic” Lower features rather difficult, but the ichnoassociation Permian beds come some data on the reptilian diet. can be considered as a good starting point for this Among the components of the ichnocoenosis, the goal. The Lower Permian ichnoassociation of the Dromopus trackmaker is commonly ascribed to the South-Alpine zone reflects the vertebrate associa- araeoscelid, considered a consumer of small inverte- tion living in this area of Palaeoeurope at the time, brates with exoskeletons. Figure 4A suggests the like those of France, Germany and also North following event sequence, pointing to a lack of America and Argentina, with only rare exceptions of superimposition of walking-trail and footprints. A elements considered as “local form” (i.e. trackmaker arthropod (Dendroidichnites elegans) Ichniotherium for the South-Alpine region) (Conti is moving on a firm silty bed (point A). On its left et al., 1999). Within the ichnoassociation of the side a probable adult araeoscelid reptile, trackmak- South-Alpine region (Orobic and Trompia Basins), er of Dromopus, is approaching. At point B the until now typical prints attributed to a top carni- arthropod abruptly deviates towards its right side, vore are absent; either the trackmaker belonged to probably trying an evasive manoeuvre; by this a population effectively reduced in number com- point the trail impression is not very clear, proba- pared with the herbivores, or it was totally absent. bly because the trackmaker was alarmed and Maybe during the Lower Permian of southern progress was disordered. The final trackway-tract Europe, its specific role was partially occupied by was not preserved by the sediments, but we realise other vertebrates. The low number of taxa (common that the araeoscelid preyed upon the arthropod also in the Lower Permian ichnoassociations from without pursuing it. Figure 4B shows a clear “ter- other countries) suggests that the ichnodiversity minated trackway” sensu Kramer et al. (1995) of an could be, if not real, then the almost complete com- arthropod (Heteropodichnus trackmaker) pursued position of the vertebrate biodiversity. Then the by a Dromopus one; traces of its trail abruptly dis- prints can be, if not an exact mirror, then at least a appear.

Geo.Alp, Vol. 2, 2005 83 Fig. 4: A - Interaction between the Dendroidichnites elegans Demathieu, Gand and Toutin-Morin, 1992 trail and Dromopus sp. foot- prints. Black arrows indicate the arthropod trail directions. B - “Terminated trackway” of cfr. Heteropodichnus variabilis Walter, 1983 with Dromopus sp

As witnessed by the prints upon the slabs in Fig. adapted to support a relatively great weight. The 4, it is possible that the predator role in the Lower frequency with which the A. latus footprints are Permian of the South-Alpine region was played found is highest, so it represented the dominant partially by these reptiles. Rare amphibians and animal of “Collio” lands. Similar in size or possibly mainly reptiles compose the tetrapod ichnocoeno- larger was the Ichniotherium trackmaker (an sis; it is an association with a paucity in taxa and edaphosaur pelycosaur), but as seen above, its comprises herbivores from small size presence is very rare, and thus its role inside the (Amphisauropus imminutus) to medium-large size trophic pyramid is much diminished. (Amphisauropus latus). At present, large footprints Secondary consumer. Carnivores: the ichnologi- referred to large vertebrates (i.e. such as the cal association seems to lack typical footprints Middle Permian pareiasaur Pachypes) have not attributed to this consumer. been found. A top carnivore seems lacking. Thus, in Mixed diet. Opportunistic consumers: on the the Lower Permian of the South-Alpine region the whole these are small reptiles, morphologically and trophic pyramid was probably like this: in their general structure similar to small lizards, Primary consumer. Medium-sized herbivore: also with autopodia features and with more or less cotylosaurs identified as the trackmaker sharp teeth (Camunipes trackmakers). Their diet Amphisauropus latus, a tetrapod of relatively large could be similar to that of true lizards of small dimensions (the true “giant” of the association in dimensions, swallowing and biting anything either comparison with the sizes of other trackmakers), living or dead. In this category should re-enter the with short and stumpy legs, probably strong and Dromopus trackmaker which, together with the

84 Geo.Alp, Vol. 2, 2005 Amphisauropus, is a common form, and less fre- 4) The trophic pyramid relevant to the Lower quently that of Varanopus. A novel feature of an Permian of the South-Alpine region does not araeoscelid trackmaker (Araeoscelis) is the lateral seem balanced because of the lack of a top temporal opening, which could have been closed in carnivore. This role might have been occupied relation to the skull extension as the consequence by reptiles, some araeoscelids having features of a more massive dentition (Carroll, 1988). Such similar to true lizards. araeoscelids could prey upon protein-bearing organisms and consume some strong parts such as their exoskeleton (arthropods), or small vertebrates Acknowledgements (amphibians?) also. Thus, it does not seem that the Lower Permian The author is deeply indebted to S.G. Lucas association of the South-Alpine area needs to be (Albuquerque, New Mexico) for his useful advice balanced. It is possible that the araeoscelids and and critical review of the text and S. Jones (Cardiff) the Dromopus trackmaker could have partially for revision to English. This study was carried out occupied the small predator role. with a grant from FAR.

Conclusions References

Low er Permian palaeoichnoassociations of the Avanzini, M., Ceoloni, P., Conti, M.A., Leonardi, G., Orobic Basin (the Collio Fm, the only fossiliferous Manni, R., Mariotti, N., Mietto, P., Muraro, C., Nicosia, unit), although poor in ichnotaxa, perfectly reflect U., Sacchi, E., Santi, G., Spezzamonte, M. (2001): the ichnofaunistic panorama of Central Europe, Permian and Triassic tetrapod ichnofaunal units of North America and Argentina. On the basis of Northern Italy, potential contribution to continental actual knowledge, different conclusions can be biochronology. – In: Cassinis G. (ed.): Permian conti- advanced. nental deposits of Europe and other areas. Regional reports and correlations. – Natura Bresciana, 1) The ichnocoenosis has a similarity to those Monografia n. 25, 89-107. from Central Europe, North America and Berruti, G. (1968): Osservazioni biostratigrafiche sulle South America (Argentina; Melchor & formazioni continentali pre-quaternarie delle Valli Sarjeant, 2004) (Lucas et al., 2004 and refer- Trompia e Sabbia. II. Sulla fauna fossile della ences therein). Formazione di Collio (alta Val Trompia). – Natura 2) An impoverishment of the ichnofaunistic com- Bresciana, Ann. Mus. Civ. St. Nat. Brescia, 6: 3-32. position, shifting from the lower unit to the Brand, L. R. (1978): Footprints in the Grand Canyon. – upper unit of the Collio Fm., is recognized and Origins, 5: 64-82. probably linked to the mutual action of tec- Cadel, G., Cosi, M., Pennacchioni, G., Spalla, M.J. (1996): A tonic activity and climatic change (from more new map of the Permo-Carboniferous cover and humid to drier). It is also probable that the variscan metamorphic basement in the Central Orobic originally low number of ichnotaxa might be Alps, Southern Alps-Italy: structural and stratigraphic due to both internal properties of the biodi- data. – Mem. Sci. Geol. Univ. Padova, 48: 1-53. versity and external conditions. Carroll, R.T. (1988): Vertebrate Paleontology and 3) The presence of Camunipes in the lower Evolution. – Freeman and Company, 698 pp. “Collio” may have created some problems, Casati, P., Gnaccolini, M. (1965): Una nuova formazione either evolutive or systematic, for its similarity paleozoica dell’alta Val Brembana: la Formazione di to Varanopus and mainly with Erpetopus Ponteranica. – Riv. It. Paleont. Strat., 70: 791-804. (Haubold & Lucas, 2003). If it should be con- Casati, P., Gnaccolini, M. (1967): Geologia delle Alpi sidered a separate ichnogenus, its presence in Orobie occidentali. – Riv. It. Paleont. Strat., 73: the South-Alpine region could be interpreted 25-162. as a local form (more frequent in the Orobic Cassinis, G. (2003): Towards a stratigraphic reference Basin, less so in Trompia Valley) as is table for the continental Permian of Italy. – Boll. Soc. Ichniotherium cottae. Geol. It., Vol. Spec. 2: 153-168.

Geo.Alp, Vol. 2, 2005 85 Cassinis, G., Doubinger, J. (1991) : On the geological palynology of Western Europe-A research project. – time of the typical Collio and Tregiovo continental Geologie en Mijnbouw, 53: 329-341. beds in the Southalpine Permian (Italy), and some Conti, M.A., Mariotti, N., Mietto, P., Nicosia, U. (1991): additional observations. – Atti Ticinensi di Scienze Nuove ricerche sugli icnofossili della Formazione di della Terra, Pavia, 34: 1-20. Collio in Val Trompia (Brescia). – Natura Bresciana. Cassinis, G., Doubinger, J. (1992) : Artinskian to Ufimian Ann. Mus. Civ. St. Nat. Brescia, 26 (1989): 109-119. palynomorph assemblages from the Central Southern Conti, M.A., Mariotti, N., Nicosia, U., Pittau, P. (1997): Alps, Italy and their regional stratigraphic implica- Selected bioevents succession in the continental tions. – In Nairn A.E.M. & Koroteev, V. (Chief Eds): Permian of the Southern Alps (Italy): improvements Contributions to Eurasian Geology, Int. Congr. Permian of intrabasinal and interregional correlations. – In: System of the World, Perm, Russia, 1991, Occasional Dickins J.M., Yang Zunyi, Yin Hongfu, Lucas S.G. & Pubblication ESRI New Series 8b, Columbia University Acharyya S.K. (eds): Late Palaeozoic and Early of South Carolina, Part I: 9-18. Circum-Pacific events and their global cor- Cassinis, G., Perotti, C.R. (1994). Iterazione strutturale relation. – Cambridge University Press, 51-65. permiana tra la Linea delle Giudicarie ed i Bacini di Conti, M.A., Mariotti, N., Manni, R., Nicosia, U. (1999): Collio, Tione e Tregiovo (Sudalpino centrale, N. Italia). Tetrapod footprints in the Southern Alps: an – Boll. Soc. Geol. It., 112 (1993): 1021-1036. overview. In: Cassinis G., Cortesogno L., Gaggero L., Cassinis, G., Ronchi, A. (2001) : Permian chronostratigra- Massari F., Neri C., Nicosia U., Pittau P. (coord.): phy of the Southern Alps (Italy) – an update. – Stratigraphy and facies of the Permian deposits Contribution to Geology and Palaeontology of between eastern Lombardy and the western Gondwana in honour of Helmut Wopfner, Cologne Dolomites. – Field trip guide-book Inter. Congr. on: 2001: 73-87. “The continental Permian of the Southern Alps and Cassinis, G., Massari, F., Neri, C., Venturini, C. (1988): The Sardinia (Italy). Regional reports and general correla- continental Permian in the Southern Alps (Italy). A tions”. Brescia 15-25 September 1999, 137-138. review. – Zt. Geol. Wiss., 16: 1117-1126. Curioni, G. (1870): Osservazioni geologiche sulla Val Cassinis, G., Nicosia, U., Pittau, P., Ronchi, A. (2002 a): Trompia. – R. Ist. Lomb. Sc. Lett. Arti – Mem. Ser. 3 Palaeontological and radiometric data from the (2): 1-60. Permian continental deposits of the Central-Eastern Debriette, P., Gand, G. (1990) : Conséquences strati- Southern Alps (Italy), and their stratigraphic implica- graphiques et paléoenvironmentales de nouvelles tions. Mém. de l’Association des Géologues du observations paléontologiques dans le Permien de la Permien, 2: 53-74. partie occidentale du Bassin de Lodève (Sud du Cassinis, G., Nicosia, U., Lozovsky, V.R., Gubin, Y.M. Massif central). – Géologie de la France, 1 : 19-32. (2002 b) : A view on the Permian continental Dickins, J. M. (1993): Climate of the Late to stratigraphy of the Southern Alps, Italy, and general Triassic. – Palaeog. Palaeocl. Palaeoec.,100: 89-94. correlation with the Permian of Russia. – Dozy, J.J. (1935): Einige Tierfärhten aus dem Unteren Permophiles, 40: 4-16. Perm der Bergamasker Alpen. – Paläont. Z., 17 (1/2): Cassinis, G., Cortesogno, L., Gaggero, L., Massari, F., Neri, 45-55. C., Nicosia, U., Pittau, P. (coord.) (1999): Stratigraphy Eberth, D. A., Berman, D. V., Sumida, S. S., Hopf, H. and facies of the Permian deposits between eastern (2000): Lower Permian terrestrial paleonvironments Lombardy and the western Dolomites. – Field trip and vertebrate paleoecology of the Tambach Basin guide-book Inter. Congr. on: “The continental (Thuringia, Central Germany): the upland holy Grail. Permian of the Southern Alps and Sardinia (Italy). – Palaios, 15: 293-313. Regional reports and general correlations”. Brescia Forcella, F., Sciunnach, D., Siletto, G. B. (2001): The Lower 15-25 September 1999, 19-20. Permian in the Orobic Anticlines (Lombardy, Southern Ceoloni, P., Conti, M.A., Mariotti, N., Mietto, P., Nicosia, Alps): criteria for field mapping towards a strati- U. (1987): Tetrapod footprints from Collio Formation graphic revision of the Collio Formation. In: Cassinis (Lombardy, Northern Italy). – Mem. Sci. Geol. Univ. G. (ed.): Permian continental deposits of Europe and Padova, 39: 213-233. other areas. – Regional reports and correlations - Clement-Westerholf, J.A., Van der Eem, J.G.L.A., Van Erve., Natura Bresciana, Monografia n. 25: 51-57. A.W, Klasen, J.J., Schuurman, W.M.L., Visscher, H. Gand, G., Garric, J., Schneider, J., Sciau, J., Walter, H. (1974): Aspects of Permian, Triassic and Early Jurassic (1997a): Biocoenoses à méduses du Permien Français

86 Geo.Alp, Vol. 2, 2005 (Bassin de Saint-Affrique, Massif Central). Geobios, tribution. – J. Vert. Paleont., 19, supplement to n. 3: 29 (4): 370-400. 49A-50A. Gand, G., Lapeyrie, J., Garric, J., Nel, A., Schneider, J., Haubold, H., Lucas, S.G. (2001): Die Tetrapodenfährten Walter, H. (1997b): Découverte d’Arthropodes et de der Choza Formation (Texas) und das Artinsk-Alter bivalves inédits dans le Permien continental der Redbed-Ichnofaunen des Unteren Perm. – (Lodévois, France). Compte Rendu de l’Acad. des Hallesches Jb. Geowiss., B 23: 79-108. Sciences de Paris, 325 : 891-898. Haubold, H., Lucas, S.G. (2003): Tetrapod footprints of Gand, G., Kerp, H., Parsons, C. A., Martinez-Garcia E. the Lower Permian Choza Formation at Castle Peak, (1997c): Palaeoenvironmental and stratigraphic Texas. – Paläont. Zt, 77 (2): 247-261. aspects of animal traces and plant remains in Haubold, H., Stapf, H. (1998): The Early Permian tetra- Spanish Permian red beds (Pena Sagra, Cantabrian pod track assemblage of Nierstein, Standen-bühl Mountains, Spain). Geobios, 30: 295-318. Beds, Rotliegend, Saar-Nahe Basin, SW Germany. – Gand, G., Galtier, J., Garric, J., Schneider, J., Körner, F., Hallesches Jb. Geowiss., B 20: 17-32. Nel, A., Béthoux, O., Demathieu, G., Broutin, J., Jadoul, F., Forcella, F., Bini, A., Ferliga, C. (coord.) (2000): Hoernes, S., Kleeberg, R., Lapeyrie, J. (2001): Carta geologica della Provincia di Bergamo. – A cura Excursion n. 3: The Graissessac Carboniferous and di: Servizio Territorio della Provincia di Bergamo, Lodève Permian Basins (Languedoc-France). Field Dipartimento di Scienze della Terra dell’Università di Trip Guidebook, Inter. Field Conf. on: “The strati- Milano-Centro di Studio per la geodinamica alpina e graphic and structural evolution of the Late del Quaternario del C.N.R.-. Carboniferous to Triassic continental and marine Jongmans, W. (1960): Die Karbonflora der Schweiz. mit successions in Tuscany (Italy). Regional reports and Einem Beitrag von Ritter, E: Die Karbon-Vorkommen general correlations”. Siena 30 April-7 May 2001, der Schweiz. – Btg. Geol. Karte Schweiz, N.F. 108: 1-95. 1-21. Kozur, H. (1981): Weitere Beiträge zur Paläontologie und Geinitz, H.B. (1869): Über Fossile Pflanzenreste aus der Stratigraphie des Perms. – Geol. Paläont. Mitt. Dyas von Val Trompia. N. Jb. Mineral. Geol. Paläont.: Innsbruck, 11(6): 243-257. 456-461. Kramer, J.M., Erickson, B.R., Lockley, M.G., Hunt, A.P., Golonka, J., Ford, D. (2000): Pangean (Late Braddy, S.J. (1995): Pelycosaur in the Carboniferous-Middle Jurassic) palaeoenvironments Permian: evidence from Laoporus trackways from the and lithofacies. Palaeog. Palaeocli. Palaeoec., 161: 1- Coconino Sandstone with description of a new 34. species of Permichnium. – In: Lucas S.G., Heckert A.B. Gradstein, F.M., Ogg, J. (1986): A Phanerozoic time scale. (eds.): Early Permian Footprints and Facies. New Episodes, insert 19: 3-4, Nottingham. Mexico Museum of Natural History and Science Gümbel von, C.W. (1880): Geognostiche Mitteilungen Bulletin N. 6, 246-249. aus den Alpen. VI. Ein geognosticher Streifzug durch Lockley, M.G., Meyer, C.A. (2000): tracks and die Bergamasker Alpen. Sitzberg. K. Ak. Wiss. other fossil footprints of Europe. 323 pp., Columbia München, Math.-Nat. Kl., 10 (2): 164-240. University Press, New York. Harland, W. B., Armstrong, R. I., Cox, A. V., Craig, L. E., Lockley, M.G., Hunt A.P., Meyer C.A. (1994): Vertebrate Smith, A. G., Smith, D. G. (1990): A geological time tracks and the ichnofacies concept: implications for scale. (1989). Cambridge University Press. palaeoecology and palichnostratigraphy. – In Haubold, H. (1971): Ichnia Amphibiorum et Reptiliorum Donovan S. K. (ed.): The Paleobiology of trace fossils, fossilium. In : Kuhn O. (ed.), Handbuch der 241-268, Wiley and Sons, New York. Palaeoherpetologie. G. Fisher-Verlag, 18, 1-124. Lucas, S.G. (1998): Permian tetrapod biochronology. – Stuttgart-Portland, USA. Permophiles, 32: 17-24. Haubold, H. (1996): Ichnotaxonomie und Klassification Lucas, S.G. (2002): Global Permian tetrapod footprint von Tetrapodenfährten aus dem Perm. Hallesches Jb. biostratigraphy and biochronology. – Permophiles, Geowiss., B 18: 23-88. 41: 30-34. Haubold, H. (2000): Tetrapodenfährten aus dem Perm- Lucas, S.G., Lerner, A.J., Hunt A.P. (2004): Permian tetra- Kenntnisstand und Progress 2000. Hallesches Jb. pod footprints from the Lucero uplift, Central New Geowiss., B 22: 1-16. Mexico, and Permian footprint biostratigraphy. – In: Haubold, H., Lucas, S.G. (1999): Early Permian tetrapod Lucas S.G., Ziegler K.E (eds.): Carboniferous-Permian tracks-Preservation, , and Euramerican dis- transition at Carrizo Arroyo, Central New Mexico.

Geo.Alp, Vol. 2, 2005 87 New Mexico Museum of Natural History & Science ent Camunipes from Erpetopus and Varanopus? – Bulletin, 25: 291-300. 32nd Int. Geol. Congr., 2004, Abstract vol., pt. 1, Abs. Melchor, R.N., Sarjeant, W.A.S. (2004): Small Amphibian 128-16: p. 579. and Reptile footprints from the Permian Carapacha Santi, G., Krieger, C. (2001): Lower Permian tetrapod Basin, Argentina. – Ichnos, 11 (1-2): 55-78. footprints from Brembana Valley – Orobic Basin- Menning, M. (2001): A Permian time-scale 2000 and (Lombardy, Northern Italy). – Revue de Paléobiologie, correlation of marine and continental sequences 20 (1): 45-68. using the IIlawarra Reversal (265 Ma). In: Cassinis G. Schaltegger, U., Brack, P. (1999): Radiometric age con- (ed.): Permian continental deposits of Europe and straints on the formation of the Collio Basin other areas. Regional reports and correlations. – (Brescian Prealps). – In: Cassinis G., Cortesogno L., Natura Bresciana, Monografia n. 25, 355-362. Gaggero L., Massari F., Neri C., Nicosia U., Pittau P. Nicosia, U., Ronchi, A., Santi, G. (2000): Permian tetra- (coord.): Stratigraphy and facies of the Permian pod footprints from W Orobic Basin (Northern Italy). deposits between eastern Lombardy and the western Biochronological and evolutionary remarks. – Dolomites. – Field trip guide-book Inter. Congr. on: Geobios, 33 (6): 753-768. “The continental Permian of the Southern Alps and Odin, G.S. (1994): Geological time scale (1994). – Sardinia (Italy). Regional reports and general correla- Compte Rendue de l’ Acad. de Sciences de Paris série tions”. Brescia 15-25 September 1999, 71. II, 318: 59-71. Sciunnach, D. (2001): The Lower Permian in the Orobic Ori, G.G. (1988): The nature of Permian rivers. – In: Anticline (Southern Alps, Lombardy): a review based Cassinis, G., (Ed.), Permian and Permian-Triassic on new stratigraphic and petrographic data. – Riv. It. boundary in the South-Alpine segment of the Paleont. Strat., 107 (1): 47-68. Western Tethys, and additional regional reports. – Schneider, J. (1994): Environments, biotas and taphono- Mem. Soc. Geol. It., 34 (1986): 155-160. my of the Lower Permian lacustrine Niederhäslich Parrish, J. T. (1993): Climate of the Supercontinent limestone, Döhlen Basin, Germany. – Trans. Royal Pangaea. – Journal of Geology, 101: 215-233. Soc. Edinburgh-Earth Sciences, 84: 453-464. Perotti, C.R. (1999): Permian tectonic in the Central Stanley, S.M. (2001): Controls on rates of evolution. – In: Southern Alps. – In: Cassinis G., Cortesogno L., Briggs D.E.G., Crowther P.R. (eds.), Palaeobiology II, Gaggero L., Massari F., Neri C., Nicosia U., Pittau P. 166-171, Blackwell Publishing, Oxford. (coord.): Stratigraphy and facies of the Permian Vachard, D., Argyriadis J. (2002): Quelques problèmes de deposits between eastern Lombardy and the western biostratigraphie dans le Permien mèsogéen, des Alpes Dolomites. Field trip guide-book Inter. Congr. on: Carnique à la Turquie. – Mém. de l’Association des “The continental Permian of the Southern Alps and Géologues du Permien, 2: 75-93. Sardinia (Italy). Regional reports and general correla- Visscher, H., Kerp, H., Clement-Westerholf, J.A., Looy, C.V. tions”. Brescia 15-25 September 1999, 19-20. (1999): Permian floras of the Southern Alps. – In: Remy, W., Remy, R. (1978): Die Flora des Perms im Cassinis G., Cortesogno L., Gaggero L., Massari F., Neri Trompia-Tal und die Grenze Saxon/Thuring in den C., Nicosia U., Pittau P. (coord.): Stratigraphy and Alpen. – Argumenta Palaeobotanica, 5: 57-90. facies of the Permian deposits between eastern Ronchi, A., Santi, G. (2003): Non marine biota from the Lombardy and the western Dolomites. Field trip guide- Lower Permian of the Central Southern Alps (Orobic book Inter. Congr. on: “The continental Permian of the and Collio Basins, N. Italy): a key for paleoenviron- Southern Alps and Sardinia (Italy). Regional reports ment. – Geobios, 36 (6): 749-760. and general correlations”. Brescia 15-25 September Santi, G. (2003): Early Permian tetrapod ichnology from 1999, 139-146. the Orobic Basin (Southern Alps-Northern Italy). Data, problems, hypotheses. – Boll. Soc. Geol. It., Vol. Spec. 2: 59-66. Santi, G. (2004): Tetrapod footprints in the Lower Manuscript submitted: November 26, 2004 Permian of Southalpine (Northern Italy): is it differ- Revised manuscript accepted: April 25, 2005

88 Geo.Alp, Vol. 2, 2005 Plate 1

Plate 1

A – Bifurculapes sp. Bocchetta di Poddavista, Orobic Basin. B – cfr. Heteropodichnus variabilis Walter, 1983. Mincucco Mt. Orobic Basin. C - Paleobullia Götzinger & Becker, 1932 vel. ?Cochlea Hitchcock, 1858. Brembana Valley, Orobic Basin. D - Secundumichnus sp. Brembana Valley, Orobic Basin. E – Undetermined traces. Brembana Valley, Orobic Basin. F – Medusina atava (Pohlig, 1982) Walcott, 1898. Inferno Valley, Orobic Basin. G – Anthracosiidae Trompia Valley Basin. H – Dendroidichnites elegans Demathieu, Gand & Toutin-Morin, 1992, Mincucco Mt. Orobic Basin. I, J – Medusina limnica Müller, 1978. Trompia Valley Basin .

Plate 2 (continued on next page)

A- Camunipes cassinisi Ceoloni et al., 1987, reverse print left couple manus-pes. Brembana Valley, Orobic Basin. B – Amphisauropus latus Haubold, 1971, reverse print right pes. Inferno Valley, Orobic Basin. C - Amphisauropus latus Haubold, 1971, reverse print left manus. Inferno Valley, Orobic Basin. D – Varanopus curvidactylus Moodie, 1929, reverse print left pes. Inferno Valley, Orobic Basin. E - Varanopus curvidactylus Moodie, 1929, reverse print left couple

Geo.Alp, Vol. 2, 2005 89 Plate 2

manus-pes. Inferno Valley, Orobic Basin. F – Dromopus lacertoides (Geinitz, 1861), trackway. Brembana Valley, Orobic Basin. G - Amphisauropus latus Haubold, 1971, set reverse print manus-pes. Inferno Valley, Orobic Basin. H - Camunipes cassinisi Ceoloni et al., 1987, set reverse print manus-pes. Scioc Valley, Orobic Basin. I - Amphi- sauropus latus Haubold, 1971, reverse print manus?-pes?. Inferno Valley, Orobic Basin. J - Varanopus curvidactylus Moodie, 1929, trackway. Inferno Valley, Orobic Basin.

90 Geo.Alp, Vol. 2, 2005 Geo.Alp, Vol. 2, S. 91–98, 2005

PRELIMINARY ANALYSIS OF THE FIRST LOWER MOLAR VARIABILITY IN LATE PLEISTOCENE AND LIVING POPULATIONS OF TERRICOLA SAVII (ARVICOLIDAE, RODENTIA)

Maria Teresa Curcio1, Longino Contoli2, Emanuele Di Canzio3, Tassos Kotsakis1

With 7 figures and 3 tables

1 Dipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1 - 00146 Roma, Italy 2 Via Arno 38 - 00198 Roma, Italy 3 Dipartimento di Scienze della Terra, Università di Roma “La Sapienza”, Piazzale Aldo Moro 1 - 00185 Roma, Italy e-mail: [email protected]; [email protected]; [email protected]; [email protected]

Abstract The main object of this research is the study of the variability degree of the first lower molar in Late Pleistocene and living populations of Terricola savii in Italy (whose conspecificity has been proved by genet- ic analyses) and its comparison with that of fossil populations (assigned to T. savii on a morphological basis) in order to find a way to attribute isolated fossil remains to specific systematic groups. On this basis, we attempted to establish, through different analyses and direct observations on the occlusal dental surface morphology, the relationships that exist between fossil and living populations, and to verify the existence of a temporal and/or geographic cline.

Introduction Studies on local populations of T. savii have been carried out by several authors: De Giuli (1983), Terricola savii (DE SELYS LONGCHAMPS, 1838) Corridi (1987), Rustioni et al. (1994), Abbassi & (Arvicolidae, Rodentia) is the most common living Brunet-Lecomte (1997), Masini & Abbazzi (1997), vole on the Italian peninsula (south of the Ronchitelli et al. (1998). A general analysis of fossil Apennines) and it is common in northern Italy too and living populations of Italian ground voles has (between the Alps and the Apennines). During the been already published by Brunet-Lecomte et al. Late Pleistocene T. savii colonized Sicily (Petruso, (1994a). The present study focuses on the compar- 2002). Voles classified as T. gr. T. savii are present in ison of living and fossil populations of T. savii only. Early Toringian mammal assemblages (San Giovanni Our target is to examine the relationships of recent di Duino, Venezia Giulia - Campani Quarry, Tuscany populations of central and southern areas of the – Case Picconetto, Abruzzi) (Bartolomei, 1976; Italian peninsula with the fossil ones of the same Marcolini, 2002; Marcolini et al., 2003) belonging area. A similar work was performed by Brunet- to the Fontana Ranuccio Faunal Unit (Gliozzi et al., Lecomte et al. (1994b) for Terricola gerbei (Gerbe, 1997). True Savi’s ground voles are reported since 1879) (= Terricola pyrenaica (de Sélys Longchamps, the beginning of Late Toringian (Bartolomei, 1980), 1847)) of northern Spain and south-western corresponding to the latest phase of the Middle France. Pleistocene. During the Late Pleistocene the geo- graphic range of T. savi expanded or reduced due to climatic changes. During the temperate-warm Materials and Methods oscillations, this species reached the Alpine region, whilst during the cool or cold periods, it was The studied samples are derived from 11 locali- restricted to the southern and central parts of the ties. Five out of this number are fossil populations, Italian peninsula (Kotsakis et al., 2003). while six belong to living samples. The latter are

91 from: Cervia (Ravenna, Emilia Romagna), Civitella del Tronto (Teramo, Abruzzi), Torraccia di San Gennaro (Rome, Latium), Casarano (Lecce, Apulia), Sila National Park (Calabria), Noto (Syracuse, Sicily). The five fossil populations were collected in Melpignano (Lecce, Apulia), Ingarano (Foggia, Apulia), Praia a Mare (Cosenza, Calabria), Ostuni (Foggia, Apulia) and Riparo Salvini (Latina, Latium) (fig. 1). As to the fossil localities, in the fossiliferous site of Melpignano a fauna testyfing warm climatic condi- tions has been recognized. In particular the macro- fauna collected in sediments of karst cavities allowed its attribution to MIS 5a-5c (Bologna et al., 1994). Petronio et al. (1996) assigned the assemblage from Ingarano to the middle part of MIS 3. Capasso Barbato & Gliozzi (2001) assigned the small mammal assemblage from Praia a Mare to the final phase of MIS 3. The Ostuni fossil assemblage is ascribed to MIS 2 by Angelone et al. (2004). The fauna from Riparo Fig. 1: Geographical location of the studied populations. Salvini has been ascribed to the latest Pleistocene (Tardiglacial - final phase of MIS 2) (Cassoli & Guadagnoli, 1987; Alessio et al., 1993) (fig. 2). The material studied in this research pertains to public and private collections. In particular the fos- sil material from Melpignano and Ingarano is stored in the Dipartimento di Scienze della Terra of the University of Rome „La Sapienza“, the fossils from Praia a Mare, Ostuni and Riparo Salvini are stored in the Laboratory of Palaeontology of the Diparti - mento di Scienze Geologiche of the University Roma Tre. The recent material belongs to the „Contoli Col lection“ and it is stored in the Dipartimento di Biologia Animale e dell’Uomo of the University of Rome „La Sapienza“. The decision to take dental measurements, par- ticulary on the first lower molars (M1) (fig. 3b; tabs. 2, 3) is necessary because the systematics of the Arvicolidae is based on the morphology of this tooth, and because teeth are often the only com- mon fossil elements available. Quantitative and qualitative analyses have been carried out on the studied material. The pictures of teeth were taken by using a digital camera Nikon Coolpix 995 con- nected to a stereoscopic microscope Nikon SMZ-U. The measurements were carried out with the graph- ic program CorelDraw 8. The statistic analyses were carried out with the program KyPlot ver.2.0 beta 15. Some illustrations have been produced with the aid Fig. 2: Chronostratigraphy of the late Middle Pleistocene and of a Leica L2 camera lucida and of a graphical Holocene. tablet.

92 Geo.Alp, Vol. 2, 2005 Fig. 3 : Morphology of M1 of the ground vole Terricola savii: a-b) morphometry of Terricola M1 using 23 measures; c) M1 showing the characteristic apomorphy of the group, the Pitymyan rhombus, the length of the tooth and the anterior loop (Brunet-Lecomte & Chaline, 1992).

Qualitative analyses were carried out in order to Moreover multivariate statistical analyses, recognize the dominant morphotype of each popu- Principal Component Analysis (PCA) and Canonical lation. In a second step 23 measurements were Discriminant Analysis (CDA), were performed on the taken on the occlusal surface and some indices were measurements indicated by Brunet-Lecomte (1990) calculated, following the methods described by and on the indices proposed by Meulen (1973); any- Meulen (1973), Brunet-Lecomte (1990) and way it has to be underlined that these last ones Marcolini (2002) (fig. 3a,c): A/L: (var6-var3) were calculated on measurements taken following /var6*100; W/L: (var2/var6); W2/L: (var21/var6); RP: the method of Brunet-Lecomte (1988). Several (var4-var3) /var6*100 (fig. 3a,c). comparisons, with the aid of the previously men- These ratios give the relationship between the tioned statistical methods were made in order to length, the width, the curvature degree of the tooth focus on the differences and/or the affinities and the development stage of the Anteroconid between the analyzed populations and the variabil- Complex (ACC) (Meulen, 1973), respectively. ity within a single population. Both in the Canonical

Geo.Alp, Vol. 2, 2005 93 Discriminant Analysis and in the Principal Anterior Loop (AL) and of the greater or smaller Component Analysis the populations were analyzed confluence of the triangles in the Anteroconid in a first moment all together. Subsequently, these Complex. same analyses (PCA and CDA) have been repeated MORPHOTYPE 1( morphotype savii s.s.) is character- dividing the populations in fossil and recent ones ized by a simple and wide anterior loop, with a wide and all populations have been compared pair by neck and widely confluent with the triangles T7 and pair. In all tests an outgroup was present. The out- T6. T5 and T4 are broadly confluent. The reentrant group population comes from the lower level of angles are quite marked and slightly more flattened Gran Dolina (Atapuerca, Burgos, Spain) and it is on the lingual side (fig. 4 a,b,c). composed by Terricola arvalidens (Cuenca - Bescos The anterior loop in MORPHOTYPE 2 is more com- et al., 1995). This material has been found in a karst plex than in morphotype 1. T7 and its reentrant filling sediment (approximately 18 meters thick) angle are much more evident while T6 and its reen- partly ascribed to Early Pleistocene and partly to trant angle are only outlined or even absent. T4 and Middle Pleistocene. This population is not temporal- T5 are not confluent and consequently the ly or geographically related to ours (both living and pitymyan rhombus is not clearly visible (fig. 4 d,e,f). fossil), nevertheless shows similar characteristics to The anterior loop of MORPHOTYPE 3 is as simple as in those of the studied populations and for this reason morphotype 1 although the triangles are rather has been included in the analyses. irregular in shape (fig. 4 g,h). The matrix used for PCA and CDA are available in the The analysis of the morphotypes shows a clear site http://host.uniroma3.it/laboratori/paleontologia. dominance of morphotypes 1 and 2 in all the exam- ined populations, both fossil and recent, while mor- photype 3 is present only marginally in the recent Results populations (tab.1). As to the variability of the M1’s within the ana- Th ree different morphotypes were identified, on lyzed populations, as it is shown by the qualitative the basis of the number of salient and re-entrant data, it is clear that M1 follows a mosaic model angles, of the complication and development of the composed by the Anteroconid Complex (ACC), which is more variable and characterizing most of the morphotypes and by a more conservative Talonid-Trigonid Complex (TTC). The observed vari- ability is both inter- and intra-populational. Moreover, it was possible to divide all the analyzed M1 into two different morphotypes of both the fossil populations and the living ones (the third morphotype is present as we have seen only in the living populations with low percentages) and, in both cases, the percentages of the morphotypes are similar. Nearly none of the performed PCA have brought statistically significant results. In the plots obtained by statistically significant analyses there seem to be no differences within the fossil populations or the recent ones. And there seem to be no differences between fossil and living popu- lations. As to the living populations, differences have been recognized between the populations of Noto (Siracusa, Sicily) and Cervia (Ravenna, Emilia Romagna), but this is a rather obvious result, being Fig. 4: Morphotypes of Terricola savii: a,b,c) morphotype 1 geographically the two farthest populations with- (morphotype savii s.s.); d,e,f) morphotype 2; g,h) morpho - in those considered. Moreover, the population of type 3. Noto, coming from the island of Sicily, introduces

94 Geo.Alp, Vol. 2, 2005 a) a) The fossil Apulian populations (Melpignano, Ingarano, Ostuni) and the living Apulian population (Casarano) differ in a sensitive way from the other analyzed populations (fig. 6), particularly from the Calabrian ones (Praia a Mare and Sila National Park). The Calabrian fossil (Praia a Mare) and living (Sila National Park) populations, on the other hand, seem to be different from the other elements pertaining to the same group (fig.7). The Apulian populations, both recent and fossil, show a large affinity, allow- ing to hypothesize the provenience of present-day demes phylogenetically connected with palaeo - demes of the same geographic area, from MIS 5a-5c up to the present (fig. 2). Moreover, it is evident that the population of Melpignano (MIS 5a-5c) is the farthest from the living populations, followed by that of Ingarano, confirming consequently the b) biochronologic attribution of these fossil popula- tions, obtained by means of the study of the entire faunal assemblages. The fossil populations of Ingarano (MIS 3) and Ostuni (MIS 2), and the living one from Cassarano have a similar position on the horizontal axis, but the living population is on a dis- tinct position on the vertical axis (fig. 6). b) There are some limits in the measurement method proposed by Brunet-Lecomte, since such measurements do not take in particular account the anterior loop, neglecting what has turned out to be the more variable morphologic feature in the qual- Fig. 5: On the diagram axis are plotted the scores of canonical itative analysis. variables resulting from the Discriminant Canonical Analysis. The morphologic/morphotypic variability of the The two selected variables are those with the higher eigenval- ues. The percentages reported along each axes are the ex- fossil populations fits that of the recent populations plained variances of the variable taken into consideration. a) (whose attribution to the same species is certain, Projection of the centroids of fossil populatios of T. savii; b) Projection of the centroids of living populatios of T. savii.

all those problems which are typical of insular populations (Petruso, 2002). From the quantitative analyses con- ducted with CDA, some differences are evident between the two groups (fossil and living populations); the affinity and homogeneity degree within the fossil populations (heterochronic) (fig. 5a) turns out to be smaller with respect to the living populations (homochronic) (fig. 5b). From CDA the following observations Fig. 6: Projection of the centroids of both fossil and living populations of can be made: T. savii.

Geo.Alp, Vol. 2, 2005 95 eighties for the systematic studies of the family Arvicolidae), can differentiate populations of differ- ent species and, in a more limited way, populations of the same species. The analysis of the fossil population from Praia a Mare and the living one from Sila National Park does not give any hint about the existence of Terricola brachycercus (LEHMANN, 1961), an endemic Calabrian species whose sympatric coexistence with Terricola savii has been proved by genetic studies (Galleni, 1995; Galleni et al., 1998 and references therein). This discrepancy can be probably explained by the absence of T. brachycercus from the analysed sample as T. brachycercus has a very restricted dis- tribution area and is sympatric with T. savii. Nevertheless, Nappi et al. (2003) recognised differ- ences between some Calabrian populations and T. savii. T. savii ground voles from Apulia, both fossil and living ones, are rather homogeneous and differ from other populations (fossil and living) of the species. Apulia probably acted as a refuge area during the cold oscillations of the Late Pleistocene. Moreover geomorphological landscape (and consequently environmental) differences between Apulia and the Tyrrhenian side of the Peninsula influenced the morphological divergence of the Apulian popula- tions. Pioneers of T. savii from this region re-colo- nized the Adriatic side of the Italian peninsula dur- ing the Holocene. Fig. 7: Comparison between Apulian and Calabrian populations The populations from the Tyrrhenian side of of T. savii. Italy, Praia a Mare (MIS 3), Riparo Salvini (Tardiglacial, latest MIS 2), Sila National Park and Torraccia are very similar and differences between thanks to genetic analyses), therefore confirming fossil and living populations are minimal. On the the correct attribution of the fossil populations to western (warmer) side of the Peninsula, T. savii the species T. savii. survived during the later part of the Late Pleistocene and was almost isolated from the Apulian populations. Conclusions Acknowledgments PCA is not conclusive as the obtained results are not statisticaly significant and it is impossible to We wish to thank Prof. B. Sala of the University distinguish any important difference between the of Ferrara and Dr. K. Krainer of Innsbruck University eleven studied populations. However, this datum for revision of the manuscript. confirms the attribution of all the material to the same species, because this kind of analysis clearly separates different species. References The differences obtained from the CDA demon- strate that the variables of the adopted measure- Abbassi, M., Brunet-Lecomte, P. (1997): Terricola fatio ments set (used in Europe since the end of the 1867 (Arvicolidae, Rodentia) de cinq séquences du

96 Geo.Alp, Vol. 2, 2005 Morphotype 1 Morphotype 2 Morphotype 3 Total N° of specimens Minimum Maximum Mean Standard deviation v6 number MELPIGNANO 18 2.29 2.92 2.57 0.18 INGARANO 12 2.51 2.77 2.66 0.08 MELPIGNANO 66.67 33.33 0 18 PRAIA A MARE 14 2.32 2.7 2.55 0.12 OSTUNI 19 2.5 2.79 2.65 0.18 INGARANO 66.67 33.33 0 12 R. SALVINI 16 2.43 3.06 2.6 0.27 PRAIA A MARE 71.43 28.57 0 14 CERVIA 39 2.28 2.85 2.59 0.12 CIVITELLA 29 2.21 2.87 2.55 0.15 OSTUNI 68.42 31.58 0 19 TORRACCIA 26 2.45 3.25 2.74 0.19 CASARANO 31 2.53 2.91 2.68 0.14 R. SALVINI 77.78 22.22 0 16 N.P.SILA 21 2.36 3.02 2.66 0.2 NOTO 37 2.38 2.8 2.54 0.1 CERVIA 79.49 20.51 0 39

CIVITELLA 72.41 24.14 3.45 29 Tab. 2: Length of M1 of T. savii.

TORRACCIA 61.54 30.77 7.69 26 N° of specimens Minimum Maximum Mean Standard deviation CASARANO 77.42 19.35 3.23 31 v21 MELPIGNANO 18 0.86 1.03 0.92 0.05 P.N.SILA 80.95 14.29 4.76 21 INGARANO 12 0.91 1.08 0.99 0.05 PRAIA A MARE 14 0.82 0.97 0.92 0.04 NOTO 59.46 37.94 2.60 37 OSTUNI 19 0.88 1.01 0,92 0,05 R. SALVINI 16 0.83 1.19 0.99 0.09 CERVIA 39 0.7 1.11 0.93 0.07 CIVITELLA 29 0.84 1.06 0.94 0.07 Tab. 1: Percentages of the morphotypes for each TORRACCIA 26 0.9 1.16 1.01 0.08 population of T. savii. CASARANO 31 0.87 1.09 0.98 0.05 N.P.SILA 21 0.85 1.16 0.99 0.09 NOTO 37 0.84 1.02 0.95 0.04

Tab. 3: Width of M2 of T. savii.

sud-est de la France et de Ligurie. – Quaternaire, 8: Brunet-Lecomte, P., (1990): Evolution morphologique de 3-12. la première molaire inférieure des campagnols souter- Alessio, M., Alhaique, F., Allegri, L., Bietti, A., Branca, M., rains d’Europe (Arvicolidae, Rodentia). – Z. Säugetierk, D’Arpino, A., Improta, S., Kuhn, S., Palmieri, A.M., Preite 55: 371-382. Martinez, M. (1993): New results on the Upper Brunet-Lecomte, P., Chaline, J. (1992): Morphological Palaeolithic site of Riparo Salvini (Terracina, Italia). convergences versus biochemical divergences in the Quaternaria Nova, 3: 105-150. holarctic ground voles: Terricola and Pitymys Angelone, C., Bedetti, C., Coppola, D., Pavia, M., Kotsakis, (Arvicolidae, Rodentia). – N. Jb. Geol. Pal. Mh., 1992: T. (2004) - Late Pleistocene fossil birds and small 721-734. mammals of S. Maria d’Agnano Shelter (Apulia, Brunet-Lecomte, P., Sala, B., Chaline, J. (1994a): Southern Italy): a systematic and palaeocological Comparative morphology of the first lower molar of overview. – Abstr. “Giornate di Paleontologia 2004” present-day and fossil populations of ground voles in SPI, 21-23/5/2004, Bolzano, p. 6. Italy (Rodentia, Arvicolidae). – Il Quaternario, 7: 35-40. Bartolomei, G. (1976): Breccia ossifera a elefante e micro- Brunet-Lecomte, P., Thouy P., Chaline, J. (1994b): Etude mammiferi presso San Giovanni di Duino nel Carso di comparée des populations actuelles et fossiles de Trieste. – Rend. Accad. Naz. Lincei, s. 8, 56: 274-279. Microtus (Terricola) pyrenaicus (Rodentia, Arvi co - Bartolomei, G. (1980): Micromammiferi del Plio- lidae). – Bull. Soc. Zool. Fr., 119: 37-49. Pleistocene. – In: I Vertebrati Fossili Italiani, Catalogo Capasso Barbato, L., Gliozzi, E. (2001): Late Pleistocene della Mostra di Verona, Verona, 249-258. micromammal association from Praia a Mare Bologna, P., Di Stefano, G., Manzi, G., Petronio, C., (Calabria, Southern Italy): palaeoclimatological and Sardella, R., Squazzini, E. (1994): Late Pleistocene biochronological implications. – Boll. Soc. Paleont. mammals from Melpignano (LE) “Ventarole”: prelimi- Ital., 40: 159-166. nary analysis and correlation. – Boll. Soc. Paleont. Ital., Cassoli, P.F., Guadagnoli, F. (1987): Le faune del Riparo 33: 265-274. Salvini. – In: Riparo Salvini a Terracina, ed. Quasar, Brunet-Lecomte, P. (1988): Les campagnols souterrains Roma, 43-48. (Terricola, Arvicolidae, Rodentia) actuels et fossiles Corridi, C. (1987): Faune pleistoceniche del Salento 2. – d’Europe occidentale. – Ph.D. Thesis, Université de La fauna di fondo Cattiè, Maglie, Lecce. – Quad. Mus. Bourgogne, Dijon, 147 p. Paleont. Maglie, 3: 5-65.

Geo.Alp, Vol. 2, 2005 97 Cuenca-Bescós, G., Canudo, J.I., Laplana, C. (1995): Los Masini, F., Abbazzi, L. (1997) – L’associazione di mam- arvicólidos (Rodentia, Mammalia) de los niveles inferi- miferi della grotta di Castelcivita. – In Gambassini, P. ores de Gran Dolina (Pleistoceno Inferior, Atapuerca, (Ed.) – Il Paleolitico di Castelcivita, 33-59. Burgos, España). – Rev. Esp. Paleont. 10: 202-218. Meulen, A. van der (1973): Middle Pleistocene small De Giuli, C. (1983) – Faune pleistoceniche del Salento 1. mammals from the Monte Peglia (Orvieto, Italy) with La fauna di San Sidero 3. Quad. Mus. Paleont. Maglie, special reference to the phylogeny of Microtus 1: 45-84. (Arvocolidae, Rodentia). – Quaternaria, 17: 1-144. Galleni, L. (1995): Speciation in the Savi pine vole, Nappi, A., Montuire, S., Brunet-Lecomte, P. (2003) – Microtus savii (de Sélys-Longchamps) (Rodentia, Sintesi sulla morfometria del primo molare inferiore Arvicolidae): a theoretical biology approach. – Boll. nel gruppo Microtus (Terricola) savii. – Hystrix, n.s., Zool., 62: 45-51. suppl., Abstr. IV Congr. Ital. Teriologia, p. 125. Galleni, L., Stanyon, R., Contadini, L., Tellini, A. (1998): Petronio, C., Billia, E., Capasso Barbato, L., Di Stefano, G., Biogeographical and karyological data of the Microtus Mussi, M., Parry, S., Sardella, R., Voltaggio, M. (1996): savii group (Rodentia, Arvicolidae) in Italy. – Bonn. The late Pleistocene fauna of Ingarano (Gargano, Zool. Beitr., 47: 277-282. Italy): biocronological, palaeoecological, palaeoetho- Gliozzi, E., Abbazzi, L., Argenti, P., Azzaroli, A., Caloi, L., logical and geocronological implications. – Boll. Soc. Capasso Barbato, L., Di Stefano, G., Esu, D., Ficcarelli, Paleont. Ital., 34(1995): 333-339. G., Girotti, O., Kotsakis, T., Masini, F., Mazza, P., Petruso, D. (2002): Il contributo dei micromammiferi alla Mezzabotta, C., Palombo, M. R., Petronio, C., Rook, L., stratigrafia e paleogeografia del Quaternario conti- Sala, B., Sardella, R., Zanalda, E., Torre, D. (1997): nentale siciliano. – Ph.D. Thesis, Università di Napoli, Biochronology of selected mammals, molluscs and 315 p. ostracods from the middle Pliocene to the late Ronchitelli, A., Abbazzi, L., Accorsi, C.A., Bandini Pleistocene in Italy. The state of the art. – Riv. Ital. Mazzanti, M., Bernardi, M., Masini, F., Mercuri, A., Paleont. Strat., 103: 369-388. Mezzabotta, C., Rook, L. (1998) – The Grotta Grande di Kotsakis, T., Abbazzi, L., Angelone, C., Argenti, P., Barisone, Scario (Salerno – southern Italy): stratigraphy, archae- G., Fanfani, F., Marcolini, F., Masini, F. (2003): Plio- ological finds, pollen and mammals. – Proc. 1st Intern. Pleistocene biogeography of Italian mainland micro- Congr. “Science and Technology for the Safeguard of mammals. – DeinseA, 10: 313-342. Cultural Heritage in the Mediterranean Basin”, 1529- Marcolini, F. (2002) – Continental Lower Valdarno rodent 1535, Tip. Rustioni, M., Mazza, P., Abbazzi, L., Delfino, biochronology and two new methods for the system- M., Rook, L., Petrucci, S., Vinello, F. (1994): The würmian atics of Mimomys (Arvicolidae, Rodentia). – Ph.D. fauna from Sternatia (Lecce, Apulia, Italy). Thesis, Università di Pisa, 165 p. Marcolini, F., Bigazzi, G., Bonadonna, F.P., Cioni, R., Zanchetta, G. (2003): Tephrochronolgy and tephros- tratigraphy of two Pleistocene continental fossilifer- ous successions of Central Italy. – J. Quat. Sci., 18: Manuscript submitted: December 14, 2004 545-556. Manuscript accepted: May 25, 2005

98 Geo.Alp, Vol. 2, 2005 Geo.Alp, Vol. 2, S. 99–106, 2005

A TEST APPLICATION OF THE SHE METHOD AS A BIOSTRATIGRAPHICAL PARAMETER

Davide Mana

With 6 figures and 1 table

C.so Traiano 24/8, 10135 – Torino, Italia

Abstract: Biodiversity – the index “expressing the variety and variability of living organisms and of the ecological systems comprising them” (Ferrari, 2001) – is essential in the characterization and study of past and present biological systems, and is generally expressed by a number (the “biodiversity index”), statistically derived from empirical observations. The SHE indexing method (Buzas & Hayek, 1996, Hayek & Buzas 1997), is expressed by the Shannon Index, H (a measure of the system’s entropy) as the composition of two factors representing respectively the num- ber of species in the sample (S) and the distribution uniformity (E). The SHE index does not only describe in a thorough way the system’s biodiversity, but, as a function of abundance and evenness, can be used to identify biofacies (SHEBI – SHE for Biofaces Identification) or to characterize the whole structure of the analysed community (SHECSI – SHE for Community Structure Identification). SHE analysis, independently of its application purposes, appears to be highly flexible, does not require the adoption of specific computer packages beyond a common spreadsheet, and is based on a simple graphical analysis; widely adopted in botanics, SHEBI analysis in particular has been applied with satisfactory results to the study of benthic foraminiferal faunas from the Atlantic ocean (Buzas & Hayek,1998]. In this work, the SHEBI method has been applied to 87 samples from the Falconara section (Southern Sicily) – the purpose of the study is to verify the possibility of applying SHE/SHEBI to Messinian planktonic foraminiferal assemblages. Our study has to face issues that are typical of planctonic faunas – such as the lower number of species and the ample variability in single taxa abundances; a further factor to be taken into account in setting up and executing the analysis is the progressive deterioration of the ecosystem as the peak of the Messinian cri- sis approaches. Biofacies identification through SHEBI in less than ideal conditions, but on such a widely studied and described section, offers an excellent opportunity to test the method and its limits, its applica- tion range and the reliability of its results.

1. Introduction – SHE and the measure of diversity Diversity is one of the defining factors in any study of an ecological system. A number of indices This work aims at identifying and evaluating the was developed through the years by different limits (if any) of the application of the SHE analysis researchers, to quantitatively express diversity as to planktonic foraminiferal faunas, in order to sim- observed in the field or in laboratory; among the plify the application of this powerful diversity- more widely used indices are Fisher’s α index (a based technique to the field of planktonic measure of species richness), Simpson’s λ index, foraminiferal biostratigraphy. Equitability (E, a measure of evenness) and

99 logarithmic transformation of the indices, and while specific software is easily available to calculate the values of H and E, given standard sample counts, the whole analysis can be carried out on a simple spreadsheet software (i.e., Microsoft Excell or OpenCalc) with a minimum of fuss. Conceptually, the analysis can be carried out through time (i.e., vertically, comparing levels along a geological section) or through space (i.e. laterally, comparing sectors in a landscape).

Introduced in the late 1990s as a way to sidestep some perceived limits in more popular diversity indices (Shannon-Weiner in particular), SHE’s field Fig. 1: Location map of the Falconara outcrop in Sicily. of application was later extended and redefined, with the introduction of SHEBI (SHE Analysis for Biofacies Identification) and SHECSI (SHE Analysis Shannon’s H index (a derivation of the information for Community Structure Identification) (Buzas and function) (Smart, 2002). Hayek, 1996, 1998 ; Hayek and Buzas, 1997, 1998). Species richness itself (expressed as S, total num- Examples of applications of the SHE approach to ber of species) has been used in the past as a rough biodiversity have been published as part of botani- measure of diversity. cal (Hayek and Buzas, 1996, 1997, Small and The recognition of the mathematical relation McCarthy 2002) and zoological studies (Leponce et between Species Richness and Taxa Abundance, and al. 2004); closer to the concerns of this paper, SHE its meaning in terms of Diversity and Dominance is has been applied to the study of quaternary benth- the basis of the recent SHE approach to the study of ic foraminiferal faunas in what can be defined as a biodiversity (Hayek & Buzas, 1997). non-perturbed environmental setting (Buzas and The mathematical expression summing up this Hayek, 1998, Osterman et al, 2002). relationship is By all accounts, when applied to current or (1) H = ln(S) + ln(E) recent environments and populations, SHE appears in which to be a solid, easily applied method for describing H is the Shannon Diversity Index diversity; in particular, it allows a high-resolution S is the Species Richness visualization of changes in diversity through time or E is the Dominance or Evenness of the distribution space; the method allows researchers “to examine evenness separately from richness within a single Relation (1) is constant as long as species propor- multispecies system” (Buzas and Hayek, 1998) and tions are constant. it does not suffer from some of the limits signalled As a change of the proportions of species to each for other diversity-based indices (Hayek and Buzas, other is clearly a sign of change in diversity, the SHE 1997). relationship has to be interpreted as an expression Some doubts might still remain when SHE is to of diversity. be applied to situations in which those factors the This allows a simple graphical analysis of the method takes into account (population density, spe- variations of biodiversity: each of the three vari- cific richness, etc.) are subject to extreme or unpre- ables can in fact be plotted against the Abundance dictable variations – i.e. due to drastic changes in (N) of the sample; changes in proportions (and environmental conditions, or to other external therefore in diversity) will be signalled by a change causes. in the graphic line slope (a “slope break” in the “hol- To verify the viability of SHE analysis in such crit- low curve” following Hayek & Buzas’ terminology). ical conditions, this study has been carried out on Operationally, the method is not as mathemati- planktonic foraminiferal faunas from Messinian cally intensive as other well-established analysis strata of the Mediterranean, which are normally procedures (i.e., Cluster Analysis), requiring simply a characterized by lower species richness (S) than ben-

100 Geo.Alp, Vol. 2, 2005 thic faunas. Proximity to the peak of the Messinian Salinity Crisis further weakens the species richness signal, due to increased environmental stress. This paper briefly summarizes the study and its results.

2. The Falconara Section and the planktonic samples

The samples used for this study were collected in the alternating clay/diatomite cycles of the Tripoli formation (Upper Tortonian-Messinian) with an exposed thickness of one hundred meters in the Falconara Section. Located on the southern face of Monte Caltagirone, on the southern coast of Sicily between Gela and Licata (see fig. 1), the Falconara Section (fig.2) was originally proposed as the type-section for the Messinian (Colalongo et al., 1979), and has been the object of continuing studies, criticism and revisions, due to its paramount importance for the Fig. 2: View of the Falconara outcrop. comprehension of Mediterranean events; in more than thirty years, studies have shifted from bio - stratigraphical and chronostratigraphical concerns and techniques to cyclostratigraphical and astro- The environmental information provided by the chronological methods. (summarized in Hilgen et al., faunas contained in the sediments was presented 2000). and discussed in the author’s graduation paper The abundance of previous studies and the (Mana, 2001) concerning the same samples used in detailed description of the Falconara faunas this study; in that work, a general biozonation (Colalongo et al., 1979, Hilgen & Krijgsman, 1999, based on a traditional method (Cluster Analysis), Hilgen et al., 2000) by previous authors provides an was proposed, identifying seven distinct biofacies, excellent background for our test-run of the SHE each connected with the progressive environmental approach to planktonic foraminifera biostratigra- crisis of the Messinian sea. phy. Our study does not mean to redefine in any That work, and the excellent synthesis by Hilgen way the stratigraphy of the Falconara section, but and Krijgsman (1999) will be our two chief refer- to use a well-studied section and its wealth of ences for comparison. accumulated paleontological and stratigraphical knowledge as the consensus against which the results of the SHE test will be compared for vali- 3. SHE Analysis dation. For the purposes of this study, 87 samples were The samples used in this study were collected observed, and 300 individuals counted according to from the Falconara Section in 1994 (fig. 3), as part standard statistical data-gathering practices; seven- of a wide-ranging campaign of studies on the teen planktonic taxa were recognized (see below) Messinian Salinity Crisis in the Mediterranean; in and counted; to these, a class labelled “others” was the field, both clay and diatomite layers were sam- added to include the few non-planktonic individu- pled separately, and were later subjected to stan- als (mostly Bulimina echinata). For the species dard micropaleontological analysis and quantitative Neogloboquadrina acostaensis, sinistral coiling studies in the laboratories of the Università degli individuals were counted separately from dextral Studi, Torino. coiling individuals.

Geo.Alp, Vol. 2, 2005 101 The taxa used in this study are:

Globigerina angustiumbilicata Globigerina sp Globigerinoides ruber Globigerinoides sp Turborotalita multiloba Turborotalita sp Globorotalia conoidea Globorotalia praemenardi Globorotalia sp Neogloboquadrina continuosa Neogloboquadrina acostaensis sin. Neogloboquadrina acostaensis dex. Orbulina universa Globigerinella obesa Globigerinella praesiphoniphera Globigerinella sp Sphaeroidinellopsis Other

As described in Buzas and Hayek (1998), from the species counts, the cumulative values of N (number of individuals in sample), S (number of species in sample or Specific Richness), H (Shannon’s Index) and E (Evenness) were calculated using an Excell spreadsheet, and the natural logarithms extracted for each value (Table 1). Cumulative values (a stepwise addition of values) were used so that S will be steadily increasing through the sequence. Considering now equation (1) H = ln(S) + ln(E) as we have already stated, this relation remains con- stant as long as species proportions remain con- stant. More to the point, if – as in the case of our analysis – the value of S increases steadily due to the cumulative process, two possibilities can become apparent: if, as S increases, H remains con- stant, this will mean a progressive decrease in the value of the samples’ cumulative Evenness; should instead the value of ln(E) remain constant, this would mean a progressive variation in the value of H. Plotting linear graphics for ln(S) vs ln(N) H vs ln(N) ln(E) vs ln(N) Fig. 3: Summary sketch of the Falconara Section, with sample all ows us to pinpoint biofacies changes, represented numbers. by slope breaks on the graphs (fig. 4).

102 Geo.Alp, Vol. 2, 2005 SAMPLE N (N) ln(N) (S) ln(S) H (E) LN(E) SAMPLE N (N) ln(N) (S) ln(S) H (E) LN(E) 1 307 307 5,73 7 1,95 0,97 0,38 -0,97 45 316 10913 9,30 54 3,99 0,14 0,02 -3,85 2 288 595 6,39 11 2,40 1,00 0,25 -1,40 47 304 11217 9,33 54 3,99 0,11 0,02 -3,88 3 329 924 6,83 20 3,00 0,86 0,12 -2,14 48 341 11558 9,36 54 3,99 0,11 0,02 -3,87 4 302 1226 7,11 22 3,09 0,62 0,08 -2,47 49 343 11901 9,38 54 3,99 0,15 0,02 -3,84 5 315 1541 7,34 26 3,26 0,62 0,07 -2,64 50 337 12238 9,41 54 3,99 0,10 0,02 -3,89 6 303 1844 7,52 31 3,43 0,53 0,05 -2,91 51 396 12634 9,44 54 3,99 0,14 0,02 -3,85 7 300 2144 7,67 31 3,43 0,43 0,05 -3,01 52 347 12981 9,47 56 4,03 0,13 0,02 -3,90 8 327 2471 7,81 32 3,47 0,38 0,05 -3,09 53 317 13298 9,50 56 4,03 0,11 0,02 -3,91 9 329 2800 7,94 34 3,53 0,34 0,04 -3,18 54 354 13652 9,52 57 4,04 0,12 0,02 -3,93 10 396 3196 8,07 35 3,56 0,40 0,04 -3,16 55 326 13978 9,55 57 4,04 0,11 0,02 -3,93 11 285 3481 8,16 37 3,61 0,31 0,04 -3,30 56 300 14278 9,57 57 4,04 0,11 0,02 -3,93 12 319 3800 8,24 37 3,61 0,27 0,04 -3,34 57 307 14585 9,59 57 4,04 0,11 0,02 -3,93 13 286 4086 8,32 38 3,64 0,29 0,04 -3,34 58 198 14783 9,60 57 4,04 0,07 0,02 -3,98 14 296 4382 8,39 39 3,66 0,28 0,03 -3,39 59 327 15110 9,62 57 4,04 0,12 0,02 -3,93 15 323 4705 8,46 45 3,81 0,30 0,03 -3,51 61 331 15441 9,64 58 4,06 0,12 0,02 -3,94 16 312 5017 8,52 46 3,83 0,26 0,03 -3,57 62 350 15791 9,67 58 4,06 0,10 0,02 -3,97 17 328 5345 8,58 48 3,87 0,21 0,03 -3,66 64 349 16140 9,69 60 4,09 0,11 0,02 -3,98 20 303 5648 8,64 48 3,87 0,23 0,03 -3,64 65 287 16427 9,71 60 4,09 0,09 0,02 -4,00 22 305 5953 8,69 49 3,89 0,22 0,03 -3,67 67 344 16771 9,73 60 4,09 0,11 0,02 -3,99 24 172 6125 8,72 50 3,91 0,13 0,02 -3,78 68 311 17082 9,75 60 4,09 0,10 0,02 -3,99 25 313 6438 8,77 50 3,91 0,20 0,02 -3,72 70 314 17396 9,76 60 4,09 0,10 0,02 -4,00 26 293 6731 8,81 50 3,91 0,19 0,02 -3,72 72 320 17716 9,78 60 4,09 0,10 0,02 -3,99 27 209 6940 8,85 50 3,91 0,13 0,02 -3,78 73 72 17788 9,79 60 4,09 0,03 0,02 -4,06 29 303 7243 8,89 51 3,93 0,20 0,02 -3,73 74 347 18135 9,81 60 4,09 0,10 0,02 -4,00 31 289 7532 8,93 52 3,95 0,19 0,02 -3,77 75 332 18467 9,82 60 4,09 0,08 0,02 -4,01 33 300 7832 8,97 53 3,97 0,17 0,02 -3,80 76 350 18817 9,84 60 4,09 0,08 0,02 -4,01 34 309 8141 9,00 53 3,97 0,17 0,02 -3,80 77 304 19121 9,86 60 4,09 0,07 0,02 -4,03 35 304 8445 9,04 54 3,99 0,16 0,02 -3,83 78 197 19318 9,87 60 4,09 0,06 0,02 -4,03 37 321 8766 9,08 54 3,99 0,17 0,02 -3,82 79 300 19618 9,88 60 4,09 0,08 0,02 -4,01 38 304 9070 9,11 54 3,99 0,15 0,02 -3,84 80 370 19988 9,90 60 4,09 0,08 0,02 -4,01 39 291 9361 9,14 54 3,99 0,14 0,02 -3,85 81 338 20326 9,92 60 4,09 0,08 0,02 -4,02 40 316 9677 9,18 54 3,99 0,14 0,02 -3,85 82 345 20671 9,94 60 4,09 0,09 0,02 -4,01 42 302 9979 9,21 54 3,99 0,14 0,02 -3,85 84 201 20872 9,95 60 4,09 0,05 0,02 -4,04 43 300 10279 9,24 54 3,99 0,13 0,02 -3,85 85 267 21139 9,96 60 4,09 0,06 0,02 -4,04 44 318 10597 9,27 54 3,99 0,14 0,02 -3,85 87 332 21471 9,97 60 4,09 0,07 0,02 -4,02

Table 1: List of Falconara samples showing calculated values of indexes for SHE analysis. Missing samples were found to be sterile. Abbreviations: N, counted individuals; (N), cumulated N; (S), cumulated species richness; H, Shannon’s Index; (E), Evenness.

In fig. 4 the three “hollow curves” (Hayek & gresses, and recalculating the values of S, N, E and Buzas, 1997, 1998) are plotted in a single graph in H, disappearances are now computed into the the same order in which we introduced them above; model. as our fig. 4 shows, a number of breaks are evident, For the purposes of this work, the SHE analysis each of them potentially marking a change in asso- procedure was applied six times (fig. 5) in order to ciation, and therefore in biofacies. heighten the definition of the hollow curve. It is important at this point to notice that mat- The resulting graphs appear choppy and uneven, ters of scale, and the high number of individuals especially when compared to similar plots for ben- projected, might distort the curve plot, causing a thic faunas (Buzas and Hayek, 1998]; this is an loss of definition and actually masking some signif- effect most likely caused by the characters of the icant slope breaks. To avoid this distortion effect, planktonic assemblage (low Specific Richness, sud- the suggested practice consists in breaking the den disappearances) and the time interval consid- sequence into smaller intervals – which is achieved ered (wide and sudden variations in environmental in practice by stepwise deleting the samples whose conditions as the situation evolves towards the cri- trend has already been analysed, recalculating all sis). The operator has also to take into account the the values in the system. very low values of the indices, a product of the gen- The stepwise deletion procedure also corrects erally low Species Richness and of the scarcity of another important distortion which may present biological remains in some samples (fifteen of the single-plot SHE model in fig. 4 – the one caused which lack fossils). by the disappearance of certain taxa as the Our biofacies analysis is based chiefly on the joint sequence develops. Cumulative addition of Specific observation of both ln(S) and ln(E) plots; the latter Richness alone, does account for the appearance of is considered to be most sensitive to specific assem- new species, but not for the loss of those species blage changes by most authors, but considering the that, while present in the earlier levels of the scarcity of species represented in the samples, and sequence, disappear later. By stepwise deleting ear- the low abundances, using the former as a control lier data-points from the plot as the analysis pro- and as a support in the definition of biofacies

Geo.Alp, Vol. 2, 2005 103 over forty couples can be observed in the field – and which were used as a basis for sampling in this study, and by many other authors (Hilgen and Krijgsman, 1999). The definition of the SHEBI method is excellent, resolving in some cases changes in population bal- ance (and therefore, in diversity) that occur at the scale of the single clay/diatomite couple; these were not considered in this work, as each should deserve a much more detailed analysis and assessment, but are shown in the plots collected in fig. 5, in which they appear as brief breaks in the slope of the hol- low curve.

4. Conclusions and future developments

The SHE/SHEBI method is as reliable as more tra- ditional approaches when applied to planctonic faunas, and does not require any ad hoc modifica- tion. In particular, the differences between planc- tonic and benthic faunas do not seem to hinder the application of the method, but simply require a higher degree of attention on the part of the researcher. Similarly, conditions of progressive environmental crisis do not seem to compromise the method’s func- tionality, and are easily recorded by the “hollow curve”. By working on Species Richness S and Fig. 4: SHE Analysis of Falconara samples, summary graph. Evenness E, SHEBI seems to compensate the progres- Data-points (samples) have been thinned to improve readabi- sive loss of data due to thinning of the association lity. through time. The biozonation obtained from the application of the SHE method appears to be consistent with pre- vious zonations obtained through different analyti- breaks appears as an advisable line of conduct. cal approaches (such as Cluster Analysis), but shows The analysis leads to the definition of 21 intervals a higher sensitivity to minute changes in population which can be considered each characterized by sta- balance, and therefore a higher resolution. ble or near-stable conditions, their assemblages Also, the method leaves a higher degree of freedom being therefore distinct biofacies. to the operator, who is allowed to fine-tune his Packing so many biofacies in a stretch of about interpretation of the graphs based on his knowledge one hundred meters could be considered embarrass- of local peculiarities. ing by someone – especially when compared to the While probably regionally restricted due to the seven biofacies intervals identified using the same probability of sudden changes in planctonic associ- samples and a more traditional discrimination ations, SHEBI zonation still appears to be an excel- approach (Cluster Analysis) in a previous work lent correlation tool when used on different sec- (Mana, 2001); and yet the intervals as identified by tions – and indeed this seems to be one of the more the method are undeniably a result of the observed promising directions in which future investigation species and counted abundances. And the fine sub- about the applications of SHE to Messinian faunas division of the Falconara sequence also reflects the might expand; similarly, the possibility of coupling rhythmic cycles of clays and diatomites, of which the biozonation tool offered by SHEBI with

104 Geo.Alp, Vol. 2, 2005 Fig. 5: SHE Analysis of the Falconara faunas; stepwise deletion of samples examined earlier with each new iteration. Vertical lines show the position of biofacies breaks.

palaeoecological assessing tools such as ordination (University of Marseilles), for allowing the use of the methods (PCA, DCA) might hold great promise for samples in the first place. future developments (Mana, 2004].

References 5 . Acknowledgments Buzas, M.A., Hayek, L.C. (1996): Biodiversity Resolution: an The author wishes to express his gratitude to integrated approach. – Biodiversity Letters, v. 3: 40-43. Prof. Donata Violanti (Università degli Studi, Torino) Buzas, M.A., Hayek, L.C. (1998): SHE Analysis for Biofacies for the support and the advice concerning the Identification. – Journal of Foraminiferal Research, v. Falconara samples, and to professor Jean Pierre Suc 28: 233-239.

Geo.Alp, Vol. 2, 2005 105 Colalongo, M.L., di Grande, A., D’Onofrio, S., Giannelli, L., Iaccarino, S., Mazzei, R., Poppi Brigatti, M.F., Romeo, M., Rossi, A., Salvatorini, G., (1979): A proposal for the Tortonian/Messinian boundary. – Ann. Géol. Pays Hellén., Tome hors série, v. 1, pp. 285-294. Ferrari, C (2001): Biodiversità. – 36 pp, Zanichelli, Bologna. Hayek, L.C., Buzas, M.A. (1997): Surveying Natural Populations. – 563 pp., Columbia University Press, New York. Hayek, L. C., Buzas, M. A. (1998): SHE analysis: an inte- grated approach to the analysis of forest biodiversity. – In Dallimeier, F., Comkey, J. (eds.) Forest Biodiversity Research, Monitoring and Modeling, 311-321, UNESCO and Parthenon Publishing Group, Paris. Hilgen, F.J., Krijgsman, W. (1999): Cyclostratigraphy ad astrochronology of the Tripoli diatomite formation. – Terra Nova, vol. 11, No. 1: 16-22. Hilgen F.J., Iaccarino S., Krijgsman,W., Villa, G., Langereis C.G., Zachariasse W.J. (2000): The Global Boundary Stratotype Section and Point (GSSP) of the Messinian Stage (uppermost Miocene). – Episodes, Vol. 23, no. 3:172-178. Leponce, M., Theunis, L., Delabie, J. H. C. and Roisin, Y. (2004): Scale dependence of diversity measures in a leaf-litter ant assemblage. – Ecography v. 27: 253-267. Mana, D. (2001): Metodi Quantitativi applicati allo studio dei Foraminiferi del Messiniano di Falconara (Sicilia Meridionale). – Università degli Studi, Torino, gradua- tion research paper. Mana, D. (2004): SHE Characterization of the Planktonic Foraminifera Assemblages from the Falconara and Capodarso Sections (Messinian), Sicily, Italy. – Oral presentation to the 32nd International Geological Congress, Florence, August 20-28, 2004; abstract in 32nd International Geological Congress, Abstracts, Part 1, IUGS, Florence. Osterman, L.E., Buzas, M.A., Hayek, L.C. (2002): SHE Analysis for Biozonation of Benthic Foraminiferal Assemblages from Western Arctic Ocean. – PALAIOS, v. 17: 297-303. Small, C.J., McCarthy, B.C.(2002): Spatial and temporal variability of herbaceous vegetation in an eastern deciduous forest. – Plant Ecology, v. 64: 37-48. Smart, C.W. (2002): Environmental Applications of Deep- Sea Benthic Foraminifera. – In Haslett, K.S. (ed.): Quaternary Environmental Micropalaeontology, 14-58, Arnold Publishers, London. Fig. 6: Schematic comparison of the biozonation based on Clu- ster Analysis [Mana, 2001], and the SHE biozonation (this work). Colors are purely indicative and have no stratigraphical Manuscript submitted: November 29, 2004 meaning. Revised manuscript accepted: June 2, 2005

106 Geo.Alp, Vol. 2, 2005 Geo.Alp, Vol. 2, S. 107–113, 2005

URSUS SPELAEUS ROSENMÜLLER, 1794 FROM THE VENETIAN REGION OF NORTHERN ITALY: PRELIMINARY NOTES ON ITS EVOLUTIONARY PATH

Cinzia Galli1, Mario Rossi2, Giuseppe Santi3

With 6 figures and 1 plate

1 Museo Civico di Storia Naturale, Parco del Vecchio Passeggio, I-26100 Cremona (Italy) 2 Museo Civico di Storia Naturale, Lungadige Porta Vittoria 9, I-37129 Verona (Italy) 3 Dipartimento di Scienze della Terra, Via Ferrata 1, I-27100 Pavia (Italy), e-mail [email protected] (corresponding author)

Abstract According to morphometric data, population remains of bears ascribed to the deningeri-spelaeus group have been identified in caves of the Venetian region of Northern Italy: Cerè Cave, Covoli di Velo, San Donà di Lamon and Veja. Some initial observations about the evolutionary path of these cave bears are presented.

Introduction and previous work radiometric data are available for only a few caves in Northern Italy. The best known is the Grotta Sopra Numerous caves distributed over the Alpine and pre- Fontana Marella (Varese Province, Lombardy). For other Alpine areas including Cerè Cave, the Covoli di Velo and caves (e.g. the Caverna Generosa, Varese Province) data Veja caves (Province of Verona), and the San Donà di are still incomplete (Bona, 2004) and are lacking in the Lamon cave (Province of Belluno) (Fig. 1) are of great Venetian region. Radiometric data and aminoacid importance, both historically and for the abundance of bear fossils. They provide a large number of morphometric data stimulating several interesting considera- tions on the presence of these fossils in the Venetian region. The studied deposits show that these areas were inhabited either by Ursus spelaeus Rosenmüller, 1794, or Ursus arctos Linnaeus, 1758 albeit in different proportions; in fact, the cave bear – Ursus spelaeus - repre- sents the most abundant species. Until now, the presence of Ursus deningeri Von Reichenau, 1906 has only been assumed (Zorzin et al., in press). The most recent studies (i.e Rossi & Santi, 2005) on newly found fossils from the Cerè Cave, the most significant results of which will be presented in this paper, have confirmed the presence of this species. Currently, Fig. 1: Geographic position of the main caves of the Venetian region.

107 Fig. 2: Geographic position of the Cerè Cave. A – Lateral wall of the cave in bone breccias. B – Entrance of the Cerè Cave.

racemization of the bear bones from Grotta Sopra 7.50 m thick stratigraphic succession is composed (Zorzin Fontana Marella provide the following ages: FM4 over et al., 2003) as follows: 26000 years BP, FM2, 22310 ±200 and FM1 21810±200 1 .Ferrous-manganesiferrous clay containing concre- years BP (Perego et al., 2001). tions (at the karstic bed rock contact). 2. Calcareous concretions, locally very thick. For many years the Venetian caves have constituted 3.F ine-grained, mixed carbonate-siliciclastic sand with an important research target. A review of the inventory small amounts of clay filling the bottom of the of the Pleistocene-Holocene fauna from these caves was depressions and the karst fissures. Locally, a thin layer compiled by Bon et al. (1991, cum bibl.) based on fossils of yellow or reddish clay is present below concre- stored at different localities in Northern Italy. More tion 4. recently, studies on populations of bears and other fossil 4. Concretion rich in siliceous and patinated detrital groups from the Cerè Cave, Covoli di Velo, San Donà di material. Lamon and Veja caves have been published by Rossi & 5.P lastic clay containing pebbles up to 1 cm in size. Santi (2001 a, b, 2002), Zorzin et. al. (2003, 2004 and in 6. Horizon with concretions. press) and Rossi et al. (2004). 7.P lastic red clay containing rare fossil remains and siliceous detrital fragments with diameters up to 5 cm. Brief background on the stratigraphy 8. Red clay with abundant pebbles of chert and slightly of the Cerè Cave altered gravel. 9.D ark layer rich in bone remains mostly belonging to The Cerè Cave, known also as the “Tana dell’Orso” or Canis lupus containing concretions and rich in the “Tanasela” (Fig. 2), is located at an altitude of about siliceous and rare chert pebbles with diameters of 1 to 750 m a.s.l. and is 12 m deep; it opens at the hydro- 3 cm. graphically right side of the Vajo dell’Anguilla within the 10.D ark layer rich in bone remains predominantly Rosso Ammonitico Formation about 150 m east of belonging to Ursus, with calcareous pebbles about 2 Ceredo (S. Anna di Alfaedo) village. The entrance is near cm in size. a distinct fracture of the slope that characterizes the 11.S trongly cemented bone-breccia, with abundant right side of the Vajo dei Falconi. From bottom to top, the remains of Ursus, Canis lupus and Marmota.

108 Geo.Alp, Vol. 2, 2005 Fig. 3: Ratio between “basal length” and “length of dental row” for bear skulls from Italian and other localities.

Fig. 4: Ratio between “absolute length” and “height of vertical branch” for bear mandibles from Italian and other localities.

12. Breccia containing small amounts of sediment com- Distribution of Ursus species posed of strongly cemented large blocks. in the Venetian region 13 . Breccia with chert pebbles from 1 to 3 cm in size. 14. Calcareous breccia with chert pebbles from 1 to 5 cm Before presenting the main morphometric data, we in size. believe it is useful to indicate the distribution of the 15 . Breccias with chert pebbles from 1 to 5 cm in size. Ursus species in the following caves: 1 ) Cerè Cave: Ursus

Geo.Alp, Vol. 2, 2005 109 Fig. 5: Ratio between “absolute length” and “transversal width of the diaphysis” for the II metatarsus of bears from the Cerè Cave and other Italian and other caves.

Fig. 6: Ratio between “absolute length” and “transversal width of the diaphysis” for the III metatarsus of bears from the Cerè Cave and other Italian and other caves.

110 Geo.Alp, Vol. 2, 2005 deningeri, U. spelaeus, U. arctos; 2) Covoli di Velo: Ursus a consequence of a limited expansion of these former spelaeus; 3 ) Veja: Ursus spelaeus; 4 ) San Donà di Lamon: groups that were able to colonize only in this limited area Ursus spelaeus (Pl. 1). Considering the rarity of fossils in Northern Italy. The remaining zones could have been pertianing to U. deningeri not only in Northern Italy, but further colonized starting from a supposed initial point, also in the rest of the peninsula, their presence within the represented by the Venetian populations originally from Cerè Cave is of great importance. Central Europe, which experienced a rapid and articulat- ed evolution.

Morphometry Preliminary concluding remarks Morphometric analysis was carried out on several hundreds of fossils from a large portion of the skeleton Based on the morphometric analysis that shows the (except for the vertebrae, ribs and other anatomic parts bear fossils belong to the deningeri-spelaeus group, some whose limited number of specimens prevented an indis- preliminary conclusions can be drawn: putable analysis) stored in the Museo Civico di Storia Naturale of Verona and compared with other fossils from a) The main caves of the Venetian region were inhab- Northern Italy (Grotta del Buco dell’Orso – Laglio, Como ited by bears of the deningeri-spelaeus group, but in Province; Grotta Sopra Fontana Marella - Varese the Cerè Cave the continuous presence of both Province; Grotta delle Streghe – Sambughetto Valstrona, Ursus deningeri and Ursus spelaeus (medium- to Verbania Province) including foreign examples, particu- large-sized) from their intermediate to final evolu- larly from Spanish caves (Torres, 1988). The findings have tionary stages is certain. In other regions only large allowed us to advance a number of hypotheses (Figs. 3-6). sized cave bear populations are evident and linked a) Cerè Cave: The morphometric data show the presence to the final phase of the evolutionary path of this of populations from the deningeri-spelaeus group species. and the large number of fossils, especially of the b) The presence of the three species in the Cerè Cave metapodial bones, have confirmed the above men- indicates its prolonged inhabitation in ancient times tioned observations. compared to the other caves. Hence, the Ursus b) Covoli di Velo : Unlike the Cerè Cave, the fossils are deningeri population may represent the original exclusively from larger-sized bears while those in nucleus from which subsequent forms may have medium- to small-size ranges ones appear to be very developed with their final examples being discovered poorly represented. in the other caves examined. These populations are c) San Donà di Lamon and Veja : The morphometric morphometrically comparable to those from the more analysis of the rather limited remains in these locali- recent beds of the Grotta Sopra Fontana Marella ties confirms the presence of relatively medium- to dated 21810±200 years BP (Perego et al., 2001). large-sized populations similar to those that lived in Some data indicate the presence of Ursus deningeri in the Covoli di Velo region. the Delle Ossa Cave near Zandobbio village (Bergamo Province, Lombardy), but further investigations are required to confirm its occurrence in this area. If future Hypothesis about the possible research confirms the exclusiveness of the findings in the Ursus deningeri “track of ways” Cerè Cave, its importance will increase. In fact, on the basis of this data, this zone could represent an expansion The presence of the deningerian remains in the Cerè nucleus for the Venetian region as well for the whole of Cave, rarely found in Central Italy and the Alpine and Northern Italy. pre-Alpine sectors of the Western and Central Alps, may indicate migration paths that initially followed a N-S- direction, possibly encouraged by the overall mildness of Acknowledgments the climate in the more southern regions, and later also in an E-W-direction. The lack of the Ursus deningeri The authors thank Prof. D. Nagel (Vienna) for useful remains in other areas may be due to a gap in the fossil advice and critical reading of the manuscript and Dr. G. record linked to inadequate fossil preservation or unsuc- Papalia (Pavia) for revision of the English. cessful discovery of the deposits. However, it may also be This study was supported by a FAR grant contribution.

Geo.Alp, Vol. 2, 2005 111 References Rossi, M., Santi, G., Zorzin, R. (2004): Distribuzione di Ursus gr. deningeri-spelaeus nell’Italia Settentrionale Argant, A. (1991): Carnivores quaternaires de Bourgogne. nel Pleistocene medio-superiore ed implicazioni cli- D– ocuments des Laboratoire de Géologie Lyon, 115 : matico-evolutive. – XXXV Congresso Società Italiana 1-301. di Biogeografia “Biogeografia delle Alpi e Prealpi Bon, M., Piccoli, G. & Sala B. (1991): I giacimenti quater- Centro-orientali” Rabbi (TN) 6-9 Settembre 2004, nari di vertebrati fossili nell’Italia nord-orientale. – Abstracts vol., p. 67. Mem. Sci. Geol., Padova, 43: 185-231. Torres Pérez Hidalgo T. (1988) - Osos (Mammalia, Bona, F. (2004): Preliminary analysis on Ursus spelaeus Carnivora, Ursidae) del Pleistocene Ibérico (U. Rosenmüller & Heinroth, 1794 populations from deningeri Von Reichenau, U. spelaeus Rosemüller- “Caverna Generosa” (Lombardy-Italy). – Cahiers Heinroth, U. arctos Linneo). – Boletín Geológico y Scientifiques, Hors série 2: 87-98. Minero. I Filogenia, distribution stratigrafica y Perego, R., Zanalda, E., Tintori, A. (2001): Ursus spelaeus geografica. Estudio anatomico y metrico del craneo: from Grotta sopra Fontana Marella, Campo dei Fiori 3-46. II Estudio anatomico y metrico de la mandibula, Massif (Varese, Italy): morphometry e paleoecology. – hioides, atlas y axis: 220-249. III Estudio anatomico y Riv. It. Paleont. Strat., 107 (3): 451-462. metrico del miembro toracico, carpo y metacarpo: Rossi, M., Santi, G. (2001a): La fauna pleistocenica della 359-412. lV Estudio anatomico y metrico del miembro Grotta del Cerè (Verona). 1 – Prime osservazioni sui pelviano, tarso, metatarso y dedos: 516-577. V resti craniali e mandibolari di ursidi. – Bollettino del Dentiction decidual, formula dentaria y denticion Museo Civico di Storia Naturale di Verona, sez. di superior: 660-714. VI Denticion inferior: 886-940. Geologia, Paleontologia e Preistoria, 25: 59-72. Zorzin, R., Santi, G., Rossi, M. (2003): I principali mam- Rossi, M., Santi, G. (2001b): Archaic and recent Ursus miferi quaternari della Grotta del Cere’ (Monti Lessini spelaeus forms from Lombardy and Venetia region - VR) conservati presso il Museo Civico di Storia (North Italy). – Cadernos Lab. Xeológico de Laxe Naturale di Verona. – Thalassia Salentina, 26 (2003) Coruña, 26: 317-323. suppl.: 183-190. Rossi, M., Santi, G. (2002): Gli ursidi dei Covoli di Velo Zorzin, R., Bona, F., Accordini M. (2004): Cave bear (Verona) e di S. Donà di Lamon (Belluno). I – remains from “Covoli di Velo” (Verona-Italy): new Preliminare analisi morfologica e morfometrica dei findings from recent stratigraphic excavations. – resti craniali e mandibolari. – Bollettino del Museo Cahiers Scientifiques, Hors série 2: 135-138. Civico di Storia Naturale di Verona, sez. di Geologia, Zorzin, R., Rossi, M., Santi, G. (in press): Metapodial bones Paleontologia e Preistoria, 26: 33-41. of Ursus from Cerè Cave (Venetia Region, North Italy). Rossi, M., Santi, G. (2005): What differences between Cranium. Ursus deningeri Von Reichenau and Ursus spelaeus Rosenmüller-Heinroth? The bear mandibles from Venetia Region caves (N. Italy). – “V Giornate di Paleontologia” Urbino 20-22 Maggio 2005, Abstracts Manuscript submitted: November 26, 2004 vol., p. 61. Revised manuscript accepted: June 14, 2005

Plate 1: Ursus spelaeus Rosenmüller, 1794. A – Skull V160 (Cerè Cave), dorsal view, B – Skull V 162 (Cerè Cave), dorsal view, C – Man- dible V 4673 (Cerè Cave), internal lateral view, D – Mandible V 2886 (Veja), external lateral view, E – Mandible V 2887 (Veja), internal lateral view, F – Mandible V 9889 B (Covoli di Velo), external lateral view, G – Skull V 161 (Cerè Cave), lateral view.

112 Geo.Alp, Vol. 2, 2005 Geo.Alp, Vol. 2, 2005 113 Geo.Alp, Vol. 2, S. 115–126, 2005

MORPHOMETRY OF THE URSUS SPELAEUS REMAINS FROM VALSTRONA (NORTHERN ITALY)

Alessandro de Carlis1, Enrico Alluvione1, Alessandro Fonte1, Mario Rossi2 & Giuseppe Santi1

With 14 figures and 2 plates

1 Dipartimento di Scienze della Terra, Via Ferrata 1, I-27100 Pavia (Italy); e-mail: [email protected] (corresponding author) 2 Museo Civico di Storia Naturale, Lungadige Porta Vittoria 9, I-37129 Verona (Italy)

Abstract Morphometric analyses on cave bear fossils of the Valstrona-Valsesia region (Piedmont, Northern Italy) (in particular from the Delle Streghe Cave), allow the distinction of at least two or three populations of Ursus spelaeus Rosenmüller, 1794, of different sizes. Elements of smaller size are likely to be found in the Buco dell’Orso Cave (Laglio, Como province, Lombardy), and in the older strata of the Grotta Sopra Fontana Marella –GSFM- (Varese province). Differences in size can be linked to the chronological position of the fossils stud- ied: in fact, fossils of smaller dimensions should be chronologically older, but can also be linked to climatic and thermoregulation factors. The increase of size could represent a response to a cooler climate. An alter- native hypothesis associates this reduction of size to the cooler climatic shift. Observations on the Delle Streghe Cave fossils indicate that they are very similar to those inferred for the GSFM population, linking this trend to climatic variation. The reason for an increase in size could also be linked to the rapid evolution of the cave bears and the Delle Streghe fossils should cover a chronological range approximately similar to the fossils from GSFM.

Introduction bears, U. deningeri and coeval species, and about possible phyletic lines indicated by the fossiliferous During the Late Pleistocene Ursus spelaeus record and by recent mtDNA examination Rosenmüller, 1794 (Rosendhal & Kempe, 2004) col- (Hofreiter et al., 2002, 2004). Currently, radiometric onized a large part of Europe, migrating to the data is only available for a few caves in Northern south (central Italy), towards the west (Spain), and Italy: the best known example is the Grotta Sopra towards the north-west (Great Britain) exhibiting Fontana Marella (Varese Province, Lombardy). For the most numerous morphological and morphome- the other caves (i.e. the Caverna Generosa, Varese trical varieties. Several studies concerning the cave Province) the data are still incomplete (Bona, 2004). bear group, Ursus spelaeus and its ancestor Ursus Radiometric data and aminoacid racemization of deningeri Von Reichenau, 1906 and U. arctos the bear bones from Grotta Sopra Fontana Marella species coeval to U. spelaeus (Rabeder, 1999; provide the following ages: sample FM4 over 26000 Weinstock, 1999; Perego et al., 2001; Rossi & Santi, years BP, FM2, 22310 ±200 years BP and FM1 2001 a, b; Santi & Rossi, 2001; Santi et al., 2003 and 21810±200 years BP (Perego et al., 2001). The others) have allowed several hypotheses to be wealth of discoveries in various caves in Northern advanced about the relationships between cave Italy have shed new light on the distribution of the

115 of bones, deposits were only slightly dis- turbed and analysed in situ.

Fossils from Valstrona have been found inside the caves known as Complesso dell’Intaglio and Caverna delle Streghe, near the Cava Sam - bughetto village. The first of these caves opens out in the upper part of the mar- ble quarry (“Sass Muiè”), it has five entrances and a subcircular small gallery complex correlated with an older level of the water-bearing stratum. The second cave, called Caverna delle Streghe, is the widest cave in Verbania Province. It is composed of a fossil branch presently foliated by water and by a second active branch in the marble eroded by the river (Fig. 2). The water source is from the Chignolo stream that, after having crossed the cave and swelled water from Fig. 1: Geographic position of the Delle Streghe Cave (Valstrona, Piedmont, other tributaries, re-emerges in the Northern Italy). Strona River. vertebrates in this area. In some zones research has The Valsesia fossils are derived from the only just started; one such example is the Valsesia- Mt. Fenera (Fig. 3) caves and mainly from the Valstrona (Piedmont) area (Fig. 1). The aim of this “Ciutarun” and the “Ciota Ciara” cave. The former is paper is to summarize previous results regarding situated at 650 m asl, with a large ogival entrance, these cave bear populations. and it is 55 m long and up to 13 m high. The “Ciota Ciara” is located at an altitude of 685 m asl, it is 57 m long and the difference in levels internally is up Geographical-geological frame of the studied area to 18 m. There are two entrances: a southern, nat- ural and a northwestern entrance which was Valstrona is a narrow valley with a V-shaped pro- formed by the collapse of a part of the vault. This file in its lower reaches while at its head, near Cima cave rises upward from SE-NW and ends towards di Capezzone-Punta del Pizzo (2240 m)-Punta the N (Strobino, 1981). d’Issola (2146 m), it enlarges into a wide cirque. It winds for 20 km to Omegna village where it debouches onto the Orta Lake (Cusio). Near the Materials and methods Sambughetto village some caves have formed via karst processes within the lens of the “Marmo About one thousand Ursus remains currently Valstrona” formation; this lenticular body is interca- stored in the Museo Civico di Storia Naturale di lated between gneisses and micaschists of the “Serie Milano have been analysed. They have been labelled Kinzigitico-sillimanitica”. Inside the caves the osteo- “MCSNM V”, (abbrevation of Museo Civi co di S toria logical material, accompanied by yellow loessic clay, Naturale and V ertebrate), followed by a progressive collects in the lower parts along the side lanes and number. A substantial portion of the skeletons of cavities. This sediment is frequently covered by hard cubs, juveniles and adult elements is represented stalagmitic soil (about 15-20 cm thick), and by grey (Pls. 1-2). The material is rarely complete, especially micaceous and sterile sands interspersed with small- the skull remains, and in particular in the case of er gravel of more recent age linked to the pluvial cubs only skull-caps have been preserved. washing away phase. To ensure good preservation Preservation is generally good, although some

116 Geo.Alp, Vol. 2, 2005 Fig. 2: A – Planimetric scheme and profiles; B – of the Delle Streghe Cave (Cella, 1993, mod.).

Geo.Alp, Vol. 2, 2005 117 Fig. 3: Distribution of the main caves in the Fenera Mt. (Valsesia, Piedmont, Northern Italy). Number 1 is the “Ciutarun”, 2 and 3 refer to the “Ciota Ciara”. (Strobino, 1981, mod.).

Panthera leo spelaea (Goldfuss, 1810) (Fig. 5). Most of the fossils belong to Ursus spelaeus Rosenmüller, 1794, while others with disputed morphological features could be classified as Ursus deningeri Von Reichenau 1906. However we have considered these remains as U. spelaeus on the basis of the broader morphological relationships within this species. Useful morphometric parameters were deduced from Hue (1908), Von den Driesch (1976) and Torres (1988).

Morphometry

KULL Fig. 4: A. Pa thological Ursus bone (specimen MSNM V 4362, S – These fossils, although incomplete, have Delle Streghe Cave). B. Predatory activity traces (specimen some morphometric features that seem to be typi- MSNM V 4097, Delle Streghe Cave). cal of cave bears. They are generally similar in size to examples of U. spelaeus from caves in Spain and slightly larger than those from Caverna delle Ossa traces of erosion can be found in the proximal and (Zandobbio, Bergamo Province, North of Milan). distal ends of limb bones. In addition, some speci- mens showed traces of pathologies (e.g. periarthri- MANDIBLE – The relationship between the trans- tis and pesudoarthrosis) and generic malformations, versal diameter of the condyle and the vertical traces of predator activities (Fig. 4). The presence of diameter (Fig. 6) confirms what has been inferred predators is indicated by the catlike remains inside regarding skull morphometric analysis. The the Delle Streghe fauna with an incomplete right Sambughetto specimens are similar in size to the radius fragment (MSNM V4329) belonging to typical spelaeus (in this paper represented by fossils

118 Geo.Alp, Vol. 2, 2005 from Covoli di Velo Veronese, Verona Province), but they are larger than those from the Buco dell’Orso cave, whose small sizes can be linked to climatic factors (Bergmann’s rule). The dimensions of the mandibular condyle, but especially the height of the mandible below P4, provided additional evi- dence supporting what has been deduced from skull analysis. Comparison between the fossils stud- ied and samples from some Venetia caves (Grotta del Cerè whose population appears to be older, Covoli di Velo Veronese and S. Donà di Lamon) and from Grotta Sopra Fontana Marella –GSFM- (Varese Province, Lombardy), allows us to place the Delle Streghe bears in an intermediate position between ancient and modern forms. These data are also sup- ported by dental surface features. Data referred to the M1 and M2 show the greatest range compared to those of the other specimens considered (Pocala, Equi, GSFM, Covoli di Velo, Buco dell’Orso, Caverna delle Fate, Grotta delle Ossa) and a smaller length/width ratio. This feature could be probably related to local factors and particularly to food preferences. But we cannot exclude that this dif- ference in size may be related to sexual dimor- phism.

HUMERUS – As shown in diagram Fig. 7, the Delle Streghe specimens show similar features to those from GSFM. In fact, the absolute dimensions are similar. The main difference is evident from the Fig. 5: Panthera leo spelaea (Goldfuss, 1810). Specimen MSNM greater deformation of the diaphyses of the V 4329 (Delle Streghe Cave). Right radius. A : External view, analysed remains, and particularly in the more B – Internal view. recent forms due to a smaller antero-posterior diameter.

RADIUS – Data concern- ing the radius seem to confirm what is shown by the humeri. In particular some morphometric rela- tionships (Fig. 8) allow us to affirm that: a) the morphometric character- istics of the specimens studied are comparable with those of the GSFM, b) generally, adult ele- ments can be compared with those from the older and intermediate levels Fig. 6: Relationship between Transversal Diameter of the condyle and Vertical diameter in of the GSFM, while the mandibles of Ursus spelaeus from c

Geo.Alp, Vol. 2, 2005 119 Similar conclusions can be advanced for the ulnae as well.

PISIFORM – Morphometric data referring to pisiform (Fig. 9) have allowed us to distin- guish three clear size ranges: 1) a group with forms comparable to the U. deningeri and U. arctos species from caves in Spain; 2) a second group with elements comparable to the U. spelaeus (smaller sized) from the Buco dell’Orso cave (Laglio, Como province, Lombardy) but more massive, and: 3) a third group with large elements. The hypothesis that U. spelaeus corresponded to the smaller elements is based on the clear speloid mor- Fig. 7: Antero-posterior diameter of the diaphysis (ordinate) and Transversal diameter of the diaphysis (abscissa) relationship in the humeri phology (see Torres, 1988) but they could also of the Ursus spelaeus from Delle Streghe and Grotta Sopra Fontana be females or juvenile forms, or related to a Marella (GSFM) caves. Symbol legend: , Delle Streghe specimens. Grotta cooler climatic phase (Gerhard, 2001). It is Sopra Fontana Marella specimens: L juveniles from FM2, G juveniles more likely that they would be female speci- from FM1, I juveniles from FM4, ∆ adults from FM2, adults from FM1, mens because the points are close to those adults from FM4 and FM2 (Perego et al., 2001 mod.).o from the Buco dell’Orso Cave that are indis- putably adult forms (Santi et al., 2003). The presence of one group of adult medium- to- small sized elements with another group hav- ing medium dimensions is very interesting. In fact, the lack of intermediate forms can be simply related to the quantity of useful data, but also to the actual presence of two sepa- rate populations.

METACARPUS – The morphometric features of the studied remains (Fig. 10a) are very similar to those from the Buco dell’Orso cave (clearly spelaeus). They are of smaller size than the typical spelaeus. When compared with the data from the literature (Di Canzio & Petronio, 2001; Santi et al., 2003), one can conclude Fig. 8: Antero-posterior diameter of the diaphysis (ordinate) and that a female element is probably present Transversal diameter of the diaphysis (abscissa) relationship in the radii of among the II° metacarpus specimens. The dia- the Ursus spelaeus from Delle Streghe and Grotta Sopra Fontana Marella gram relating to the V° metacarpus (Fig. 10b) (GSFM) caves. Asterisks represent the Delle Streghe specimens, for the legend of the other symbols see Fig. 7 (Perego et al., 2001 mod.). shows that three elements are more massive than the others used for comparison. These different morphometric features could depend on younger elements cover the whole time interval, c) dimorphic character or different evolutionary phases. some remains display dimensions similar to the largest among the more recent GSFM forms. Such FEMUR AND TIBIAE - Morphometric data (Fig. 11) an irregular distribution may depend on: 1) sexual show similar features to adult elements from the dimorphism, 2) the presence of elements related to GSFM and the Buco dell’Orso cave. Compared with different evolutionary stages (the smaller sized the GSFM, the studied remains appear to corre- specimens being older, while the larger ones are spond to the temporal arch also covered by the more recent), 3) climatic factors. compared fossils. It is therefore possible that they

120 Geo.Alp, Vol. 2, 2005 Fig. 9: Distribution points of the greatest length and greatest width ratio in the pisiforms of differ- ent Ursus species from caves in Italy and Spain (Santi et al., 2003 mod.).

Fig. 10: a. Distribution points of the greatest length and the smallest diaphyseal width ratio in the II metacarpus of different Ursus species from caves in Italy and Spain . b. Distribution points of the great- est length and the transversal diaphyseal width ratio in the V metacarpus of different Ursus species from caves in Italy and Spain (Santi et al., 2003 mod.). 9 may represent different evolutionary steps within the same population. Fig. 11 also shows the presence of a juvenile element. Similar conclusions are also advanced for the tibiae in comparison with the GSFM and Buco dell’Orso populations.

ASTRAGALUS, SCAPHOID AND METATARSUS – Analogous to proposals for other parts of the skeleton, data concerning the astra- galus (Fig. 12) show more deformed bones than those used for comparison (Buco dell’Orso). The paucity of data inhibits a profound analysis of the scaphoids; never- theless initial analysis seems to confirm 10a observations also advanced for the astra- galus. In addition, morphometric data con- cerning the III metatarsus (Fig. 13) confirm that they belong to the U. spelaeus. Their small size probably indicates the presence of females.

PHALANGES – Generally, the data show morphometric features similar to the Buco dell’Orso bears. The distribution of the points relating to the II phalanx (Fig. 14) shows two clear clouds possibly due to dimorphism.

Concluding remarks

The discovery of an incomplete radius of Panthera leo spelaea (Goldfuss, 1810) next 10b to Ursus specimens, widens the faunistic association of the Delle Streghe cave to

Geo.Alp, Vol. 2, 2005 121 Fig. 11: Antero-posterior diameter of the diaphysis (ordinate) and Transversal diameter of the diaphysis (abscissa) ratio in the femurs of Ursus spelaeus from Delle Streghe and Grotta Sopra Fontana Marella caves. Asterisks indicate the Delle Streghe specimens, for the legend of the other symbols see Fig. 7 (Perego et al., 2001 mod.).

Fig. 12: Greatest length and the thickness relation- ship in the astragali of Ursus spelaeus from caves in Italy.

Fig. 13: Smallest diaphyseal width and the greatest length ratio in the III metatarsus of Ursus spelaeus from caves in Italy and Germany (Santi et al., 2003 mod.).

Fig. 14: Greatest length and the diameter transversal diaphysis relationship in the II phalanx of Ursus spelaeus from caves in Italy.

122 Geo.Alp, Vol. 2, 2005 other nearby caves (Buco dell’Orso Cave, Delle Ossa Di Canzio, E., Petronio, C. (2001): Osservazioni sulla fauna Cave – Zandobbio in Bergamo Province). a vertebrati pleistocenici della Grotta Cola ( Abruzzo, Pathologies are rare, mainly confined to limbs, and Aquila). – Boll. Soc. Paleont. It., 40 (1): 105-114. related to the senescence of the bears. Gerhard, W. (2001): The evolution of metapodial bones in Morphometric data indicate the presence of at least the cave bear group and its biostratigraphical implica- two populations of cave bears characterized by dif- tions. – Cadernos Lab. Xeolòxico de Laxe Coruña, 26 : ferent sizes: the small-size bears are comparable to 365-371. the Buco dell’Orso cave bears and those specimens Hofreiter, M., Capelli, C., Krings, M., Waits, L., Conard, N., from the older levels to the Grotta Sopra Fontana Munzel, S., Rabeder, G., Nagel, D., Paunovic, M., Marella. According to Perego et al. (2001), the dif- Jambresic, G., Meyer, S., Weiss, G., Pääbo, S. (2002): ference in size is related to a different evolutionary Ancient DNA analyses reveal high mitochondrial DNA step of the bear; small size could correspond to sequence diversity and parallel morphological evolu- more ancient forms, namely more primitive ones. tion of late Pleistocene cave bears. – Molecular The increase in size can be linked to a thermoregu- Biology and Evolution, 19 (8):1244-1250. lation factor following Bergmann’s rule (1847): the Hofreiter, M., Rabeder, G., Jaenicke-Deprés, V., Withalm, increase in body size yields an advantage in ther- G., Nagel, D., Paunovic, M., Jambr?sic, G. & Pääbo, S. moregulation. Loss of heat in bodies of large size is (2004): Evidence of reproductive isolation between lower, causing a smaller surface-to-volume ratio. In cave bear population. – Current Biology, 14: 40-43. this manner large sized populations can colonize Hue, E. (1907): Musée ostéologique. Étude de la faune cool regions. Moreover, in the case of the studied quaternaire. Ostéometrie des Mammifères. 2 vol. – bears, an increase in dimensions could also repre- Librairie C. Reinwold, Schleicher Frères Editeurs, Paris. sent a response to a shift towards a cooler climate. Perego, R., Zanalda, E., Tintori, A. (2001): Ursus spelaeus In contrast to these authors, Gerhard (2001) and from Grotta sopra Fontana Marella, Campo dei Fiori Rabeder & Nagel (2001) associate a similar reduc- Massif (Varese, Italy): morfometry e paleoecology. – tion in size to the shift toward cooler conditions Riv. It. Paleont. Strat., 107 (3): 451-462. although this should be observable in high Alpine Rabeder, G. (1999): Die Evolution des Höhlenbären gebis- regions. The similarity between the Grotta Sopra ses. – Mitteilungen der Kommission für Quartär for - Fontana Marella and Delle Streghe Cave fossils leads schung der Österreichischen Akademie der Wissen - us to link this trend to a climatic change, rather schaften, Band II, 102 pp. than to rapid evolution by cave bears. Rabeder, G., Nagel, D. (2001): Phylogenetic problems of the Alpine Cave Bears. – Cadernos Lab. Xeológico de Laxe Coruña, 26: 359-364. Acknowledgments Rosendhal, W., Kempe, S. (2004): Johann Christian Rosen - müller und der Höhlenbär (1794-2004). „Lebensbilder“ The authors thank D. Nagel (Vienna) for useful aus 210 Jahren. – Natur und Mensch 2003: 145-159. advise and critical reading of the manuscript, and G. Rossi, M., Santi, G. (2001 a): Gli ursidi della Grotta Papalia (Pavia) for revision of the English. This study dell’Orso (Laglio, Como, Lombardia, Italia Setten- was supported by a FAR grant contribution. trionale). Analisi morfometrica degli arti: indagine preliminare. – Atti Soc. it. Sc. Nat. Mus. Civ. St. Nat. Milano, 141/2000 (2): 329-336. References Rossi, M., Santi, G. (2001 b): Archaic and recent Ursus spelaeus forms from Lombardy and Venetia region Bergmann, C. (1847): Ueber die Verhaeltnisse der (North Italy). – Cadernos Lab. Xeológico de Laxe Waemeoekonomie der Thiere zu ihrer Groesse. – Coruña, 26: 317-323. Goettinger Studien 3, Pt. 1: 595-708. Santi, G., Rossi, M. (2001): Bears from the Buco dell’Orso Bona, F. (2004): Preliminary analysis on Ursus spelaeus Cave (Laglio-Como, Lombardy-Northern Italy). I: Rosenmüller & Heinroth, 1794 populations from Morphometric study of the cranial and mandibular “Caverna Generosa” (Lombardy-Italy). – Cahiers fossil remains. – Atti Ticinensi di Scienze della Terra, Scientifiques, Hors série 2: 87-98. Pavia, 42: 75-100. Cella, D.G. (1993): Il patrimonio speleologico della Santi, G., Rossi, M., Pomodoro, S. (2003): Cave bears Valstrona. – Labirinti, 13: 2-4. remains from the Buco dell’Orso cave (Lombardy-

Geo.Alp, Vol. 2, 2005 123 Italy). Part III – Morphometric analysis of metapodial dual,formula dentaria y denticion superior: 660-714. bones. – Bull. Inst. Royal Sc. Nat. de Belgique, 73: 195- Vl Denticion inferior: 886-940. 219. Weinstock, J. (1999): The upper Pleistocene mammalian Strobino, F. (1981): Preistoria in Valsesia. Studi sul Monte fauna from the Grosse Grotte near Blauberen Fenera. – Società Valsesiana di cultura. pp.89. (Southwestern Germany). – Stuttgarter Beitr. Naturk., Torres Pérez Hidalgo, T. (1988). Osos (Mammalia, Serie B: 277, 1-49. Carnivora, Ursidae) del pleistocene Ibérico (U. denin- Von den Driesch, A. (1976): A guide to the measurement geri Von Reichenau, U. spelaeus Rosenmüller- of animal bones from archaeological sites. – Peabody Heinroth, U. arctos Linneo). – Boll. Geol. y Min.- l Museum Bullettin, 1: 1-137. Filogenia, distribution stratigrafica y geografica. Estudio anatomico y metrico del craneo: 3-46. ll Estudio anatomico y metrico de la mandibula, hioides, atlas y axis: 220-249. lll Estudio anatomico y metrico del miembro toracico, carpo y metacarpo: 359-412. lV Estudio anatomico y metrico del miembro pelviano, Manuscript submitted: November 26, 2004 tarso, metatarso y dedos: 516-577. V Dentiction deci- Revised manuscript accepted: June 22, 2005

Plate 1: Ursus spelaeus Rosenmüller, 1794. Delle Streghe Cave (Sambughetto Valstrona, Piedmont, North Italy). A – Skull. Specimen MSNM V 4486, dorsal view. B – Skull. Specimen MSNM V 5043, dorsal view. C – Skull. Specimen MSNM V 5041, dorsal view. D – Skull-cap of cub. Specimen MSNM V 4614, dorsal view. E – Skull-cap of cub. Specimen MSNM V 4736, dorsal view. F – Skull-cap of cub. Specimen MSNM V 4721, dorsal view. G - III phalanx. Specimen MSNM V 5028, lateral view. H – Mandible. Specimen MSNM V 5059, internal view. I - Skull. Specimen MSNM V 5043, frontal view. J – I phalanx. Specimen MSNM V 4988, dorsal view. K – Radius. Specimen MSNM V 4331, external view. L – Scapholunar. Specimen MSNM 4781, lateral view. M – Astragalus. Specimen MSNM 4874, dorsal view. N – Femur. Specimen MSNM V 4393, caudal view. O – Radius. Specimen MSNM V 4304, dorsal view.

124 Geo.Alp, Vol. 2, 2005 Geo.Alp, Vol. 2, 2005 125 Plate 2: Ursus spelaeus Rosenmüller, 1794. Delle Streghe Cave (Sambughetto Valstrona, Piedmont, North Italy). A - Calcaneus. Specimen MSNM V 4904, dorsal view. B - IV° metacarpus. Specimen MSNM V 4827, medial view. C – III° metacarpus. Specimen MSNM V 4824, medial view. D – IV° metacarpus. Specimen MSNM V 4828, medial view. E – II° metacarpus. – V° metacarpus. Specimen MSNM V 4845, lateral view.

126 Geo.Alp, Vol. 2, 2005 Geo.Alp, Vol. 2, S. 127–129, 2005

THE ACTIVITIES OF THE LIGABUE STUDY RESEARCH CENTRE ON THE THIRTIETH ANNIVERSARY OF ITS FOUNDATION

Francesco Garofalo1, Fabrizio Bizzarini2, Federica Ferrieri3

With 4 figures

1 Via Monte San Michele 20/A, 30171 Mestre – [email protected] 2 Cannaregio 1269/A, 30121 Venezia 3 Università Ca’ Foscari di Venezia, Dottorato in Studi Iberici, Anglo-Americani e dell’Europa Orientale

Abstract

In 2003 the Ligabue Study Research Centre celebrated its first thirty years of activity with various projects concerning research and scientific promotion: the opening of a new exhibition area in the Venice Museum of Natural History and the creation of a multi-themed exhibition in the Palazzo delle Miniere at Fiera di Primiero (Trento). The new room in the Venice Museum is dedicated to the scientific expedition which took place in the Ténéré Desert between 1971 and 1973. It briefly examines the history of the expedition, which contributed towards the foundation of the Ligabue Study Research Centre. The exhibition “From Meteorites to … to Men” has been staged with the collaboration of the Comprensorio del Primiero (Trento). Theories about biological evolution act as a bond throughout the exhibi- tion: gathering a wide range of exhibits, the exhibition links the evolutionary potentials which can be found in the history of terrestrial organisms to the global evolution of the solar system and to human cultural evo- lution.

Riassunto L’attività del CENTRO STUDI RICERCHE LIGABUE in occasione del trentennale della sua fondazione.

Nel 2003 il Centro Studi Ricerche Ligabue ha celebrato i suoi primi trent’anni di attività con numerose in- iziative nel campo della ricerca e della divulgazione scientifica. Questo secondo aspetto è stato caratterizza- to da due manifestazioni: l’apertura di un nuovo percorso espositivo al Museo di Storia Naturale di Venezia e una mostra politematica presso il Palazzo delle Miniere a Fiera di Primiero. La nuova sala del Museo Veneziano è dedicata alla spedizione scientifica nel deserto del Ténéré, svoltasi negli anni tra il 1971 e il 1973. Riassume brevemente la storia di quella spedizione che stimolò la nascita stessa del Centro Studi Ricerche Ligabue. La mostra “dalle Meteoriti ai Dinosauri…all’Uomo” è stata realizzata in collaborazione con il Comprensorio del Primiero. Le teorie dell’evoluzione biologica fanno da collante all’intero percorso espositivo, che nel riu- nire l’ampia varietà di reperti, collega le potenzialità evolutive riscontrabili nella storia degli organismi terre- stri, all’evoluzione complessiva del Sistema Solare e alla stessa evoluzione culturale umana.

127 In 2003 the Ligabue Study Research Centre cele- permit the exhibitors to engage the public immer- brated its first thirty years of scientific-cultural ac- sively in the history of the Gadoufaoua deposit and tivities with various projects concerning both re- the discovery of the remains of dinosaurs, croco- search and promotion. In particular, the Centre’s diles, turtles, fish and shellfish, as well as vegetable endeavours have been promoted by two exhibitions. finds which are now exhibited inside the showcases On August 9, 2003, the permanent exhibition enti- that complete the exhibition area. Therefore, not tled “From Meteorites to Dinosaurs … to Men” was only the public, particularly young visitors, can ad- opened in the 14th century Palazzo delle Miniere at mire the richness of the exhibited material, but they Fiera di Primiero, while on October 25, 2003 the can also experience the main moments of the first Venice Museum of Natural History, including a expedition with Italian participants dedicated to room called the “Dinosaur Fossil Deposit”, was offi- the research and the study of dinosaurs. cially reopened to the public. This room is dedicated The exhibition “From Meteorites to Dinosaurs… to the scientific expedition conducted in 1973 by to Men” is the result of a collaboration between the the Ligabue Study Research Centre and the Nation- Ligabue Study Research Centre and the seven towns al Museum of Natural History of Paris, and led by of Primiero. It is currently hosted in two rooms of Giancarlo Ligabue and Philippe Taquet. This expedi- the 14th century Palazzo delle Miniere of Fiera di tion enabled the study of the dinosaur fossil de- Primiero, already the venue of an ethnographic mu- posits of Gadoufaoua, in the Ténéré Desert (Niger), seum. The exhibited findings represent a part of whose sands yielded the skeleton of an Oura- those which have been gathered during the activi- nosaurus nigeriensis, now exhibited in Venice. The ties of the Research Centre. The materials come sediments of this deposit belong to the Elrhaz for- from different continents, in addition to various ge- mation, upper Aptian (lower ), and ological eras and historical periods. Their acquisi- formed in a marshy and deltaic environment, which tion by the region of Fiera di Primiero represented was rich in vegetation and populated by dinosaurs, the origin of a small but active scientific museum, crocodiles, pterosaurs and fish. The exhibition area which is clearly separated from similar initiatives in of the Venice Museum enables the visitor to retrace the area, mainly centred on materials of local ori- the history of the expedition, its difficulties and the gin. Therefore, a private collection became a public technologies which were used to save the palaeon- heritage and an instrument for the development tologic material. The central part of the exhibition and the promotion of scientific culture. is dominated by the skeleton of the Ouranosaurus The exhibition includes some fragments of mete- nigeriensis as well as the sizeable skull and the rest orites, which document the origin and the first of the dermic part of the Sarcosuchus imperator, phases of the solar system; various fossilised re- possibly the largest crocodile found to date. The in- mains of different organisms; and two manufac- teractive material and a big central screen for the tured exhibits – a female statuette of Olmecan ori- projection of footage relating to the expedition gin and a fragment of cuneiform writing – which

Fig.1: The ceremony of the new exhibition area at the Venice Fig. 2: An example of the interactive material in the Venetian Museum of Natural History. show room.

128 Geo.Alp, Vol. 2, 2005 constitute evidence of ancient human civilizations. The main theme of the exhibition as a whole is the state of transformation pervading Nature and the possibility of reconstructing the subsequent phases of Natural History through the analysis and the in- terpretation of documents. Man is, at the same time, both the spectator and interested party of Natural History; he is the result of biological evolu- tion as well as of the cultural evolution which emerges in various terms and conditions. In order to organise the exhibition area, it was necessary to start with the chronological sequence of the finds, but we tried to avoid suggesting the idea of a “project” which – according to some peo- Fig. 3: The Miocenic Machairodus giganteus, the sabre-toothed tiger, symbol of the exhibition “From Meteorites to Dinosaurus ple – could act as a background to the evolution of … to Men”. living organisms, a progression from initial simplici- ty towards the ultimate improvement of the organ- tory test, which is conventional for the empirical isms. On the contrary, we emphasised the synchron- sciences. On the contrary, evolutionist biology, ic aspects of evolution, classifying contemporary which adopts the method of historical sciences, be- events on parallel levels of the exhibition. For ex- came the research of those biological traces that ample, in the showcase dedicated to invertebrates, mark the different phases of the history of living we tried to show the evolutionary potential of “life organisms. In this paradigm, palaeontology remains without vertebrates” and underline the structural a field full of potentials, which could provide solu- complexity which has been present since the very tions to some problems concerning the origin and first moments of the explosion of life. In the extinction of the species. Therefore, fossils con- contrast, the evolution of vertebrates is not seen as tain proof of the transformations that constitute a progression towards the colonisation of the emer- the history of life on this planet, petrified remains gent lands, but as a contemporary development of of organisms that lived in a remote past, and which different evolutionary lines, that allowed dinosaurs now, from a show-glass in a small mountain muse- – widely present in the two exhibition rooms – to um, continue to educate us in the “grandeur in this adapt to a great variety of habitats in the Mesozoic view of life”. era. In that period there also appeared the first mammals and birds: in the exhibition, the latter are represented by the rare specimen of Cathayornis. The same period ended with the decline of large reptiles and the subsequent ascendancy of mam- mals. However, the link between the skull of the Cynodont, a small mammal of the Triassic period, and that of the Miocenic Machairodus giganteus, the extraordinary sabre-toothed tiger which is the symbol of the current exhibition, is not at all linear. Similarly, the subsequent appearance of Man does not seem automatic. However, it is only in the light of Darwin’s Theory of Evolution that such phenom- ena find their explanation, even though the new discoveries, which came consecutively in the past hundred and fifty years that separate us from the publication of The Origin of Species, led to an over- all revision of Darwin’s original idea. Unfortunately, Fig. 4: The characteristic skull of mongoliensis, a the confirmation of the exact development of evo- Cretaceous dinosaur, the latest acquisition of the exhibition of lutionary processes will never come from a labora- the Primiero.

Geo.Alp, Vol. 2, 2005 129 Geo.Alp, Vol. 2, S. 131, 2005

THE ORIGIN OF THE PALAEONTOLOGICAL FOSSIL CONCEPT

Nicola Dall’Olio

Provincia di Parma, Piazzale Barezzi 3, 43100 Parma; e-mail: n.dall’[email protected]

In the history of science, the interpretation of limited to the recognition or denial of their organic fossils as petrified remains of living organisms was origin through observation, distinctions, classifica- a first decisive step towards both the development tions and the dividing lines between natural worlds of a dynamic and evolutional conception of geo- and beings (such as that between organic and inor- logical and biological forms, and the adoption of a ganic) are taken for granted. These factors are the temporal perspective on a scale of billions of years. result of a complex theoretical scheme, indeed only In line with an underlying radicalism particularly a few centuries ago they neither existed nor could widespread within the scientific community, the they even be outlined. In the absence of these divid- current definition of the fossil, and the related ing lines, the term fossil, coined by Georg Bauer, attribution of an organic origin to a particular class better known as Georgius Agricola in the 16th cen- of stone objects, are usually seen as assumptions tury, was simply used to describe any object in rock that arose almost automatically when, in the mod- extracted from the subsoil. ern age, natural scientists set aside their religious The poster, with the help of some illustrations dogma and metaphysical speculation and began to from that era, aims to represent the decisive episte- carefully observe the world around them with an mological change which, at the beginning of the open and objective mind, in an attempt to work out 17th century, enabled us to conceive the world of „how things really stood“. Today, the ease and mineral „things“ as distinct from that of organic immediacy with which we recognise the vestiges of „things“, thus providing the essential bases for the what was once a living thing in a spiral object set formulation of a more restrictive palaeontological in rock, lead us to conclude that a careful and concept of fossils. objective observation, free from prejudice or pre- conceived ideas based on mere speculation, is enough to determine the organic origin of fossils References: (or at least most of them) and to clearly distinguish them from other mineral stone objects. Aldrovandi, U. (1648): Museum Metallicum; Ferroni e In light of a historical examination of fossil the- Bernia ed., Bologna. ories developed in Europe between 1500 and 1600, Dall’Olio, N. (2004): Vedere il Tempo. Fossili e strati nella this intuitive and simplified conception of the origin Scienza tra 1600 e 1700. _ MUP ed., Parma. of palaeontology would appear to be incorrect and Morello, N. (1979): La nascita della paleontologia nel unfounded. Although the recognition of a research Seicento: Colonna, Stenone, Scilla. – Franco Angeli, method based on the careful observation of the Milano natural world was fundamental in achieving the Rossi P. (1979): I segni deI Tempo. Storia della Terra e sto- system of classification shared today, this neverthe- ria delle nazioni da Hooke a Vico. – Feltrinelli, Milano less appears to be insufficient from a historical point Rudwick, M.J.S. (1976): The meaning of fossils. Episodes of view. That which is considered an almost logical in the History of Paleontology. – The University of consequence of the adoption of an objective point Chicago Press, Chicago & London of view, would appear rather as the result of assum- Stenone, N. (1667) Canis Carchariae dissecturn caput ing a vast combination of theories on nature and [Trad. it. a cura di N. Morello in Morello, 1979, op. cit.] the workings of the physical world which act as fil- Stenone, N. (1669) De solido intra solidum naturaliter ters and classifiers of the object being examined. contento dissertationis prodromus. – Trad. it. A cura di When the problem of the classification of fossils is A. Mottana, Teknos Ed., Roma 1995.

131 Die neue Veröffentlichungsreihe „Gredleriana" des Naturmuseums Südtirol (Bozen) ist ein Forum für naturwissenschaftliche Forschung in und über Südtirol. Sie stellt eine Kommunikationsplattform dar für alle jene, die in Südtirol forschen oder in der Ferne Südtirol und den alpinen Raum als Ziel ihrer naturwissenschaftlichen Forschung haben. Band 4: 430 Seiten mit Schwerpunkt „Lebensraum Etsch“; 25 Euro Abonnement (1 Band jährlich): 20 Euro