The Brain Is Contained Within the Cranium, and Constitutes the Upper, Greatly Expanded Part of the Central Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

The Brain Is Contained Within the Cranium, and Constitutes the Upper, Greatly Expanded Part of the Central Nervous System The brain is contained within the cranium, and constitutes the upper, greatly expanded part of the central nervous system. Henry Gray (1918) Looking through the gray outer layer of the cortex, you can see a mass of white matter. At the center is a cluster of large nuclei, including the basal ganglia, the hippocampi, the amygdalae, and two egg-shaped structures at the very center, barely visible in this figure, the thalami. The thalami rest on the lower brainstem (dark and light blue). You can also see the pituitary gland in front (beige), and the cerebellum at the rear of the brain (pink). In this chapter we will take these structures apart and re-build them from the bottom up. 09_P375070_Ch05.indd 126 1/29/2010 4:08:25 AM CHAPTER 5 The brain OUTLINE 1.0 Introduction 127 3.2 Output and input: the front-back division 143 1.1 The nervous system 128 3.3 The major lobes: visible and hidden 145 1.2 The geography of the brain 129 3.4 The massive interconnectivity of the cortex and thalamus 149 2.0 Growing a brain from the bottom up 133 3.5 The satellites of the subcortex 151 2.1 Evolution and personal history are expressed in the brain 133 4.0 Summary 153 2.2 Building a brain from bottom to top 134 5.0 Chapter review 153 3.0 From ‘ where ’ to ‘ what ’ : the functional 5.1 Study questions 153 roles of brain regions 136 5.2 Drawing exercises 153 3.1 The cerebral hemispheres: the left-right division 136 1.0 INTRODUCTION found. While knowledge of the brain is constantly expanding, we will focus on the basics. Our brains give us our biggest evolutionary edge. Cognitive neuroscience inevitably focuses on the Other large mammals have bigger muscles and greater cortex, often considered to involve the ‘ highest level ’ speed, but humans have an exceptionally big and flex- of processing. The cortex is only the outer and vis- ible brain, specialized for excellent vision and hear- ible portion of an enormous brain, one that has devel- ing, language and social relationships, and for manual oped over hundreds of millions of years of evolution. control and flexible executive control. Human brains The word ‘ cortex ’ means bark , since that was how it make culture and technology possible. appeared to early anatomists. While the cortex is vital In this chapter, we look at the structure of the brain, for cognitive functions, it interacts constantly with while in the coming chapters we will cover its func- major ‘ satellite ’ organs, notably the thalamus, basal tions – how it is believed to work. It is important to ganglia, cerebellum, hippocampus, and limbic regions, understand that brain anatomy is not a static and among others. The closest connections are between settled field: new and important facts are constantly the cortex and thalamus, which is often called the tha- being discovered. On the microscopic and nanoscopic lamo-cortical system for that reason. In this core system levels, whole new classes of neurons, synapses, con- of the brain, signal traffic can flow flexibly back and nection patterns, and transmitter molecules have been forth, like air traffic across the earth. Cognition, Brain, and Consciousness, edited by B. J. Baars and N. M. Gage ISBN: 978-0-12-375070-9 © 20102010 Elsevier Ltd. All rights reserved. 127 09_P375070_Ch05.indd 127 1/29/2010 4:08:25 AM 128 5. THE BRAIN The major lobes of cortex are comparable to the make the connections between cortical neurons look earth’s continents, each with its population centers, nat- white to the naked eye. ural resources, and trade relations with other regions. While cortical regions are often specialized, they are 1.1 The nervous system also densely integrated with other regions, using web- like connections that spread throughout the cortex and The brain is part of the nervous system which per- its associated organs. This outer sheet is called the gray vades the human body. The two main parts are the matter from the way it looks to the naked eye. It is the central nervous system (CNS), which includes the outer ‘ skin ’ of the white matter of cortex which appears brain and the spinal cord, and the peripheral nerv- to fill the large cortical hemispheres, like the flesh of a ous system (PNS), which contains the autonomic and fruit. However, this is only appearance. In fact, the gray peripheral sensory and motor system ( Figure 5.1 ). matter contains the cell bodies of tens of billions of Together the CNS and PNS provide a dynamic and neurons that send even larger numbers of axons in all massive communication system throughout all parts directions, covered by supportive myelin cells that are of the body, with a hub at the brain that is accessed filled with white lipid molecules. These white myelin through the spinal cord. We will focus in this chapter sheaths of cortical neurons are so pervasive that they on one part of the CNS, the brain ( Figure 5.2 ). Peripheral nervous Central nervous system (PNS) system (CNS) Brain Cranial nerve Spinal Spinal cord nerve FIGURE 5.1 The central and peripheral nervous systems. FIGURE 5.2 Parts of the central nervous system include the Source : Standring, 2005. spinal cord and the brain. Source : Standring, 2005. 09_P375070_Ch05.indd 128 1/29/2010 4:08:26 AM 1.0 INTRODUCTION 129 In this chapter, we will focus on two sensory and hearing have been most studied in the human input systems within the brain: vision and hearing. brain. We will focus on two output systems, speech Although there are other sensory input systems, such and hand-arm control, again because they have been as olfaction (smell) and somatosensory (touch), vision the target of much study. Throughout this chapter on the brain, we will describe the anatomy of the brain and brain regions and we will also highlight the func- tion they serve. We will begin with discussing the many levels of analysis that we can take in describing the brain – from large-scale regions such as cerebral hemispheres and cortical lobes, to finer-scale classifi- cations, such as cortical layer topography. 1.2 The geography of the brain Let ’s begin with the large-scale brain areas and work our way down to a finer analysis. First, to state the rather obvious, the brain is located in the human head, as depicted in Figure 5.3 . We can look at the brain at different geographical levels – from continents to countries, states, and cities. Thus, we have several levels of detail. The first dis- tinct geographical regions are the two cerebral hemi- spheres, which are entirely separate, joined through a complex connective region called the corpus callosum. We will discuss the hemispheres in more detail later in the chapter: the question of why we have two separate hemispheres in the brain has long intrigued scientists and philosophers alike. Next , we have the cortical lobes ( Figure 5.4 ): there are four lobes in each hemisphere. Beginning at the FIGURE 5.3 The location of the brain in the head, showing a midsagittal view of the right hemisphere. FIGURE 5.4 The four major lobes of the cortex are visible from a lateral view of the brain. Here we show a view of the left hemisphere with the frontal lobe (purple) at the anterior of the brain, the parietal lobe (orange) posterior to the frontal lobe at the superior aspect of the brain, the temporal lobe (blue) posterior to the frontal lobe and inferior to the parietal lobe, and the occipital lobe (yellow) posterior to both the pari- etal and temporal lobes. Just below the occipital lobe is the cerebellum (green), which is not part of the cortex but is visible from most aspects of the brain. Source : Squire et al ., 2003. 09_P375070_Ch05.indd 129 1/29/2010 4:08:30 AM 130 5. THE BRAIN gyrus ntal al lobule fro s centr Med or u Su ara ial ri c pe P fr e ulcus l ri on up tal s u s s or us tal ron s u u s p e g S f l r u I a Parieto-occipital n y or y lc r s ntra r u r ri a y u pa ie c u e r g u c r t re gulate s p l t g l ie a sulcus in su u nta l s l u sul ta l P C lcu S ro n a l cu l l s f r a s s o le e t a r l b r t d c u s n t gyrus id ru n a le late y e r I gu M e n t n g r e fer Cin c e c n g io P t r r e e C p r s a lo c b a o t s P m ul ri s callosum s u e u P a r e rp r t s o us o y a C yr p u l g P g e ta u r n on S r s a u f . I l s r u s io c u C r u t s h fe m m g r A n a ra n y us m I r ulc ior A g s u Pars ter ne s Pos ri Pars opercularis al gyrus Latera lca rus or us l Ca gy P re mp sulc occip s al a triangularis su r te oral ita u gu ra fis rio mp sulc l lc in h l pe r te us u L ip ra u io s po Pars e S r e Collater c t pe us t al su a a u l gyr a lc m orbitalis L S pora us p em n al g id t us u M yr M ulc L ed us mp ral s ial o ior te o cci fer yrus pito In ral g tem po L po Subcallosal area tem atera Oc ral rior l oc cipi gy Infe ci totem rus pito po s tem ral sulcu Uncus poral g yrus Rhinal sulcus FIGURE 5.5 Some important landmarks of the brain in the left hemisphere from a lateral perspective (left panel) and a midsagittal perspective (right panel).
Recommended publications
  • Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection
    Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection This guide is for middle and high school students participating in AIMS Anatomy of the Human Brain and Sheep Brain Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human brain by observing, studying, and examining human specimens. The primary focus is on the anatomy, function, and pathology. Those students participating in Sheep Brain Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. The following topics will be covered: 1. The neurons and supporting cells of the nervous system 2. Organization of the nervous system (the central and peripheral nervous systems) 4. Protective coverings of the brain 5. Brain Anatomy, including cerebral hemispheres, cerebellum and brain stem 6. Spinal Cord Anatomy 7. Cranial and spinal nerves Objectives: The student will be able to: 1. Define the selected terms associated with the human brain and spinal cord; 2. Identify the protective structures of the brain; 3. Identify the four lobes of the brain; 4. Explain the correlation between brain surface area, structure and brain function. 5. Discuss common neurological disorders and treatments. 6. Describe the effects of drug and alcohol on the brain. 7. Correctly label a diagram of the human brain National Science Education
    [Show full text]
  • Reading Speech from Still and Moving Faces: the Neural Substrates of Visible Speech
    Reading Speech from Still and Moving Faces: The Neural Substrates of Visible Speech Gemma A. Calvert1 and Ruth Campbell2 Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/15/1/57/1757731/089892903321107828.pdf by guest on 18 May 2021 Abstract & Speech is perceived both by ear and by eye. Unlike heard regions including the left inferior frontal (Broca’s) area, left speech, some seen speech gestures can be captured in superior temporal sulcus (STS), and left supramarginal gyrus stilled image sequences. Previous studies have shown that in (the dorsal aspect of Wernicke’s area). Stilled speech hearing people, natural time-varying silent seen speech can sequences also generated activation in the ventral premotor access the auditory cortex (left superior temporal regions). cortex and anterior inferior parietal sulcus bilaterally. Using functional magnetic resonance imaging (fMRI), the Moving faces generated significantly greater cortical activa- present study explored the extent to which this circuitry was tion than stilled face sequences, and in similar regions. activated when seen speech was deprived of its time-varying However, a number of differences between stilled and moving characteristics. speech were also observed. In the visual cortex, stilled faces In the scanner, hearing participants were instructed to generated relatively more activation in primary visual regions look for a prespecified visible speech target sequence (‘‘voo’’ (V1/V2), while visual movement areas (V5/MT+) were or ‘‘ahv’’) among other monosyllables. In one condition, the activated to a greater extent by moving faces. Cortical regions image sequence comprised a series of stilled key frames activated more by naturally moving speaking faces included showing apical gestures (e.g., separate frames for ‘‘v’’ and the auditory cortex (Brodmann’s Areas 41/42; lateral parts of ‘‘oo’’ [from the target] or ‘‘ee’’ and ‘‘m’’ [i.e., from Heschl’s gyrus) and the left STS and inferior frontal gyrus.
    [Show full text]
  • Are the Neural Correlates of Consciousness in the Front Or in the Back of the Cerebral Cortex?
    bioRxiv preprint doi: https://doi.org/10.1101/118273; this version posted March 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence Melanie Boly1,2*, Marcello Massimini3,4, Naotsugu Tsuchiya5, Bradley R. Postle2,6, Christof Koch7, Giulio Tononi2* 1 Department of Neurology, University of Wisconsin, Madison, WI, 53705 USA 2 Department of Psychiatry, University of Wisconsin, Madison, WI, 53719 USA 3 Department of Biomedical and Clinical Sciences ‘Luigi Sacco’, University of Milan, Milan, 20157, Italy 4 Instituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, 20148, Italy 6 Department of Psychology, Monash University, Melbourne, 3168, Australia 6 Department of Psychology, University of Wisconsin, Madison, WI, 53705 USA 7 Allen Institute for Brain Science, Seattle, WA, 98109 USA Abbreviated title: Is consciousness in the front versus the back of corteX? Correspondence to: Melanie Boly: [email protected] or Giulio Tononi: [email protected]. Address: 6001 Research Park Boulevard, Madison WI 53719 Number of pages: 25 Number of figures: 5 Number of words for Abstract: 45; number of words for Main teXt: 3750 Conflicts of Interest: The authors declare no conflicts of interest. Acknowledgments: This work was supported by NIH/NINDS 1R03NS096379 (to M.B.), by the Tiny Blue Dot Foundation and the Distinguished Chair in Consciousness Science (University of Wisconsin) (to G.T.), and by the James S.
    [Show full text]
  • Diverging Patterns of Atrophy and Hypometabolism in Syndromic
    Simultaneous PET-MRI studies of the concordance of atrophy and hypometabolism in syndromic variants of Alzheimer’s disease and frontotemporal dementia: an extended case series *Kuven K Moodley1, *Daniela Perani2, Ludovico Minati1,3, Pasquale Anthony Della Rosa4, Frank Pennycook5, John C Dickson6, Anna Barnes6, Valeria Elisa Contarino7, Sofia Michopoulou7, Ludovico D’Incerti7, Catriona Good8, Federico Fallanca2, Emilia Giovanna Vanoli2, Peter J Ell6, and Dennis Chan1 *These authors equally contributed to the work 1Brighton and Sussex Medical School, Falmer, UK 2 Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience IRCCS San Raffaele, Milano, Italy 3Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy 4Institute of Molecular Bio-imaging and Physiology, National Research Council, Milano, Italy 5Open University, Milton Keynes, UK 6Institute of Nuclear Medicine, University College London, London, UK 7Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy 8Hurstwood Park Neurosciences Centre, West Sussex, UK Corresponding Author: Dr Dennis Chan Herchel Smith Building for Brain and Mind Sciences Department of Clinical Neurosciences University of Cambridge Forvie Site, Robinson Way Cambridge CB2 0SZ Email: [email protected] Word count Abstract 278 Main Text 4969 Tables 1 Figures 6 Supplementary Figures 6 1 Abstract Aims. The primary objective was to determine the concordance of brain atrophy and hypometabolism in six syndromic variants of Alzheimer’s disease (AD) and frontotemporal dementia spectrum (FTD). A second objective was to determine the effect of image analysis methods on identification of atrophy and hypometabolism by comparing the changes observed through qualitative rating with those detected by quantitative methods.
    [Show full text]
  • Interaction of Inferior Temporal Cortex with Frontal Cortex and Basal Forebrain: Double Dissociation in Strategy Implementation and Associative Learning
    The Journal of Neuroscience, August 15, 2002, 22(16):7288–7296 Interaction of Inferior Temporal Cortex with Frontal Cortex and Basal Forebrain: Double Dissociation in Strategy Implementation and Associative Learning David Gaffan,1 Alexander Easton,2 and Amanda Parker2 1Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, United Kingdom, and 2School of Psychology, Nottingham University, Nottingham NG7 2RD, United Kingdom Macaque monkeys learned a strategy task in which two groups TSϩAMϩFX cannot be generally attributed to the partial tem- of visual objects needed to be treated differently, one with poral–frontal disconnection that this lesion creates, and there- persistent and one with sporadic object choices, to obtain food fore support the hypothesis that the amnesic effects of this rewards. After preoperative training, they were divided into two lesion are caused primarily by the disconnection of temporal surgical groups of three monkeys each. One group received cortex from ascending inputs from the basal forebrain. The crossed unilateral removals of frontal cortex and inferior tem- results also show that temporal–frontal interaction in strategy poral cortex (IT ϫ FC) and were severely impaired in performing implementation does not require those routes of temporal– the strategy task. The other group received bilateral transection frontal interaction that are interrupted in TSϩAMϩFX, and of anterior temporal stem, amygdala, and fornix (TSϩAMϩFX) therefore support the hypothesis that projections to other pos- and were unimpaired in performing the strategy task. Subse- terior cortical areas allow temporal and frontal cortex to interact quently the same animals were tested in visual object–reward with each other by multisynaptic corticocortical routes in strat- association learning.
    [Show full text]
  • Brown Medical School Biomed 370 the Brain and Human Behavior
    Brown Medical School Biomed 370 The Brain and Human Behavior The Brain and Human Behavior Biomed 370 A first year, second semester course sponsored by the Department of Psychiatry and Human Behavior Course Directors: Robert Boland, M.D. 455-6417 (office), 455-6497 (fax) [email protected] Stephen Salloway, M.D., M.S. 455-6403 (office), 455-6405 (fax) [email protected] Web site available through WebCT Teaching Assistants: Nancy Brim ([email protected]) Marisa Kastoff ([email protected]) Stan Pelosi ([email protected]) Grace Farris ([email protected]) Table of Contents. Overall Course Objectives.....................................................................4 Section 1. Basic Principles. ...................................................................7 Chapter 1. Limbic System Anatomy........................................................8 Chapter 2. Frontal Lobe Function And Dysfunction..............................13 Chapter 3. Clinical Neurochemistry......................................................19 Chapter 4. The Neurobiology Of Memory............................................36 Chapter 5. The Control Of Feeding Behavior .......................................46 Chapter 6. Principles Of Pharmacology................................................51 Chapter 7. Principles Of Neuroimaging.................................................55 Chapter 8. The Mental Status Examination...........................................74 Section 2. The Clinical Disorders.......................................................89
    [Show full text]
  • Experience Sampling During Fmri Reveals Default Network and Executive System Contributions to Mind Wandering
    Experience sampling during fMRI reveals default network and executive system contributions to mind wandering Kalina Christoffa,1, Alan M. Gordonb, Jonathan Smallwoodc, Rachelle Smitha, and Jonathan W. Schoolerc aDepartment of Psychology, University of British Columbia, Vancouver, BC, Canada V6Z 2R8; bDepartment of Psychology, Stanford University, CA 94305; and cDepartment of Psychology, University of California, Santa Barbara, CA 93106 Edited by Michael I. Posner, University of Oregon, Eugene, OR, and approved March 27, 2009 (received for review February 9, 2009) Although mind wandering occupies a large proportion of our there were no online measures of mind wandering taken during waking life, its neural basis and relation to ongoing behavior scanning, it is possible that the observed default network recruit- remain controversial. We report an fMRI study that used experi- ment could be due to factors other than mind wandering. In this ence sampling to provide an online measure of mind wandering vein, Gilbert et al. (9) recently argued that instead of mind during a concurrent task. Analyses focused on the interval of time wandering, activations in the medial PFC part of the default immediately preceding experience sampling probes demonstrate network may reflect stimulus-related thought such as enhanced activation of default network regions during mind wandering, a watchfulness toward the external environment that is also likely to finding consistent with theoretical accounts of default network occur during highly practiced tasks. functions. Activation in medial prefrontal default network regions A key objective of the present study was to provide a direct was observed both in association with subjective self-reports of empirical test for the hypothesis that default network recruitment, mind wandering and an independent behavioral measure (perfor- including medial PFC regions, occurs during the precise moments mance errors on the concurrent task).
    [Show full text]
  • SAY: Welcome to Module 1: Anatomy & Physiology of the Brain. This
    12/19/2018 11:00 AM FOUNDATIONAL LEARNING SYSTEM 092892-181219 © Johnson & Johnson Servicesv Inc. 2018 All rights reserved. 1 SAY: Welcome to Module 1: Anatomy & Physiology of the Brain. This module will strengthen your understanding of basic neuroanatomy, neurovasculature, and functional roles of specific brain regions. 1 12/19/2018 11:00 AM Lesson 1: Introduction to the Brain The brain is a dense organ with various functional units. Understanding the anatomy of the brain can be aided by looking at it from different organizational layers. In this lesson, we’ll discuss the principle brain regions, layers of the brain, and lobes of the brain, as well as common terms used to orient neuroanatomical discussions. 2 SAY: The brain is a dense organ with various functional units. Understanding the anatomy of the brain can be aided by looking at it from different organizational layers. (Purves 2012/p717/para1) In this lesson, we’ll explore these organizational layers by discussing the principle brain regions, layers of the brain, and lobes of the brain. We’ll also discuss the terms used by scientists and healthcare providers to orient neuroanatomical discussions. 2 12/19/2018 11:00 AM Lesson 1: Learning Objectives • Define terms used to specify neuroanatomical locations • Recall the 4 principle regions of the brain • Identify the 3 layers of the brain and their relative location • Match each of the 4 lobes of the brain with their respective functions 3 SAY: Please take a moment to review the learning objectives for this lesson. 3 12/19/2018 11:00 AM Directional Terms Used in Anatomy 4 SAY: Specific directional terms are used when specifying the location of a structure or area of the brain.
    [Show full text]
  • Posterior Cortex Epilepsy: Diagnostic Considerations and Surgical Outcome
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Seizure 18 (2009) 288–292 Contents lists available at ScienceDirect Seizure journal homepage: www.elsevier.com/locate/yseiz Posterior cortex epilepsy: Diagnostic considerations and surgical outcome Tao Yu, Yuping Wang, Guojun Zhang, Lixin Cai, Wei Du, Yongjie Li * Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, China ARTICLE INFO SUMMARY Article history: Purpose: To assess the role of various pre-surgical evaluations in posterior cortex epilepsy (PCE) and its Received 15 January 2008 surgical outcome. Received in revised form 12 November 2008 Methods: A retrospective analysis of clinical and laboratory data from 43 PCE patients referred for Accepted 20 November 2008 surgery was performed. The diagnosis was established by standard pre-surgical evaluation modalities including semiology, MRI, interictal and ictal scalp video-EEG as well as additional intracranial EEG Keywords: monitoring in selected cases. Posterior cortex Results: The 43 patients included 11 parietal lobe epilepsies, 13 occipital lobe epilepsies, and 19 patients Epilepsy surgery with seizures originating from parieto-occipito-posterior temporal cortex. Thirty-three (76.7%) patients Surgical outcome experienced at least one type of aura. Seventeen patients showed complex focal seizures, which were followed by secondarily generalized tonic–clonic seizures in seven of them; eighteen patients predominantly showed simple motor seizures (clonic seizures in 6, tonic seizures in 7, and versive seizures in 5). Long-term visual field deficits were observed in 8 patients. Other transient neurological deficits occurred in 7 patients. All patients received the follow-up study lasting 1–5 years, and achieved Engel’s I in 26 cases, II in 5, III in 5, and IV–V in 7.
    [Show full text]
  • Tutorial: Memory and Memory Problems
    Tutorial: Memory and Memory Problems WHAT IS MEMORY? Memory is one of the central components of human cognition, including the ability to take in information, process it, store it, and subsequently retrieve it when necessary. Thus the core processes of memory are encoding, storage, and retrieval: Encoding: Processing information, organizing it, and marking it for storage Storage: Holding information over time in what is ideally an organized storage system Retrieval: Calling stored information to consciousness Following TBI, both encoding and retrieval can be significantly impaired. However, storage (i.e., keeping information in storage after it has been effectively processed) is often relatively spared. Therefore, if information can be effectively processed and encoded, it is more likely to be retained, even though it may be difficult to retrieve. Video Illustration of Types of Retrieval Memory Processes and Systems Authorities on memory typically explain human memory by drawing a variety of distinctions among different types or aspects of memory. Understanding many of these distinctions is important for staff and family members working with students with memory and learning impairments. Voluntary and involuntary memory: Encoding: Encoding of information for storage in long-term memory can be either involuntary (incidental, implicit) or voluntary (effortful, deliberate, strategic). Involuntary encoding occurs when the goal of the activity is something other than memory or learning, and memory occurs as a bi-product. For example, a young student may remember the names of geometric figures not by trying to memorize them, but rather because he was involved in an art project in which it was important to process the names of the geometric figures in order to complete the project.
    [Show full text]
  • Cortical Connectivity Maps Reveal Anatomically Distinct Areas in the Parietal Cortex of the Rat
    UC Irvine UC Irvine Previously Published Works Title Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat. Permalink https://escholarship.org/uc/item/01d2v835 Journal Frontiers in neural circuits, 8(JAN) ISSN 1662-5110 Authors Wilber, Aaron A Clark, Benjamin J Demecha, Alexis J et al. Publication Date 2014 DOI 10.3389/fncir.2014.00146 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH ARTICLE published: 05 January 2015 NEURAL CIRCUITS doi: 10.3389/fncir.2014.00146 Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat Aaron A. Wilber 1,2*†, Benjamin J. Clark 1,3*†, Alexis J. Demecha 1, Lilia Mesina 1, Jessica M. Vos 1 and Bruce L. McNaughton 1,2 1 Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, AB, Canada 2 Department of Neurobiology and Behavior, University of California, Irvine, CA, USA 3 Department of Psychology, The University of New Mexico, Albuquerque, NM, USA Edited by: A central feature of theories of spatial navigation involves the representation of spatial Charles F.Stevens, The Salk relationships between objects in complex environments. The parietal cortex has long Institute for Biological Studies, USA been linked to the processing of spatial visual information and recent evidence from Reviewed by: single unit recording in rodents suggests a role for this region in encoding egocentric Richard Hahnloser, ETH University Zurich, Switzerland and world-centered frames. The rat parietal cortex can be subdivided into four distinct Ya-tang Li, California Institute of rostral-caudal and medial-lateral regions, which includes a zone previously characterized as Technology, USA secondary visual cortex.
    [Show full text]
  • Memory and the Brain
    CHAPTER 2 Memory and the Brain T he word brain really means different things to different people. In everyday usage, the word brain is nearly synonymous with the word mind. We say that we have something “in our brain that we cannot get out,” meaning we have been thinking about something. You call someone a “brain” if you think that his or her intelligence is that person’s chief char - acteristic. However, underlying this metaphor is the certainty that the brain is the biologi - cal organ responsible for thinking, memory, reasoning, and language. In this chapter, we will explore the science of how the brain produces memory. For a neurosurgeon, the brain is a mass of soft tissue inside the head that has to be han - dled very carefully when damaged. The brain itself has no pain receptors, so neurosurgeons are less concerned about anesthesia than other doctors. However, the brain is surrounded and infused with millions of blood vessels, so surgeons must be very careful when probing around the brain, lest they accidentally induce a hemorrhage. Neurosurgeons understand the critical nature of the human brain for what it is to be human, yet for a surgeon, its iden - tity is a biological tissue. For a cognitive neuroscientist, the brain is a complex assortment of separate areas and regions, each of which has its own unique function. For example, the frontal regions are for planning, thinking, and monitoring, while the back of the brain processes vision. Viewed this way, the brain is not really one organ but many dozens of distinct regions each with its own appearance, its own micro-anatomy, and its own function.
    [Show full text]