Design of a Lorentz, Slotless Self-Bearing Motor for Space Applications
Total Page:16
File Type:pdf, Size:1020Kb
ABSTRACT OF THESIS DESIGN OF A LORENTZ, SLOTLESS SELF-BEARING MOTOR FOR SPACE APPLICATIONS The harsh conditions of space, the stringent requirements for orbiting devices, and the increasing precision pointing requirements of many space applications demand an actuator that can provide necessary force while using less space and power than its predecessors. Ideally, this actuator would be able to isolate vibrations and never fail due to mechanical wear, while pointing with unprecedented accuracy. This actuator has many space applications from satellite optical communications and satellite appendage positioning to orbiting telescopes. This thesis presents the method of design of such an actuator – a self-bearing motor. The actuator uses Lorentz forces to generate both torque and bearing forces. It has a slotless winding configuration with four sets of three-phase currents. A stand-alone software application, LFMD, was written to automatically optimize and configure such a motor according to a designer’s application requirements. The optimization is done on the bases of minimum powerloss, minimum motor outer diameter, minimum motor mass, and minimum length. Using that program, two sample space applications are analyzed and applicable motor configurations are presented. KEYWORDS: Self-bearing Motor, Precision Pointing, Lorentz, Space, Magnetic Bearing Author: Barrett Alan Steele Date: December 13, 2002 Copyright Barrett A. Steele, 2002 DESIGN OF A LORENTZ, SLOTLESS SELF-BEARING MOTOR FOR SPACE APPLICATIONS By Barrett Alan Steele Director of Thesis: Dr. L. Scott Stephens Director of Graduate Studies: Dr. George Huang Date: December 13, 2002 RULES FOR THE USE OF THESIS Unpublished theses submitted for the Master’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments. Extensive copying or publication of the thesis in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky. THESIS Barrett Alan Steele The Graduate School University of Kentucky 2002 DESIGN OF A LORENTZ, SLOTLESS SELF-BEARING MOTOR FOR SPACE APPLICATIONS ______________________________________ THESIS _________________________________________________________ A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering in the College of Engineering at the University of Kentucky By Barrett Alan Steele Lexington, Kentucky Director: Dr. L. Scott Stephens, Professor of Mechanical Engineering Lexington, Kentucky 2002 Copyright Barrett A. Steele, 2002 To All who have made me who I am, This thesis is dedicated to you. Mom and Dad Becca Grandma and Granddad Gee and Pop Family and friends everywhere And God I owe you not only a lifetime of thanks for seeing me through my studies, but also for seeing me through life. Thank you so much for your patience, guidance, teaching, kindness and love. "If I have seen further it is by standing on ye shoulders of Giants." -- Sir Isaac Newton ACKNOWLEDGEMENTS The author wishes to express sincere appreciation to the following, among others: The U.S. Department of Education for supplying the GAANN Fellowship to me during my graduate studies. The U.S. Air Force for funding my graduate research. The entire University of Kentucky Department of Mechanical Engineering Faculty and Staff for their assistance throughout my term as a student of that department. Airex Corporation, and particularly Jim Sedgewick and David Carroll, for their continued support and interest in our research. The entire University of Kentucky Bearings and Seals Laboratory, particularly Kathy, Hooi Mei, Zhaohui, and Daegon, for their research assistance and friendship. Dr. L. Scott Stephens for his assistance in the preparation of this manuscript and for being my teacher and mentor for over three years. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS............................................................................................................. iii LIST OF TABLES .............................................................................................................................vi LIST OF FIGURES ..........................................................................................................................vii LIST OF FILES..................................................................................................................................ix CHAPTER ONE : Introduction.......................................................................................................1 PROBLEM DEFINITION........................................................................................................................1 BACKGROUND....................................................................................................................................3 Maxwell Forces.............................................................................................................................6 Lorentz Forces ..............................................................................................................................7 Combined Motor-Bearings...........................................................................................................8 OBJECTIVES........................................................................................................................................8 CHAPTER TWO : The Motor Design ............................................................................................9 A GENERAL OVERVIEW.....................................................................................................................9 The Rotor.......................................................................................................................................9 The Stator ....................................................................................................................................10 DESIGN DETAILS..............................................................................................................................12 Force and Torque Production....................................................................................................12 DESIGN METHODS............................................................................................................................17 Assumptions and Special Design Considerations......................................................................17 Optimization Methods.................................................................................................................18 LFMD, An Automated Design Program ....................................................................................20 The Screening Process................................................................................................................24 CHAPTER THREE : The Design Procedure...............................................................................30 A TEST RIG ......................................................................................................................................30 Construction................................................................................................................................30 Characterization .........................................................................................................................33 THE PROCEDURE ..............................................................................................................................34 Quick Analysis.............................................................................................................................34 iv Detailed Optimization.................................................................................................................37 THE DESIGN EQUATIONS .................................................................................................................44 The Unimodality Assumption .....................................................................................................61 BENCHMARKING THE DESIGN PROCESS...........................................................................................63 CHAPTER FOUR : Application to Space Problems....................................................................73 CHAPTER FIVE : Summary and Conclusions ............................................................................77 SUMMARY ........................................................................................................................................77 CONCLUSIONS ..................................................................................................................................78 FUTURE WORK.................................................................................................................................78 INDEX ................................................................................................................................................80 REFERENCES..................................................................................................................................81 VITA ...................................................................................................................................................83