The Structure and Evolution of Hurricane Elena (1985). Part I: Symmetric Intensification

Total Page:16

File Type:pdf, Size:1020Kb

The Structure and Evolution of Hurricane Elena (1985). Part I: Symmetric Intensification OCTOBER 2005 C ORBOSIERO ET AL. 2905 The Structure and Evolution of Hurricane Elena (1985). Part I: Symmetric Intensification KRISTEN L. CORBOSIERO AND JOHN MOLINARI Department of Earth and Atmospheric Sciences, The University at Albany, State University of New York, Albany, New York MICHAEL L. BLACK Hurricane Research Division, NOAA/AOML, Miami, Florida (Manuscript received 1 December 2004, in final form 17 March 2005) ABSTRACT One of the most complete aircraft reconnaissance and ground-based radar datasets of a single tropical cyclone was recorded in Hurricane Elena (1985) as it made a slow, 3-day anticyclonic loop in the Gulf of Mexico. Eighty-eight radial legs and 47 vertical incidence scans were collected aboard NOAA WP-3D aircraft, and 1142 ground-based radar scans were made of Elena’s eyewall and inner rainbands as the storm intensified from a disorganized category 2 to an intense category 3 hurricane. This large amount of con- tinuously collected data made it possible to examine changes that occurred in Elena’s inner-core symmetric structure as the storm intensified. On the first day of study, Elena was under the influence of vertical wind shear from an upper-tropospheric trough to the west. The storm was disorganized, with no discernable eyewall and nearly steady values of tangential wind and relative vorticity. Early on the second day of study, a near superposition and construc- tive interference occurred between the trough and Elena, coincident with upward vertical velocities and the radial gradient of reflectivity becoming concentrated around the 30-km radius. Once an inner wind maxi- mum and eyewall developed, the radius of maximum winds contracted and a sharp localized vorticity maximum emerged, with much lower values on either side. This potentially unstable vorticity profile was accompanied by a maximum in equivalent potential temperature in the eyewall, deeper and stronger inflow out to 24 km from the eyewall, and mean outflow toward the eyewall from the eye. Within 6–12 h, intensification came to an end and Elena began to slowly weaken. Vorticity and equivalent potential temperature at 850 hPa showed indications of prior mixing between the eye and eyewall. During the weakening stage, an outflow jet developed at the eyewall radius. A strong 850-hPa updraft accompanied the outflow jet, yet convection was less active aloft than before. This feature appeared to represent a shallow, outward-sloping updraft channel associated with the spindown of the storm. 1. Introduction of the time evolution of the inner-core structure of tropical cyclones has been inhibited by the shortage of The dynamics of the inner-core region of tropical continuous observational data. cyclones (defined as the eye, eyewall, and spiral rain- With the general lack of observations spanning a suf- bands within 100 km of the center) are crucial to our ficiently long period of time over which the tropical understanding of hurricane intensity change. It is within cyclone evolves, observational studies of hurricane this region that most of the energy generation and con- structure have commonly gone in one of two directions: version that drives the hurricane circulation takes place 1) case studies or “snapshots” of a hurricane’s structure (Riehl 1950; Ooyama 1969; Emanuel 1986). Despite spanning 1–3 h, or 2) construction of composites over considerable research over the last 50 yr, understanding longer periods, sometimes spanning a day or more. Landmark studies by Marks and Houze (1987), Marks et al. (1992), Franklin et al. (1993), and Reasor et al. Corresponding author address: Kristen L. Corbosiero, Dept. of Earth and Atmospheric Science, The University at Albany, State (2000) have gone the first route by using airborne dual- University of New York, 1400 Washington Ave., Albany, NY 12222. Doppler data to form detailed pictures of the radial and E-mail: [email protected] vertical structure of hurricanes that were strengthening © 2005 American Meteorological Society MWR3010 2906 MONTHLY WEATHER REVIEW VOLUME 133 (Alicia 1983), weakening (Norbert 1984; Olivia 1994), of Mexico while intensifying into a strong category 3 and at peak intensity (Gloria 1985). The second method hurricane (Case 1986). Previous studies on Elena’s was employed by Hawkins and Imbembo (1976), Jor- rainfall pattern (Burpee and Black 1989), interaction gensen (1984b), and Frank (1984) to construct longer- with an upper-level midlatitude trough (Molinari and term time composites of flight-level reconnaissance Vollaro 1989, 1990; Molinari et al. 1995), erratic track data of steady Hurricane Inez (1966), weakening Hur- (Velden 1987), and tangential wind spinup (Willoughby ricane Allen (1980), and rapidly intensifying Hurricane 1990) have provided some details of Elena’s evolution, Frederic (1979). Snapshots of hurricanes show struc- but none of these previous studies has examined the tural detail, but not time change. Composites over evolution of Elena’s inner-core structure with all avail- longer periods optimize data coverage, but might miss able reconnaissance aircraft and ground-based radar some important structural characteristics of intensity data. change. The organization of the paper is as follows. Section 2 Notable exceptions to the above are papers that have gives details of the data used for this study. Section 3 sought to document structural changes in hurricane ki- describes the two compositing methods used to display nematic and thermodynamic fields as intensity changes. the data. Section 4 explores the time evolution of the A series of three papers by Hawkins and Rubsam azimuthally averaged flight-level and ground-based ra- (1968a,b,c) documented the life cycle of Hurricane dar data. Section 5 examines changes in Elena’s radial Hilda (1964) over four consecutive days. Willoughby et and vertical symmetric storm structure that occurred al. (1982) and Willoughby (1990) examined changes in during five composite time periods based on Elena’s the tangential wind profiles of intensifying tropical cy- intensification rate. And finally, section 6 concludes clones that occurred in association with convective with a summary and discussion of the results of this rings. More recently, Kossin and Eastin (2001) noted a study, with an eye toward future work. “regime change” in equivalent potential temperature and relative vorticity in hurricanes between peak inten- 2. Data sity and weakening. a. Flight-level data With the increased spatial resolution in numerical models, the inner-core structure of tropical cyclones is As part of a planned reconnaissance mission to study currently being resolved with greater and greater accu- eyewall replacement cycles in tropical cyclones, the Na- racy. Using the fifth-generation Pennsylvania State tional Oceanic and Atmospheric Administration University–National Center for Atmospheric Research (NOAA) WP-3D N42RF and N43RF aircraft flew six Mesoscale Model (MM5), Braun (2002), Rogers et al. separate reconnaissance missions into Elena, with a to- (2003), and Yau et al. (2004) have simulated realistic tal of 88 radial passes, in the 55 h from 0100 UTC 31 intensification rates and inner-core structures with August to 0800 UTC 2 September 1985. Isobaric height, model grid lengths of 1.3–2 km. However, with large temperature, dewpoint, liquid water content, wind variability in model outcome based on initialization of speed and direction were recorded at 1 Hz by the in- the vortex (Pu et al. 2002), boundary layer scheme strumentation aboard the aircraft (Jorgensen 1984a). (Braun and Tao 2000), and input data quality (Davis The data were transformed by personnel at the Hurri- and Bosart 2002), numerical models alone are not yet cane Research Division (HRD) of NOAA into storm- sufficient to address all of the details of intensity relative coordinates through construction of the cy- change. clone track by the method of Willoughby and Chelmow In the current study, a hurricane will be analyzed (1982) and interpolation of the data to a 0.5-km radial using an unusually large number of observations col- grid using a 2-km overlapping filter window. The result lected over a 55-h period during which significant was a 100–150-km radial profile of the vortex structure changes in storm structure and intensity occurred. The at flight level (850 hPa in Elena) for each radial leg. In goal is to provide a more complete picture of the way addition to the atmospheric quantities collected aboard the inner core of a tropical cyclone evolves in time. Part the aircraft, radial profiles of equivalent potential tem- ⌰ I of this study focuses on the intensification process perature ( e) and the symmetric vertical component of through the examination of axisymmetric fields. A fu- relative vorticity (␨) were calculated, the former using ture paper will concentrate on asymmetric structures the method of Bolton (1980) and the latter from the ץ ץ␨ ϭ ϩ with respect to environmental vertical wind shear and formula Vt /r Vt / r, with a centered differencing on observational evidence for vortex Rossby waves. scheme applied to the local tangential wind (Vt). The storm chosen for this study is Hurricane Elena One possible significant source of error in the flight- (1985), which made a slow anticyclonic loop in the Gulf level thermodynamic data is instrument wetting as de- OCTOBER 2005 C ORBOSIERO ET AL. 2907 scribed by Eastin et al. (2002a,b). Wetting of the tem- perature sensor by cloud droplets or rain can lead to evaporational cooling, spuriously low temperature readings, and the possibility of supersaturated thermo- dynamic profiles. In an attempt to reduce these errors and eliminate supersaturated temperature values, Zipser et al. (1981) proposed the following method: if the dewpoint exceeded the temperature, saturation was assumed and the dewpoint and temperature were set equal to the average of the two values. The thermody- namic data for Hurricane Elena, obtained from HRD, have been adjusted with the Zipser et al. (1981) method (hereafter referred to as the ZML correction). Examining 666 radial legs on which concurrent mea- FIG.
Recommended publications
  • Understanding the Unusual Looping Track of Hurricane Joaquin (2015) and Its Forecast Errors
    JUNE 2019 M I L L E R A N D Z H A N G 2231 Understanding the Unusual Looping Track of Hurricane Joaquin (2015) and Its Forecast Errors WILLIAM MILLER AND DA-LIN ZHANG Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland (Manuscript received 19 September 2018, in final form 5 February 2019) ABSTRACT Hurricane Joaquin (2015) took a climatologically unusual track southwestward into the Bahamas before recurving sharply out to sea. Several operational forecast models, including the National Centers for Envi- ronmental Prediction (NCEP) Global Forecast System (GFS), struggled to maintain the southwest motion in their early cycles and instead forecast the storm to turn west and then northwest, striking the U.S. coast. Early cycle GFS track errors are diagnosed using a tropical cyclone (TC) motion error budget equation and found to result from the model 1) not maintaining a sufficiently strong mid- to upper-level ridge northwest of Joaquin, and 2) generating a shallow vortex that did not interact strongly with upper-level northeasterly steering winds. High-resolution model simulations are used to test the sensitivity of Joaquin’s track forecast to both error sources. A control (CTL) simulation, initialized with an analysis generated from cycled hybrid data assimi- lation, successfully reproduces Joaquin’s observed rapid intensification and southwestward-looping track. A comparison of CTL with sensitivity runs from perturbed analyses confirms that a sufficiently strong mid- to upper-level ridge northwest of Joaquin and a vortex deep enough to interact with northeasterly flows asso- ciated with this ridge are both necessary for steering Joaquin southwestward.
    [Show full text]
  • 19810013173.Pdf
    N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE ^, r7 F- a t ^^ yF { a i lit Technical Memorandum 80596 i zi t Tropical Cyclone Rainfall Characteristics as determined from a Satellite Passive Microwave Radiometer E. B. Rodgers and R. F. Adler Nq A Scf, ^Et1 dtrC'wQre DECEMBER 1979 APR 1991 National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 (NASA—TM-•80596) TOPICAL CYCLONE RAINFALL N81-21703 CHARACTERISTI C S AS DETERMINED FROM A SATELLITE PASSIVE MICBORAVE :RADIOMETER (NAS A) 48 P HC Ana/MF A01 CSCL 04.B UUclaa G 3/47 41970 I. Tropical Cyclone Rainfall Characteristics As Determined From a Satellite Passive Microwave Radiometer Edward B. i odgas and Robert F. Adler Laboratory for Atmospheric Sciences (GLAS) Goddard Space Flight Center National Aeronautics and Space Administration Greenbelt, MD 20771 ABSTRACT Data from the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR-S) have been used to calculate latent licat release (LHR) and other rainfall parameters for over 70 satellite obser- vations of 21 tropical cyclones during 1973, 1974, and 1975 in the tropical North Pacific Ocean. The results indicate that the ESMR-5 measurements can be useful in determining the rainfall charac- teristics of these storms and appear to be potentially use"ul in monitoring as well as predicting their intensity. The ESMR-5 derived total tropical cyclone rainfall estimates agree favorably with pre- vious estimates for both the disturbance and typhoon stages.
    [Show full text]
  • Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs.
    [Show full text]
  • Fishing Pier Design Guidance Part 1
    Fishing Pier Design Guidance Part 1: Historical Pier Damage in Florida Ralph R. Clark Florida Department of Environmental Protection Bureau of Beaches and Coastal Systems May 2010 Table of Contents Foreword............................................................................................................................. i Table of Contents ............................................................................................................... ii Chapter 1 – Introduction................................................................................................... 1 Chapter 2 – Ocean and Gulf Pier Damages in Florida................................................... 4 Chapter 3 – Three Major Hurricanes of the Late 1970’s............................................... 6 September 23, 1975 – Hurricane Eloise ...................................................................... 6 September 3, 1979 – Hurricane David ........................................................................ 6 September 13, 1979 – Hurricane Frederic.................................................................. 7 Chapter 4 – Two Hurricanes and Four Storms of the 1980’s........................................ 8 June 18, 1982 – No Name Storm.................................................................................. 8 November 21-24, 1984 – Thanksgiving Storm............................................................ 8 August 30-September 1, 1985 – Hurricane Elena ...................................................... 9 October 31,
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Appendix 8 Hazard Analysis
    Appendix 8 Hazard Analysis Introduction This appendix includes several components. First is an overall discussion of the Hazard Analysis modeling effort, describing the surge (ADCIRC) and wave (WAM, STWAVE) modeling. That first section is followed by a subsidiary section labeled Appendix 8-1 that defines the many acronyms used in the modeling discussion. This is followed by a major section labeled Appendix 8-2 consisting of the Whitepaper of Donald T. Resio, ERDC-CHL, which forms the basis of the storm statistics and JPM methods discussed in the main body of the report. Owing to its prominence in the discussion, it has, for convenience, been referred to as R2007. Note that R2007, itself, includes several appendices; these are identified as Appendices A-G within Appendix 8-2. Finally, a discussion of the rainfall model is included here as Appendix 8-3. Hazard Analysis The hazard analysis required for the risk assessment was based upon the hurricane modeling conducted by a team of Corps of Engineers, FEMA, NOAA, private sector and academic researchers working toward the definition of a new system for estimating hurricane surges and waves. Following is a discussion of the processes used by this team and the steps taken by the risk team to incorporate the results into the risk analysis. The hurricane hazard definition required as input to the risk analysis involved several steps: 1. Selection of the methodology to be used for estimating surges and waves 2. Determination of hurricane probabilities 3. Production of the ADCIRC grid models for the different HPS configurations. 4. Production of the computer system for development of the large number of hydrographs required by the risk model.
    [Show full text]
  • Assessing Interactions Between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-Sensor Remote Sensing
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2017 Assessing Interactions between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-sensor Remote Sensing Chandan Mostafiz University of Central Florida Part of the Environmental Engineering Commons, and the Water Resource Management Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Mostafiz, Chandan, Assessing" Interactions between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-sensor Remote Sensing" (2017). Electronic Theses and Dissertations, 2004-2019. 5688. https://stars.library.ucf.edu/etd/5688 ASSESSING INTERACTIONS BETWEEN ESTUARY WATER QUALITY AND TERRESTRIAL LAND COVER IN HURRICANE EVENTS WITH MULTI-SENSOR REMOTE SENSING by CHANDAN MOSTAFIZ B.S. Bangladesh University of Engineering and Technology, 2014 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Civil, Environmental, and Construction Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Fall Term 2017 Major Professor: Ni-Bin Chang © 2017 Chandan Mostafiz ii ABSTRACT Estuaries are environmentally, ecologically and environmentally important places as they act as a meeting place for land, freshwater and marine ecosystems. They are also called nurseries of the sea as they often provide nesting and feeding habitats for many aquatic plants and animals.
    [Show full text]
  • Baja Greenhouse Production Takes Big Hit from Hurricane
    - Advertisement - Baja greenhouse production takes big hit from hurricane September 22, 2014 Greenhouses on Mexico's Baja peninsula endured enormous damage from the winds of Hurricane Odile, which delivered its strongest punch Sept. 16 on the southern part of the peninsula. Lance Jungmeyer, president of the Fresh Produce Association of the Americas, located in Nogales, AZ, indicated Sept. 19 that the hurricane "hit southern Baja pretty hard. Reports are still coming in, but the first reports are of 100 percent loss" of the region's produce greenhouses and their crops. Lance Jungmeyer"We may find that not all the crops were lost," Jungmeyer said, adding that the question remained as to what part of these crops might make it to market. "A lot of the roads were washed out" in Baja. 1 / 2 In the key Mexican production states of Sonora and Sinaloa, there was "minor" crop damage and the rainfall was beneficial in replenishing reservoirs. "It's a positive because when you grow in the desert, you need all the water you can get," said Jungmeyer. "Overall, even if Baja loses tomatoes and peppers, Sinaloa and Sonora will pick up the slack" to serve demand. "There will not be supplies like you would normal have but it's not dire unless you were growing in Baja." Jungmeyer said it was wind damage more than rain that devastated Baja. "The wind tore down structures and the plants were ripped to shreds. But maybe some can be salvaged. It was the winds that were really concerning." Initial news reports indicated Baja's winds were 100 miles per hour.
    [Show full text]
  • FLORIDA HAZARDOUS WEATHER by DAY (To 1994) OCTOBER 1 1969
    FLORIDA HAZARDOUS WEATHER BY DAY (to 1994) OCTOBER 1 1969 - 1730 - Clay Co., Orange Park - Lightning killed a construction worker who was working on a bridge. A subtropical storm spawned one weak tornado and several waterspouts in Franklin Co. in the morning. 2 195l - south Florida - The center of a Tropical Storm crossed Florida from near Fort Myers to Vero Beach. Rainfall totals ranged from eight to 13 inches along the track, but no strong winds occurred near the center. The strong winds of 50 to 60 mph were all in squalls along the lower east coast and Keys, causing minor property damage. Greatest damage was from rains that flooded farms and pasture lands over a broad belt extending from Naples, Fort Myers, and Punta Gorda on the west coast to Stuart, Fort Pierce, and Vero Beach on the east. Early fall crops flooded out in rich Okeechobee farming area. Many cattle had to be moved out of flooded area, and quite a few were lost by drowning or starvation. Roadways damaged and several bridges washed out. 2-4 1994 - northwest Florida - Flood/Coastal Flood - The remnants of Tropical Depression 10 moved from the northeast Gulf of Mexico, across the Florida Panhandle, and into Georgia on the 2nd. High winds produced rough seas along west central and northwest Florida coasts causing minor tidal flooding and beach erosion. Eighteen people had to be rescued from sinking boats in the northeast Gulf of Mexico. Heavy rains in the Florida Big Bend and Panhandle accompanied the system causing extensive flooding to roadways, creeks and low lying areas and minor flooding of rivers.
    [Show full text]
  • Downloaded 09/28/21 10:59 AM UTC 1 76 MONTHLY WEATHER REVIEW Vol
    March 1965 Gordon E. Dunn and Staff 175 THEHURRICANE SEASON OF 1964 GORDON E. DUNN AND STAFF* U.S. Weather Bureau Office, Miami, Fla. 1. GENERALSUMMARY spondvery well withthe composite chart for atverage Twelvetropical cyclones,six of hurricaneintensity, departures from nornml for seasons of maxinlum tropical developedover tropical Atlantic waters during 1964. cycloneincidence inthe southeastern United States as This is the largest number since 1955 and compares with developed by Ballenzweig [a]. an average of 10during the past three decades. The September was aneven more active month and cor- centers of four hurricanes penetrated the mainland of the respondence between Ballenzweig'scomposite chrt and United States, the largest number to do so since the five theobserved values was better, particularly south of in 1933. There have been only four other years with four latitude 40' W. According toGreen [3] thesubtropical or more since 1900; four in 1906, 1909, and 1926, and six High was abnornlallystrong and displacedslightly in 1916.While none of thefour renching the mainland northwardfrom normal (favorable for tropical cyclone in 1964 wits :L major hurricane at the time of landfall, formation) while the 700-mb. jet was slightlysouth of three-Cleo, Dora, and EIi1da"were severe. normal (unfavorable). The long-wave position fluctuated Florida was struck by three hurricanes in addition to back and forth from the Rockies and Great Plains east- dyinghurricane Hilda and one tropical cyclone of less ward and the tropical cyclones experienced considerable than hurricane intensity; thus ended an unequalled rela- difficulty in penetrating the westerlies. During the major tively hurricane-free period of 13 years from 1951 through hurricanemonths in 1964 the long-wavetrough failed 1963.
    [Show full text]
  • UA Outputs: SARP Projects Resulting from Funds
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323153373 Resulting from funds leveraged from MOVING FORWARD Adaptation and Resilience to Climate Change, Drought, and Water Demand in the Urbanizing Southwestern United States and Northern... Technical Report · January 2007 CITATIONS READS 0 31 1 author: Robert Varady The University of Arizona 235 PUBLICATIONS 1,974 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Environmental Change Assessments - Current Opinion in Environmental Sustainability - Vol. 21 View project International Water Security Network View project All content following this page was uploaded by Robert Varady on 13 February 2018. The user has requested enhancement of the downloaded file. UA Outputs: SARP Projects LIST OF OUTPUTS Resulting from funds leveraged from MOVING FORWARD Adaptation and Resilience to Climate Change, Drought, and Water Demand in the Urbanizing Southwestern United States and Northern Mexico National Oceanic and Atmospheric Administration Sector Applications Research Program NOAA/SARP Award # NA08OAR4310704 (2008-2010) And INFORMATION FLOWS AND POLICY Use of Climate Diagnostics and Cyclone Prediction for Adaptive Water-Resources Management Under Climatic Uncertainty in Western North America Inter-American Institute for Global Change Research Small Grants Program for the Human Dimensions IAI Project # SGP HD 005 (2007-2009) University of Arizona (UA) February 2011 Robert Varady, PI
    [Show full text]
  • MASARYK UNIVERSITY BRNO Diploma Thesis
    MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories.
    [Show full text]