In Y1yq Studies of Suspected Mechanisms of Ddt-Resistance

Total Page:16

File Type:pdf, Size:1020Kb

In Y1yq Studies of Suspected Mechanisms of Ddt-Resistance IN Y1YQ STUDIES OF SUSPECTED MECHANISMS OF DDT-RESISTANCE IN BLATTELLA GERM.ANICA (L.) by George Lawrence Rolof son Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute in partial fulfillment for the degree of DOCTOR OF PHILOSOPHY in Entomology APPROVED: Donald G. Cochran James McD. Grayson Mary H. Ross Ryland E. Webb David A. West Blacksburg, Virginia May 1968 TABLE OF CONTENTS Page I. INTRODUCTION , . 1 II. LITERATURE REVIEW . 3 Early Insecticide Resistance •• . 3 Development of DDT • . 4 Development of DDT Resistance in Houseflies . 6 DDT-Resistance in Cockroaches and Other Insects 13 Inheritance of DDT Resistance . 18 Mode of Action of DDT . ~ . 23 DDT Synergism by Sesamex • • • • . .. 35 III. METIIODS AND MATERIALS . 42 Cockroach Strains • • • • • • 42 Treatment Procedure . 43 Sample Extraction and Cleanup it • • • • • • • • 44 Quantitation of DDT and Metabolites . 47 Thin Layer Chromatography . 48 IV. RESULTS AND DISCUSSION • • • . 50 Toxicological Date • . • • • if • • • 50 DDT Recovery , • • • • • • • • . 52 Penetration . 52 Detoxication • . • • 66 Excretion • • • • • • • • • • • • • • • • • • • 102 Combined Effects • • • ~ • • ~ j • • • • • ~ • ~ • • • • 122 ii iii Page v. STJMMARY 133 VI. REFERENCES CITED . .. 135 VII. VITA. 154 ACKNOWLEDGEMENTS The writer wishes to express his appreciation to Dr. Donald G. Cochran for his helpful criticisms and suggestions throughout the duration of this program. Appreciation is also extended to Dr. Jack L. Bishop for his helpful suggestions in the early part of this work and to Dr. James McD. Grayson for his continuous thoughtful encouragement. The writer is grateful to Drs. Cochran, Graysoni Ross, Webb and West for their critical reading of this manuscript and to Professor Rodney Young for the use of his laboratory and equipment. Appreciation is also extended to Mrs. Jean Dickinson, Mr. J. E. Dunwoody, and Mr. Ty Ku who provided valuable consultation throughout this study. Finally, the writer would like to acknowledge his laboratory assistants, Mrs. Frank Marshall and Mrs. Herbert Thomas, for their faithful work in this project. Recognition is due to Mrs. John Proco for typing this manuscript. iv LIST OF ABBREVIATIONS 1. DDT - 2,2-bis-(p-chlorophenyl)-1,1,1-trichloroethane. 2. DDE ... 2,2-bis-(p-chlorophenyl)-1,1-dichloroethylene. 3. ODA - di(p-chlorophenyl) acetic acid. 4. DBP ... 4,4·' ·dichlorobenzophenone. 5. DDD (TDE) - 2,2-bis-(p-chlorophenyl)-1,1-dichloroethane. 6. dicofol - 2,2-bis-(p-chlorophenyl)-1,1,1-trichloroethanol. 7. sesamex (sesoxane) - acetaldehyde 2·(2-ethoxy-ethoxy) ethyl 3:4 methylene-dioxyphenyl acetal. 8. F-DMC - bis-(p-chlorophenyl)-trifluoromethyl-carbinol. 9. NAD - oxidized nicotinamide adenine dinucleotide. 10. NADPH - reduced nicotinamide adenine dinucleotide phosphate. 11. DMC • bis•(p-chlorophenyl)•methyl-carbinol. v LIST OF FIGURES Figure Page 1. Penetration of 8 ug. of DDT in male and female susceptible- strain German cockroaches . • 56 2. Penetration of 8 ug. of DDT in resistant and susceptible male German cockroaches • . • • 58 3. Penetration of ·30 ug. of DDT in resistant and susceptible German male cockroaches • t • I • e f I e f + • • t t f • • • 60 4. Penetration of 30 ug. of DDT in VPI•DDT-strain male and female German cockroaches . • • • 62 5. Penetration of 30 ug. of DDT in male and female Landsthul- strain German cockroaches . • • 64 6. Penetration of three DDT treatment levels in male VPI- DDT-strain German cockroaches • • • • • • • • • • • • • • • • 67 7. Penetration of two DDT treatment levels in male Landsthul• strain German cockroaches . - . • • • • 69 8. Penetration of 8 ug. of DDT in susceptible-strain male cockroaches pretreated with two different levels of sesamex • • • • • • • • • • • t • • • • • • • • • - • • • • • 71 9. Penetration of 30 ug. of DDT in VPI-DDT•strain male German cockroaches following pretreatment with three levels of sesamex • • • • • • • • • • • • • • • • • • • • •.• 73 10. Penetration of 30 ug. of DDT in Landsthul•strain male German cockroaches following pretreatment with three levels of sesamex • • • • • • • • • • • • • • • • • • • • • • • 75 vi vii Figure Page 11. Conversion of 8 ug. of DDT to dicofol by susceptible•strain male and female German cockroaches . 79 12. Conversion of 8 ug. of DDT to dicofol by male VPI•DDT- and susceptible~strain German cockroaches • . • • • • • • . 81 13. Conversion of 30 ug. of DDT to dicofol in males of two resistant and one susceptible strain of German cockroaches 83 14. Conversion of 30 ug. of DDT to dicofol by male and female VPI•DDT•strain German cockroaches . • • • • • • • • • • • • • 87 15. Conversion of 30 ug. of DDT to dicofol by male and female Landsthul-strain German cockroaches • • • • • • • • • • • • • 89 16. Conversion of the penetra~ed dose from three different DDT treatments to dicofol by VPI-DDT•strain male German cockroaches • • • • • • . .. 91 17. Actual dicofol produced by VPI•DDT•strain male German cockroaches following treatment wi~h three different dosage levels of DDT • • • • • • • • • • • • • • • • • • • · • 93 18. Conversion of 8 ug. of DDT to dicofol by susceptible• strain male German ~ockroaches in the presence of two levels of sesamex • • • • • . Ill • • • • • • • • • 96 19. Conversion of 30 ug. of DDT to dicofol by VPI•DDT•strain male German cockro•ches following pretreatment with three different levels o~ sesamex • • • • • • • • • , • • • • • • • 98 viii Figure 20. Conversion of 30 ug. of DDT to dicofol by Landsthul~strain male German cockroaches following pretreatment with three different levels of sesamex • • • • • • • • • • • • • • • • • 100 21. Excretion of DDT by male and female susceptible-strain German cockroaches following treatment with 8 ug. of DDT per insect • • • • • • • • • • • • • • • • • • • • • • • • • • 104 22. Excretion of DDT by male and female VPI•DDT•strain German cockroaches following a treatment of 30 ug. of DDT per insect • • • • • • • • • • • • • • • • • • • • • • • • • • • • 106 23. Excretion of .DDT by male and female Landsthul-strain German. cockroaches following a 30 ug. treatment of DDT per insect • • 108 24. Excretion of DDT by VPI-DDT- and susceptible-strain male German cockroaches following treatment with 8 ug. of DDT per insect • • • • • • • • • • • • • • • • • • • • • • • • • • 111 25. Excretion of DDT following a 30 ug. DDT treatment by two resistant• and one susceptible-strain of male German cockroaches • • • • • • • • • • • • • • • • • • • • • • • •• 113 26. Excretion of DDT by VPI•DDT-strain male German cockroaches after treatment with three different dosage levels of DDT . ·• • • • • • • • • • • • • • • • • • • • • • • • .. • • 115 27. Actual ug. of DDT excreted by male VPI .. DDT•strain German cockroaches following DDT treatments of three different dosage levels • • • • • • • • • • • • • • • • • • • • • • • • • • • 118 ix Figure 28. Excretion of DDT by susceptible-strain male German cock- roaches following treatment with 8 ug. of DDT in combination with two levels of sesamex • • • • • • • • • • • • • • • • • 120 29. Excretion of DDT by VPI-DDT-strain male German cockroaches following treatment with 30 ug. of DDT in three different combinations with sesamex • • • • • • • • • • • • • • • • • 123 30. Excretion of DDT by Landsthul-strain male German cockroaches following treatment with 30 ug. of DDT in three different combinations with sesamex • • • • • • • • • • • • • • • • • 125 31. Internal DDT concentrations in VPI•DDT•strain male German cockroaches following three different treatments of DDT • • 128 LIST OF TABLES Table Page I. Six-day mortality counts in susceptible-strain male German cockroaches following treatment with 8 ug. of DDT alone and in combination with several levels of sesamex (Ses.) ••• • • 51 II. A typical thin-layer chromatographic confirmatory analysis for DDT and dicofol in internal and excreta sample fractions • 53 III. Penetration of several dosage levels of DDT in resistant and susceptible German cockroaches in presence and absence of sesamex (Ses.) • • • • • • • • • • • • • • • • • • • • • • • • . 54 rv. Detoxication of several dosage levels of DDT in resistant and susceptible German cockroaches in presence and absence of sesamex {Ses.) • • • • • . • • • • • • • • • • • • • • • • • • 78 V. Excretion of DDT by resistant and susceptible German cock• roaches following treatment with several dosage levels of DDT in presence and absence of sesamex (Ses.) • • • • • • • • 103 VI. Internal concentrations of DDT in resistant and susceptible German cockroaches following three different treatment levels and 127 in presence absence of sesamex (Ses.) • • • • • • • • • • • LIST OF TABLES IN APPENDIX. A Table Page I. DDT and dicofol recovered from resistant and susceptible German cockroaches after treatment with 8 ug. of DDT per insect . • • • • • • • • • • • • • • • • • • • • • • 156 II. DDT and dicofol recovered from susceptible German cock· roaches after treatment with sesamex and 8 ug. of DDT per insect • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1S7 III. DDT and dicofol recovered from resistant and susceptible German cockroaches after treatment with 30 ug. of DDT • • • • 158 rv. DDT and dicofol recovered from resistant VPI-DDT-strain German cockroaches after treatment with sesamex and 30 ug. of DDT per insect • • • • • • • • •. • • • • • • • • • • • • • 159 v. DDT and dicofol recovered from resistant Landsthul-strain German cockroaches after treatment with 30 ug. of DDT per insect • • • • • • • • • • • • • • • • • • • • ........ •• 160 VI. DDT and
Recommended publications
  • Toxicity of Pyrethorids Co-Administered with Sesame Oil Against Housefly Musca Domestica L
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY 1560–8530/2007/09–5–782–784 http://www.fspublishers.org Toxicity of Pyrethorids Co-administered with Sesame Oil against Housefly Musca domestica L. SOHAIL AHMED1 AND MUHAMMAD IRFANULLAH Department of Agri-Entomology, University of Agriculture, Faisalabad–38040, Pakistan 1Corresponding author’s e-mail: [email protected] ABSTRACT The susceptibility of a laboratory reared strain of Musca domestica L. to cypermethrin 10 EC, fenpropathrin 20 EC, fenvalerate 20 EC and lambda cyhalothrin 2.5 EC, at different ranges of concentrations (250 to 2500 ppm) of the formulated insecticides in acetone alone and in combination with sesame oil in 1:1 and 1:2 ratio of insecticide: sesame oil was investigated. These concentrations in a volume of 5 mL were added to 25 g of granulated sugar in a petridish. House flies were fed on the insecticide coated sugar for 48 h. Knockdown and mortality data were recorded after 1, 2, 4, 6, 8, 12, 24 and 48 h and subjected to probit analysis. KD50 values of cypermethrin, lambda-cyhalothrin, fenpropathrin and fenvalerate in 1:1 ratio with sesame oil were 4297, 17188, 2324 and 8487 ppm, respectively as compared to 1915, 15034, 2608 and 4005 ppm respectively when these insecticides were applied alone. Similar fashion was seen in context of LC50 values. The pyrethroid + sesame oil combination in two ratios does not show the synergism in M. domestica. Key Words: M. domestica; Pyrethroids; Synergist; Sesame oil INTRODUCTION conventional insecticides as well as against cotton aphid (Aphis gossypii Glover) (Moore, 2005). Sesamin, a lignan Housefly (Musca domestica L.) causes a serious threat occurring in sesame’s seed oil has been reported as synergist to human and livestock health by transmitting many insecticide, antisseptic, bactericide (Bedigian et al., 1985).
    [Show full text]
  • Pesticide Safety & Pesticide Categories
    Pesticide Safety & Pesticide Categories Janet Hurley, & Don Renchie Texas A&M AgriLife Extension Service School IPM What is a pesticide • Any substance or mixture of substances intended for preventing, destroying, repelling, or mitigating any pest. • Any substance or mixture of substances intended for use as a plant regulator, defoliant, or desiccant. • Any nitrogen stabilizer. • A product is likely to be a pesticide if the labeling or advertising: • Makes a claim to prevent, kill, destroy, mitigate, remove, repel or any other similar action against any pest. • Indirectly states or implies an action against a pest. • Draws a comparison to a pesticide. • Pictures a pest on the label. Not considered pesticides Drugs used to control the diseases of humans or animals, which are regulated by the FDA Fertilizers and soil nutrients Certain low-risk substances such as cedar chips, garlic and mint oil are exempted from regulation by EPA (requires license) • 25b classification requires no signal word (mostly food-safe compounds) Pest control devices (i.e., mousetraps) are not pesticides, but subject to labeling requirements There are many kinds of pesticides How insecticides work: Modes of action • Nervous system poisons • Acts on the nerve • Metabolic inhibitors • Affect ability of target to process food • Hormone mimics • Disrupt normal growth & reproduction • Physical poisons • Physically damage insect • Repellents & attractants • All products have been assigned to groups based on their mode of Mode of action: • i.e. pyrethroids are Group 3; Action Neonicotinoids are Group 4A, Spinosad is Group 5, Diamides Classification are Group 28 • Product labels include the number corresponding to the mode of action group.
    [Show full text]
  • Notwendigkeit Der Testung Von Biozidprodukten Und Deren Eluaten
    Environmental Research of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety Project number: (FKZ) 3713 64 417 Report number: [entered by the UBA library] Necessity of testing biocidal products and their eluates within the regulatory authorization pro- cess aiming for an adequate environmental as- sessment of mixtures – extending the database for wood preservative products by Anja Coors 1, Pia Vollmar 1, Frank Sacher 2 1 ECT Oekotoxikologie GmbH, Böttgerstraße 2 – 14, 65439 Flörsheim am Main, Ger- many 2 TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139 Karlsruhe, Germany On behalf of the German Environment Agency Completion date November 2016 Environmental Risk Assessment of Biocidal Products as Mixtures Abstract Biocidal products are formulated preparations that contain one or more active substances and addi- tives added to serve various functions. They thereby represent intentional mixtures of chemical sub- stances that may reach the environment in their initial or in a changed composition. The present pro- ject addressed three aspects in a mixture risk assessment of biocidal products, which is required dur- ing the regulatory authorisation. These aspects range from direct regulatory application (component- based aquatic risk assessment of products) to more science-oriented exploratory work (indication for synergistic interactions and prediction of mixture toxicity in terrestrial organisms). No indication for synergistic interaction was found for the effects of fungicides that inhibit
    [Show full text]
  • Manual for Certificate Course on Plant Protection & Pesticide Management
    Manual for Certificate Course on Plant Protection & Pesticide Management (for Pesticide Dealers) For Internal circulation only & has no legal validity Compiled by NIPHM Faculty Department of Agriculture , Cooperation& Farmers Welfare Ministry of Agriculture and Farmers Welfare Government of India National Institute of Plant Health Management Hyderabad-500030 TABLE OF CONTENTS Theory Practical CHAPTER Page No. class hours hours I. General Overview and Classification of Pesticides. 1. Introduction to classification based on use, 1 1 2 toxicity, chemistry 2. Insecticides 5 1 0 3. fungicides 9 1 0 4. Herbicides & Plant growth regulators 11 1 0 5. Other Pesticides (Acaricides, Nematicides & 16 1 0 rodenticides) II. Pesticide Act, Rules and Regulations 1. Introduction to Insecticide Act, 1968 and 19 1 0 Insecticide rules, 1971 2. Registration and Licensing of pesticides 23 1 0 3. Insecticide Inspector 26 2 0 4. Insecticide Analyst 30 1 4 5. Importance of packaging and labelling 35 1 0 6. Role and Responsibilities of Pesticide Dealer 37 1 0 under IA,1968 III. Pesticide Application A. Pesticide Formulation 1. Types of pesticide Formulations 39 3 8 2. Approved uses and Compatibility of pesticides 47 1 0 B. Usage Recommendation 1. Major pest and diseases of crops: identification 50 3 3 2. Principles and Strategies of Integrated Pest 80 2 1 Management & The Concept of Economic Threshold Level 3. Biological control and its Importance in Pest 93 1 2 Management C. Pesticide Application 1. Principles of Pesticide Application 117 1 0 2. Types of Sprayers and Dusters 121 1 4 3. Spray Nozzles and Their Classification 130 1 0 4.
    [Show full text]
  • Appendix E Papers That Were Accepted for ECOTOX
    Appendix E Papers that Were Accepted for ECOTOX E1. Acceptable for ECOTOX and OPP 1. Aitken, R. J., Ryan, A. L., Baker, M. A., and McLaughlin, E. A. (2004). Redox Activity Associated with the Maturation and Capacitation of Mammalian Spermatozoa. Free Rad.Biol.Med. 36: 994-1010. EcoReference No.: 100193 Chemical of Concern: RTN,CPS; Habitat: T; Effect Codes: BCM,CEL; Rejection Code: LITE EVAL CODED(RTN,CPS). 2. Akpinar, M. B., Erdogan, H., Sahin, S., Ucar, F., and Ilhan, A. (2005). Protective Effects of Caffeic Acid Phenethyl Ester on Rotenone-Induced Myocardial Oxidative Injury. Pestic.Biochem.Physiol. 82: 233- 239. EcoReference No.: 99975 Chemical of Concern: RTN; Habitat: T; Effect Codes: BCM,PHY; Rejection Code: LITE EVAL CODED(RTN). 3. Amer, S. M. and Aboul-Ela, E. I. (1985). Cytogenetic Effects of Pesticides. III. Induction of Micronuclei in Mouse Bone Marrow by the Insecticides Cypermethrin and Rotenone. Mutation Res. 155: 135-142. EcoReference No.: 99593 Chemical of Concern: CYP,RTN; Habitat: T; Effect Codes: CEL,PHY,MOR; Rejection Code: LITE EVAL CODED(RTN),OK(CYP). 4. Bartlett, B. R. (1966). Toxicity and Acceptance of Some Pesticides Fed to Parasitic Hymenoptera and Predatory Coccinellids. J.Econ.Entomol. 59: 1142-1149. EcoReference No.: 98221 Chemical of Concern: AND,ARM,AZ,DCTP,Captan,CBL,CHD,CYT,DDT,DEM,DZ,DCF,DLD,DMT,DINO,ES,EN,ETN,F NTH,FBM,HPT,HCCH,MLN,MXC,MVP,Naled,KER,PRN,RTN,SBDA,SFR,TXP,TCF,Zineb; Habitat: T; Effect Codes: MOR; Rejection Code: LITE EVAL CODED(RTN),OK(ARM,AZ,Captan,CBL,DZ,DCF,DMT,ES,MLN,MXC,MVP,Naled,SFR).
    [Show full text]
  • Appendix I: Bibliography of ECOTOX Open Literature for Tribufos
    Appendix I: Bibliography of ECOTOX Open Literature for Tribufos. Explanation of OPP Acceptability Criteria and Rejection Codes for ECOTOX Data: Studies located and coded into ECOTOX must meet acceptability criteria, as established in the Interim Guidance of the Evaluation Criteria for Ecological Toxicity Data in the Open Literature, Phase I and II, Office of Pesticide Programs, U.S. Environmental Protection Agency, July 16, 2004. Studies that do not meet these criteria are designated in the bibliography as “Accepted for ECOTOX but not OPP.” The intent of the acceptability criteria is to ensure data quality and verifiability. The criteria parallel criteria used in evaluating registrant-submitted studies. Specific criteria are listed below, along with the corresponding rejection code. · The paper does not report toxicology information for a chemical of concern to OPP; (Rejection Code: NO COC) · The article is not published in English language; (Rejection Code: NO FOREIGN) · The study is not presented as a full article. Abstracts will not be considered; (Rejection Code: NO ABSTRACT) · The paper is not publicly available document; (Rejection Code: NO NOT PUBLIC (typically not used, as any paper acquired from the ECOTOX holding or through the literature search is considered public) · The paper is not the primary source of the data; (Rejection Code: NO REVIEW) · The paper does not report that treatment(s) were compared to an acceptable control; (Rejection Code: NO CONTROL) · The paper does not report an explicit duration of exposure; (Rejection Code: NO DURATION) · The paper does not report a concurrent environmental chemical concentration/dose or application rate; (Rejection Code: NO CONC) · The paper does not report the location of the study (e.g., laboratory vs.
    [Show full text]
  • Cphi & P-MEC China Exhibition List展商名单version版本20180116
    CPhI & P-MEC China Exhibition List展商名单 Version版本 20180116 Booth/ Company Name/公司中英文名 Product/产品 展位号 Carbosynth Ltd E1A01 Toronto Research Chemicals Inc E1A08 SiliCycle Inc. E1A10 SA TOURNAIRE E1A11 Indena SpA E1A17 Trifarma E1A21 LLC Velpharma E1A25 Anuh Pharma E1A31 Chemclone Industries E1A51 Hetero Labs Limited E1B09 Concord Biotech Limited E1B10 ScinoPharm Taiwan Ltd E1B11 Dongkook Pharmaceutical Co., Ltd. E1B19 Shenzhen Salubris Pharmaceuticals Co., Ltd E1B22 GfM mbH E1B25 Leawell International Ltd E1B28 DCS Pharma AG E1B31 Agno Pharma E1B32 Newchem Spa E1B35 APEX HEALTHCARE LIMITED E1B51 AMRI E1C21 Aarti Drugs Limited E1C25 Espee Group Innovators E1C31 Ruland Chemical Co., Ltd. E1C32 Merck Chemicals (Shanghai) Co., Ltd. E1C51 Mediking Pharmaceutical Group Ltd E1C57 珠海联邦制药股份有限公司/The United E1D01 Laboratories International Holdings Ltd. FMC Corporation E1D02 Kingchem (Liaoning) Chemical Co., Ltd E1D10 Doosan Corporation E1D22 Sunasia Co., Ltd. E1D25 Bolon Pharmachem Co., Ltd. E1D26 Savior Lifetec Corporation E1D27 Alchem International Pvt Ltd E1D31 Polish Investment and Trade Agency E1D57 Fischer Chemicals AG E1E01 NGL Fine Chem Limited E1E24 常州艾柯轧辊有限公司/ECCO Roller E1E25 Linnea SA E1E26 Everlight Chemical Industrial Corporation E1E27 HARMAN FINOCHEM E1E28 Zhechem Co Ltd E1F01 Midas Pharma GmbH Shanghai Representativ E1F03 Supriya Lifescience Ltd E1F10 KOA Shoji Co Ltd E1F22 NOF Corporation E1F24 上海贺利氏工业技术材料有限公司/Heraeus E1F26 Materials Technology Shanghai Ltd. Novacyl Asia Pacific Ltd E1F28 PharmSol Europe Limited E1F32 Bachem AG E1F35 Louston International Inc. E1F51 High Science Co Ltd E1F55 Chemsphere Technology Inc. E1F57a PharmaCore Biotech Co., Ltd. E1F57b Rockwood Lithium GmbH E1G51 Sarv Bio Labs Pvt Ltd E1G57 抗病毒类、抗肿瘤类、抗感染类和甾体类中间体、原料药和药物制剂及医药合约研发和加工服务 上海创诺医药集团有限公司/Shanghai Desano APIs and Finished products of ARV, Oncology, Anti-infection and Hormone drugs and E1H01 Pharmaceuticals Co., Ltd.
    [Show full text]
  • S41598-020-68561-7.Pdf
    www.nature.com/scientificreports OPEN Prolongation of metallothionein induction combats Aß and α‑synuclein toxicity in aged transgenic Caenorhabditis elegans Dagmar Pretsch1*, Judith Maria Rollinger2, Axel Schmid3, Miroslav Genov 1, Teresa Wöhrer1, Liselotte Krenn2, Mark Moloney4, Ameya Kasture3, Thomas Hummel3 & Alexander Pretsch1 Neurodegenerative disorders (ND) like Alzheimer’s (AD), Parkinson’s (PD), Huntington’s or Prion diseases share similar pathological features. They are all age dependent and are often associated with disruptions in analogous metabolic processes such as protein aggregation and oxidative stress, both of which involve metal ions like copper, manganese and iron. Bush and Tanzi proposed 2008 in the ‘metal hypothesis of Alzheimer’s disease’ that a breakdown in metal homeostasis is the main cause of NDs, and drugs restoring metal homeostasis are promising novel therapeutic strategies. We report here that metallothionein (MT), an endogenous metal detoxifying protein, is increased in young amyloid ß (Aß) expressing Caenorhabditis elegans, whereas it is not in wild type strains. Further MT induction collapsed in 8 days old transgenic worms, indicating the age dependency of disease outbreak, and sharing intriguing parallels to diminished MT levels in human brains of AD. A medium throughput screening assay method was established to search for compounds increasing the MT level. Compounds known to induce MT release like progesterone, ZnSO­ 4, quercetin, dexamethasone and apomorphine were active in models of AD and PD. Thiofavin T, clioquinol and emodin are promising leads in AD and PD research, whose mode of action has not been fully established yet. In this study, we could show that the reduction of Aß and α‑synuclein toxicity in transgenic C.
    [Show full text]
  • (2006.01) A01N 25/32 (2006.01) North Lindbergh Boulevard, St
    ( (51) International Patent Classification: souri 63167 (US). QUECK, Thomas James, Jr.; 800 A01N 25/00 (2006.01) A01N 25/32 (2006.01) North Lindbergh Boulevard, St. Louis, Missouri 63 167 A01N 25/02 (2006.01) A01N 43/66 (2006.01) (US). WELLS, Sheryl; 800 North Lindbergh Boulevard, A01N 25/04 (2006.01) A01P 13/02 (2006.01) St. Louis, Missouri 63 167 (US). SHIEH, Aileen; 800 North Lindbergh Boulevard, St. Louis, Missouri 63 167 (US). (21) International Application Number: PCT/US2020/0 14524 (74) Agent: SAMONEK, Michelle L.; Bayer CropScience LP, 890 Embarcadero Drive, West Sacramento, California (22) International Filing Date: 95605 (US). 22 January 2020 (22.01.2020) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection av ailable) . AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/796,213 24 January 2019 (24.01.2019) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicant: BAYER CROPSCIENCE LP [US/US]; 800 KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, North Lindbergh Boulevard, St. Louis, Missouri 63 167 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (US). OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, (72) Inventors: ESSIG, Kenneth J.; 800 North Lindbergh TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
    [Show full text]
  • Neurotoxicity of Chemicals Commonly Used in Agriculture
    23 Neurotoxicity of Chemicals Commonly Used in Agriculture NIKITA B. KATZ,OLGA KATZ, AND STEVEN MANDEL Key words: assessment, wild plants, rodenticides, heavy metals, organochlo- rides, organophosphates A multitude of chemical agents used in agriculture are known to have signif- icant toxicity, many of them specifically developed to be toxic to animals. This chapter concentrates on the neurological consequences of occupational exposure to these and other common agents, including insecticides, pesti- cides, heavy metals, and volatile organic and plant toxins. A physician in rural practice should be acquainted with the strategies for providing emergency care, especially after acute exposure to potent toxins. Acute exposure is suggested by a set of symptoms that include rapidly devel- oping fatigue, dizziness, nystagmus, disorientation, confusion, hallucination, as well as other neurological presentations (e.g., symptoms of intracranial hypertension such as headache, nausea, or vomiting), muscle fasciculations, seizures, or coma (1). A possibility of occupational exposure must be considered in all agricul- tural workers and their families; however, those who work in a confined space with little or no means of personal protection, who lack the necessary train- ing or sufficient knowledge of the native language, or lack access to industrial hygiene data should be considered likely candidates for a detailed evaluation. Often patients provide the best clues by attributing their medical condition to a specific agent or to the possibility of exposure. Patients may complain that their symptoms were preceded by the presence of a chemical smell or a spill of a chemical. They may also note that their symptoms get worse at the end of the shift, workweek, or season.
    [Show full text]
  • Impact of Agricultural Chemicals on Wetland Habitats and Associated Biota with Special Reference to Migratory Birds: a Selected and Annotated Bibliography C
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange South Dakota State University Agricultural Bulletins Experiment Station 3-1-1991 Impact of Agricultural Chemicals on Wetland Habitats and Associated Biota with Special Reference to Migratory Birds: A Selected and Annotated Bibliography C. F. Facemire Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_bulletins Recommended Citation Facemire, C. F., "Impact of Agricultural Chemicals on Wetland Habitats and Associated Biota with Special Reference to Migratory Birds: A Selected and Annotated Bibliography" (1991). Bulletins. Paper 713. http://openprairie.sdstate.edu/agexperimentsta_bulletins/713 This Bulletin is brought to you for free and open access by the South Dakota State University Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. B 708 Impact of Agricultural Chemicals on Wetland Habitats and Associated Biota with Special Reference to Migratory Birds: A Selected and Annotated Bibliography U.S. Fish and Wildlife Service Region 6 Environmental Contaminants Program North and South Dakota Fish and Wildlife Enhancement Offices South Dakota Cooperative Fish and Wildlife Research Unit and South Dakota Agricultural Experiment Station South Dakota State University Published in accordance with an act passed in 1881 by the 14th Legislative Assembly, Dakota Territory, establishing the Dakota Agricultural College and with the act of re-organization passed in 1887 by the 17th Legislative Assembly, which established the Agricultural Experiment Station at South Dakota State University.
    [Show full text]
  • Circulatory System
    The Circulatory System The circulatory system works for the horse mainly as a mode of transportation. Through the medium of blood, it carries oxygen, nutrients, and water to all of the cells, and carbon dioxide and waste from them. The blood also carries hormones and defense cells, and together with lymph, bathes the cells in fluid and works to maintain the body’s heat. Together with the spleen, which acts as a reservoir of blood cells, the heart and blood vessels form the cardiovascular system. With a proper conditioning plan, this system can be in peak condition in 4 to 6 months, less time than other areas require. There are 3 essential parts to this system of the horse: Blood: • Plasma: fluid portion of blood containing serum and cells which aid in clotting • Red blood cells: produced in bone marrow, contain hemoglobin which carries oxygen and carbon dioxide • White blood cells: defense cells which fight germs in case of disease or injury Heart: • Hollow muscular pump made of cardiac muscle residing within the protective cover of the pericardium • 4 chambers – left and right atria (upper chambers) and left and right ventricles (lower chambers) • Dark red deoxygenated blood, carrying CO2, arrives from the cells via the vena cava (vein) • Collects in right atrium (upper) and is pumped down into right ventricle through one-way valve • Pulmonary artery carries blood to lungs, where CO2 is exchanged for oxygen • Pulmonary vein carries bright red oxygenated blood to left atrium (upper chamber) • After passing through a one-way valve into
    [Show full text]