The Evolution of Permanent

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Permanent TECHNICAL ARTICLE AS PUBLISHED IN The Journal January 2018 Volume 136 Part 1 If you would like to reproduce this article, please contact: Alison Stansfield MARKETING DIRECTOR Permanent Way Institution [email protected] PLEASE NOTE THE OPINIONS EXPRESSED IN THIS JOURNAL ARE NOT NECESSARILY THOSE OF THE EDITOR OR OF THE INSTITUTION AS A BODY. TECHNICAL The evolution of AUTHOR: Charles E. Lee permanent way Associate Fellow PWI PAPER READ TO THE PERMANENT WAY INSTITUTION, LONDON, ON MONDAY MARCH 8TH 1937. PART 5 This seems to be the period that the word renewed. This was done on a new plan; and it railway came into use on Tyneside. The “Term is now acknowledged to be the most complete This is the fifth and final part of this Reports” for 1798 give details of an appeal in Britain. The sleepers are very broad, and fascinating paper. I have not edited this against a poor rate assessed on “a piece or only 18 in. from centre to centre. A rail of paper due to its historical nature. parcel ground called a wagon-way situate at foreign fir, 4 in. Square, is pinned down to Wallsend and leading from a colliery there to them and another rail, of the same dimensions, Returning to the main channel of development, the River Tyne.” In this report is the following is laid over it, and the whole well beat up in we find that, after the introduction of cast-iron statement: “The appellants . made and laid good clay; on the top of the upper rail is laid facings on wagon-ways, the next step was to a wagon-way in, through, and over . .and to a bar of malleable iron, of 1¾ in. breadth; and eliminate the timber longitudinals and cast the complete it they erected a bridge, and also in nearly ¾ in. thick. The wagons have cast iron whole rail as iron. Here the pioneer seems many places removed the soil and levelled to wheels, 27½ in. diam., and are supposed to to have been William Jessop who devised a rising ground, and for the whole length of the weigh altogether about a ton.” Tredgold3 tells rail 3 ft. long called the edge rail, of which the way in the line, as the same was staked out to us that the Alloa colliery railway was about running surface was level but the under edge them, they put and placed sleepers or dormant 2½ miles long, and that one horse drew eight was elliptical, a form frequently called fish- timbers below the surface of the soil, and to loaded wagons of which contained a ton of bellied. It seems that the first rails of this kind the sleepers or dormant timbers they affixed coal. He said, however, that the line was laid were cast in 1788 and were laid on a railway rail-ways or wagon-ways.” In a similar case1 in with cast-iron rails, so presumably the wrought- between the canal dock at Loughborough 1787 the word used is “wagon-way” only, and iron strips laid on timber were later replaced by and Nanpanton, which opened in June 1789. there is no mention of “rail-way.” complete rails of cast-iron. This line, which was of 4 ft. 8½ in. gauge, afterwards became a link in a chain of canal The next stage in the development of Complete wrought-iron rails were probably and railway communications serving the iron rails took place in Scotland, and it is first used on the railway at Sir John Hope’s Charnwood Forest district. See image 1. therefore convenient here to notice briefly collieries at Pinkie which was laid by George the introduction of railways in that country. In Grieve; the rails were simple 1¼ in. bars. The According to Nicholas Wood, the first iron comparison with other parts of Great Britain, Mechanics Magazine of December 25, 1824, railway in the North of England was built in little has been written on the subject of the very quoting from The Scotsman said: “The wagons 1797 by Thomas Barnes on the line from early days of rail transport in Scotland, and generally used run upon four wheels of from Lawson Main colliery (Walker) to the River it is not generally realised that the beginning two to three feet diameter, and carry from 20 to Tyne. Stone blocks were used instead of railway construction north of the Border 50 cwt. Four or five of them are drawn by one of wooden sleepers, and both these and dates from the early years of the eighteenth horse. On the dead level railway, constructed fish-bellied rails were novelties to the century. As in other parts of the world, the first by Mr John (sic) Grieve for Sir John Hope, near neighbourhood of Newcastle. Barnes played a Scottish railways were wagon tracks laid to Musselburgh, which is one of the most perfect leading part in the advancement of both railway facilitate local goods traffic consisting chiefly in Britain, a single horse draw five loaded and mining practice in the North, and would of coal and iron. The first line appears to have wagons, each containing 30 cwt. Of coals, at probably have become one of the great names been one from the coal mines of Tranent to a rate of four miles an hour – in all seven tons of the early nineteenth century had he not died the small harbour of Cockenzie on the Firth and a half, exclusive of the waggons, which at Walker in 1801 at the age of 36. of Forth, which was laid down in 1722. The weigh three tons more.” route passed close to the scene of the battle of Prestonpans, at which point it was carried Wrought-iron rails of a stronger kind were on an embankment across the marsh, and at used4 by Mr Neilson of Glasgow for a railway the time of the rising of Prince Charles Edward on the property of the Earl of Glasgow, in 1745 a portion of this line was selected by beginning at the Hurlet coal and lime works General Cope as a position for his cannon. The and running some 2½ miles to the Paisley original wooden rails are stated to have been Canal. These rails were 2¼ in. deep, ¾ in. replaced by iron in 1815, but this was by no thick, and 9 ft. long, supported every 3 ft.; the means the first use of iron rails in Scotland. wagons carried about 35 cwt. The wrought-iron rail thus appears to be one of the contributions Another Scottish wagon-way deserving of its of Scotland to railway progress, and, place in history is one laid down at Alloa, on the Firth of Forth, in 1768. According to Sir Although it was introduced north of the Border John Sinclair’s “Statistical Account of Scotland” only in a primitive form, Scottish experience 2 this “proved to be so great an advantage, was directly responsible for the invention of that it induced the proprietor to extend it to John Birkinshaw’s famous rail that made the the Collyland in 1771 . In 1785 the Alloa use of wrought-iron a practical proposition. Image 1: Edge rail 1789 (Newbold wagon-way was worn out, and required to be Heritage Rail Group) 20 TECHNICAL For much of our information on early Scottish expected upon the Edinburgh Railway, two sets induced greater friction than edge rails and railways we are indebted to a lengthy report of wheel-tracks will require to be laid – one for were more liable to get clogged with gravel and prepared by Robert Stevenson, the famous the wagons or carriages coming to town, and small stones. I think that the remark about plate Scottish civil engineer and lighthouse builder. another for those going to the country. This rails being used by the earlier railways must be Having been commissioned at a public meeting double railway, with the necessary allowance interpreted as referring to public railways – the on September 3, 1817, he submitted this report for driving-paths, etc., will occupy at least 20 ft. subject with which Stevenson was dealing. in 1818 on a scheme called the Edinburgh of space in the cross section viz., 4 ft. 3 in. for On the subject of wrought-iron rails, Robert Railway which was presented to His Grace the each set of tracks; a space of 4 ft. between the Stevenson’s Edinburgh report stated that the Duke of Buccleuch and Queensbury and other respective wagon-ways; and 3 ft. 9 in. on each application of wrought-iron instead of cast-iron subscribers to the survey of a railway from the side for a driving-path, fences and gutters. The rails was likely to be attended with the most coalfield of Midlothian to the City of Edinburgh horse-paths, or spaces between the wagon important advantages to the railway system, and the port of Leith. He mentioned the name tracks of the railway, as proposed above, will and added that 3½ miles of this description of the late Mr. Jessop who was “the engineer be 4 ft. 3 in. in breadth or the width of the of line had been in use for about eight years for the magnificent works of His Grace the square part of the common cart axle, it being (therefore from about 1810) on Lord Carlisle’s Duke of Portland in Scotland, connected also a great advantage for the convenience works at Tindale Fell, near Brampton in with which there was a double railway from of loading, etc., and for the stability of the Cumberland, where there were also two miles Kilmarnock to Troon, which is ten miles in railway, to have broad and rather low wagons.
Recommended publications
  • Annual Report of the Board of Regents of the Smithsonian Institution
    THE DEVELOPMENT OF THE AMERICAN RAIL AND TRACK, AS ILLUS- TRATED BY THE COLLECTION IN THE U. S, NATIONAL MUSEUM. By J. Elfreth Watkins, Curator of the Department of Transportation and Engineering. In the brief report upon the section of steam transportation for the year 1887, a statement was made to the effect that considerable in- formation had been secured which it was hoped to use "in preparing- a series of models to illustrate the beginnings and development of the English and American systems of track. "While illustrated histories of the steamboat and locomotive are numerous, I am not aware that any systematic attempt has been made to preserve the history of the development of the systems of permanent way which, after many years of experiment, are now being reduced to a series of standards depending on the traffic." (Report of U. S. National Museum, 1887, p. 79.) These expectations were realized to a sufficient extent to warrant the preparation of the series of original rail sections, models, and drawings to illustrate the origin and development of American perma- nent way for the Exposition at Cincinnati in 1888. The interest manifested in that collection led me to present a paper entitled "The Development of the American Rail and Track" at the annual convention of the American Society of Civil Engineers, at Sea Bright, New Jersey, June 21, 1889. This will appear in the transac- tions of that society during the coming year.* At the conclusion of that paper I took occasion to state that in its preparation " I preferred to confine myself to a description of such rails as are represented by original sections, models, or drawings in the section of transportation and engineering in the U.
    [Show full text]
  • How Did George Stephenson Change Lives?
    How did George Stephenson change lives? Timeline 1812 1825 1829 1850 1863 1863 1879 1912 1938 1964 Invention of The first George Luxury steam ‘The flying The The first First diesel Mallard The first high trains with soft the steam railroad opens Stephenson Scotsman’ Metropolitan electric locomotive train speed trains train in Britain seats, sleeping had its first is opened as train runs in invented run in Japan. invents ‘The and dining journey. the first presented Switzerland ‘The bullet Rocket’ underground in Berlin train railway (Germany) invented’ Key Vocabulary Famous figures The Flying diesel These locomotives burn diesel as fuel and Scotsman is a were far more powerful than previous George Stephenson (1781-1848) steam train that steam locomotives. He worked on the development of ran from Edinburgh electric Powered from electricity which they collect to London. railway tracks and bridge building from overhead cables. and also designed the ‘Rocket’ high-speed Initially produced in Japan but now which won the Rainhill Trials in international, these trains are really fast. The Mallard holds 1829. It was the fastest steam locomotive Engines which provide the power to pull a the record for the locomotive of its time, reaching 30 whole train made up of carriages or fastest steam train miles an hour. Some people were wagons. Rainhill The Liverpool and Manchester railway at 126 mph. scared of the train as they felt it Trials competition to find the best locomotive, could be dangerous to go so fast! won by Stephenson’s Rocket. steam Powered by burning coal. Steam was fed The Bullet is a into cylinders to move long rods (pistons) Japanese high The Rocket and make the wheels turn.
    [Show full text]
  • the Swindon and Cricklade Railway
    The Swindon and Cricklade Railway Construction of the Permanent Way Document No: S&CR S PW001 Issue 2 Format: Microsoft Office 2010 August 2016 SCR S PW001 Issue 2 Copy 001 Page 1 of 33 Registered charity No: 1067447 Registered in England: Company No. 3479479 Registered office: Blunsdon Station Registered Office: 29, Bath Road, Swindon SN1 4AS 1 Document Status Record Status Date Issue Prepared by Reviewed by Document owner Issue 17 June 2010 1 D.J.Randall D.Herbert Joint PW Manager Issue 01 Aug 2016 2 D.J.Randall D.Herbert / D Grigsby / S Hudson PW Manager 2 Document Distribution List Position Organisation Copy Issued To: Copy No. (yes/no) P-Way Manager S&CR Yes 1 Deputy PW Manager S&CR Yes 2 Chairman S&CR (Trust) Yes 3 H&S Manager S&CR Yes 4 Office Files S&CR Yes 5 3 Change History Version Change Details 1 to 2 Updates throughout since last release SCR S PW001 Issue 2 Copy 001 Page 2 of 33 Registered charity No: 1067447 Registered in England: Company No. 3479479 Registered office: Blunsdon Station Registered Office: 29, Bath Road, Swindon SN1 4AS Table of Contents 1 Document Status Record ....................................................................................................................................... 2 2 Document Distribution List ................................................................................................................................... 2 3 Change History .....................................................................................................................................................
    [Show full text]
  • Railway and Canal Historical Society Early Railway
    RAILWAY AND CANAL HISTORICAL SOCIETY EARLY RAILWAY GROUP Occasional Paper 255 [ editor’s note: this paper is in reply to a query in Circular 37: “Charnwood Forest Canal tramway rails. The following enquiry is from Michael Gillingham via Wendy Freer: I wondered if you would be able to give me any leads on some of my investigations re the cast iron fish belly rails that are said to have been used on the tram road at Nanpantan. It is said that this was the first time edge rails were used! …” And see the related notes on the Kidderminster rail in Circular 37 and Railway & Canal Historical Society, Early Railway Group Occasional Paper [ERG OP]256, Rowan Patel, ‘Butterley Company Edge Rails: their use at Belvoir Castle and elsewhere’. ____________________________ The Leicester Navigationʼs Forest Line: a myth debunked Michael Lewis One of the least successful projects of the Canal Mania was the Charnwood Forest Line of the Leicester Navigation, which was intended to bring coal from pits around Coleorton to the main waterway at Loughborough. It was to be a hybrid transport route, with railways on the steeper stretches at each end but a canal on the level central portion. “The bodies of the Trams were made to lift off, or to be placed on their wheels, by means of cranes” and stowed in canal boats1: an early instance of containerisation. And not only was the system a fiasco, but there are few early railways whose story has been more befogged by misinformation and misinterpretation. Although the general outline was elucidated in an invaluable paper of 19552, until recently the nature of the rails has remained obscure, for none has been found in the field.
    [Show full text]
  • Archaeology in Northumberland Friends
    100 95 75 Archaeology 25 5 in 0 Northumberland 100 95 75 25 5 0 Volume 20 Contents 100 100 Foreword............................................... 1 95 Breaking News.......................................... 1 95 Archaeology in Northumberland Friends . 2 75 What is a QR code?...................................... 2 75 Twizel Bridge: Flodden 1513.com............................ 3 The RAMP Project: Rock Art goes Mobile . 4 25 Heiferlaw, Alnwick: Zero Station............................. 6 25 Northumberland Coast AONB Lime Kiln Survey. 8 5 Ecology and the Heritage Asset: Bats in the Belfry . 11 5 0 Surveying Steel Rigg.....................................12 0 Marygate, Berwick-upon-Tweed: Kilns, Sewerage and Gardening . 14 Debdon, Rothbury: Cairnfield...............................16 Northumberland’s Drove Roads.............................17 Barmoor Castle .........................................18 Excavations at High Rochester: Bremenium Roman Fort . 20 1 Ford Parish: a New Saxon Cemetery ........................22 Duddo Stones ..........................................24 Flodden 1513: Excavations at Flodden Hill . 26 Berwick-upon-Tweed: New Homes for CAAG . 28 Remapping Hadrian’s Wall ................................29 What is an Ecomuseum?..................................30 Frankham Farm, Newbrough: building survey record . 32 Spittal Point: Berwick-upon-Tweed’s Military and Industrial Past . 34 Portable Antiquities in Northumberland 2010 . 36 Berwick-upon-Tweed: Year 1 Historic Area Improvement Scheme. 38 Dues Hill Farm: flint finds..................................39
    [Show full text]
  • The Evolution of the Steam Locomotive, 1803 to 1898 (1899)
    > g s J> ° "^ Q as : F7 lA-dh-**^) THE EVOLUTION OF THE STEAM LOCOMOTIVE (1803 to 1898.) BY Q. A. SEKON, Editor of the "Railway Magazine" and "Hallway Year Book, Author of "A History of the Great Western Railway," *•., 4*. SECOND EDITION (Enlarged). £on&on THE RAILWAY PUBLISHING CO., Ltd., 79 and 80, Temple Chambers, Temple Avenue, E.C. 1899. T3 in PKEFACE TO SECOND EDITION. When, ten days ago, the first copy of the " Evolution of the Steam Locomotive" was ready for sale, I did not expect to be called upon to write a preface for a new edition before 240 hours had expired. The author cannot but be gratified to know that the whole of the extremely large first edition was exhausted practically upon publication, and since many would-be readers are still unsupplied, the demand for another edition is pressing. Under these circumstances but slight modifications have been made in the original text, although additional particulars and illustrations have been inserted in the new edition. The new matter relates to the locomotives of the North Staffordshire, London., Tilbury, and Southend, Great Western, and London and North Western Railways. I sincerely thank the many correspondents who, in the few days that have elapsed since the publication: of the "Evolution of the , Steam Locomotive," have so readily assured me of - their hearty appreciation of the book. rj .;! G. A. SEKON. -! January, 1899. PREFACE TO FIRST EDITION. In connection with the marvellous growth of our railway system there is nothing of so paramount importance and interest as the evolution of the locomotive steam engine.
    [Show full text]
  • Passenger Rail (Edited from Wikipedia)
    Passenger Rail (Edited from Wikipedia) SUMMARY A passenger train travels between stations where passengers may embark and disembark. The oversight of the train is the duty of a guard/train manager/conductor. Passenger trains are part of public transport and often make up the stem of the service, with buses feeding to stations. Passenger trains provide long-distance intercity travel, daily commuter trips, or local urban transit services. They even include a diversity of vehicles, operating speeds, right-of-way requirements, and service frequency. Passenger trains usually can be divided into two operations: intercity railway and intracity transit. Whereas as intercity railway involve higher speeds, longer routes, and lower frequency (usually scheduled), intracity transit involves lower speeds, shorter routes, and higher frequency (especially during peak hours). Intercity trains are long-haul trains that operate with few stops between cities. Trains typically have amenities such as a dining car. Some lines also provide over-night services with sleeping cars. Some long-haul trains have been given a specific name. Regional trains are medium distance trains that connect cities with outlying, surrounding areas, or provide a regional service, making more stops and having lower speeds. Commuter trains serve suburbs of urban areas, providing a daily commuting service. Airport rail links provide quick access from city centers to airports. High-speed rail are special inter-city trains that operate at much higher speeds than conventional railways, the limit being regarded at 120 to 200 mph. High-speed trains are used mostly for long-haul service and most systems are in Western Europe and East Asia.
    [Show full text]
  • RT Rondelle PDF Specimen
    RAZZIATYPE RT Rondelle RAZZIATYPE RT RONDELLE FAMILY Thin Rondelle Thin Italic Rondelle Extralight Rondelle Extralight Italic Rondelle Light Rondelle Light Italic Rondelle Book Rondelle Book Italic Rondelle Regular Rondelle Regular Italic Rondelle Medium Rondelle Medium Italic Rondelle Bold Rondelle Bold Italic Rondelle Black Rondelle Black Italic Rondelle RAZZIATYPE TYPEFACE INFORMATION About RT Rondelle is the result of an exploration into public transport signage typefa- ces. While building on this foundation it incorporates the distinctive characteri- stics of a highly specialized genre to become a versatile grotesque family with a balanced geometrical touch. RT Rondelle embarks on a new life of its own, lea- ving behind the restrictions of its heritage to form a consistent and independent type family. Suited for a wide range of applications www.rt-rondelle.com Supported languages Afrikaans, Albanian, Basque, Bosnian, Breton, Catalan, Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Faroese, Fijian, Finnish, Flemish, French, Frisian, German, Greenlandic, Hawaiian, Hungarian, Icelandic, Indonesian, Irish, Italian, Latin, Latvian, Lithuanian, Malay, Maltese, Maori, Moldavian, Norwegian, Polish, Portuguese, Provençal, Romanian, Romany, Sámi (Inari), Sámi (Luli), Sámi (Northern), Sámi (Southern), Samoan, Scottish Gaelic, Slovak, Slovenian, Sorbian, Spa- nish, Swahili, Swedish, Tagalog, Turkish, Welsh File formats Desktop: OTF Web: WOFF2, WOFF App: OTF Available licenses Desktop license Web license App license Further licensing
    [Show full text]
  • Component Parts of a Permanent Way
    RAILWAY ENGINEERING Dept. of Civil Engineering - KLU COMPONENT PARTS OF A PERMANENT WAY Following are the components of a permanent way. (i) Subgrade (ii) Ballast (iii) Sleepers (iv) Rails (v) Fixture and Fastening In a permanent way, rails are joined either by welding or by using fish plates and are fixed with sleepers by using different types of fastenings. Sleepers are properly placed and packed with ballast. Ballast is placed on the prepared subgrade called formation. REQUIREMENTS OF AN IDEAL PERMANENT WAY Following are the basic requirements of a permanent way: (i) The guage should be uniform and correct. (ii) Both the rails should be at the same level in a straight track. (iii) On curves proper superelevation should be provided to the outer rail. (iv) The permanent way should be properly designed so that the load of the train is uniformly distributed over the two rails. (v) The track should have enough lateral strength. (vi) The radii and superelevation, provided on curves, should be properly designed. (vii) The track must have certain amount of elasticity. (viii) All joints, points and crossings should be properly designed. (ix) Drainage system of permanent way should be perfect. (x) All the components of permanent way should satisfy the design requirements. (xi) It should have adequate provision for easy renewals and repairs. B.G.Rahul RAILWAY ENGINEERING Dept. of Civil Engineering - KLU TYPES OF RAILS The rails used in the construction of railway track are of following types: 1. Double headed rails(D.H. Rails) 2. Bull headed rails(B.H.Rails) 3. Flat footed rails(F.F.Rails) DOUBLE HEADED RAILS The rail sections, whose foot and head are of same dimensions, are called Double headed or Dumb-bell rails.
    [Show full text]
  • The 1825 Stockton & Darlington Railway
    The 1825 S&DR: Preparing for 2025; Significance & Management. The 1825 Stockton & Darlington Railway: Historic Environment Audit Volume 1: Significance & Management October 2016 Archaeo-Environment for Durham County Council, Darlington Borough Council and Stockton on Tees Borough Council. Archaeo-Environment Ltd for Durham County Council, Darlington Borough Council and Stockton Borough Council 1 The 1825 S&DR: Preparing for 2025; Significance & Management. Executive Summary The ‘greatest idea of modern times’ (Jeans 1974, 74). This report arises from a project jointly commissioned by the three local authorities of Darlington Borough Council, Durham County Council and Stockton-on-Tees Borough Council which have within their boundaries the remains of the Stockton & Darlington Railway (S&DR) which was formally opened on the 27th September 1825. The report identifies why the S&DR was important in the history of railways and sets out its significance and unique selling point. This builds upon the work already undertaken as part of the Friends of Stockton and Darlington Railway Conference in June 2015 and in particular the paper given by Andy Guy on the significance of the 1825 S&DR line (Guy 2015). This report provides an action plan and makes recommendations for the conservation, interpretation and management of this world class heritage so that it can take centre stage in a programme of heritage led economic and social regeneration by 2025 and the bicentenary of the opening of the line. More specifically, the brief for this Heritage Trackbed Audit comprised a number of distinct outputs and the results are summarised as follows: A. Identify why the S&DR was important in the history of railways and clearly articulate its significance and unique selling point.
    [Show full text]
  • George Stephenson Fact File
    George Stephenson Fact File • George Stephenson was born in 1781 near Newcastle-upon-Tyne. • His dad worked at a coal mine and looked after the steam engines that were used to pump water out of the mine. He taught George about these machines and when George was 14 he went to work down the mines himself. He would play about with the machines to learn more about how they worked. • In 1814, George designed his first steam locomotive for the railways for Killingworth Colliery near Newcastle. The loco was a success and George was asked to work on other railways being built. • In 1825 a new railway was opened between Stockton and Darlington. George and his men built the track and the locomotive for this railway. It later became the first steam loco to carry passengers in the world! • But the steam loco George is probably most famous for is the Rocket... - In 1829 a new railway was planned to run between Liverpool and Manchester. - George competed against two other engineers to find the best locomotive to run on the railway and pull heavy loads of materials over long distances. With his son, Robert, he built the ‘Rocket’. This travelled faster than all the other trains at 36mph. - The opening of this railway line and the success of the rocket led to many more railway lines and steam locomotives being built across the country. Richard Trevithick Fact File • In 1803 Trevithick began to build the first steam locomotive in Britain to run on rails. • He had been asked by the boss of an ironworks company in South Wales to build a steam loco to run on rails from the ironworks (a place where iron a strong metal is used to make things) to the local canal.
    [Show full text]
  • Numerical and Experimental Study of the Dynamic Factor of the Dynamic
    Journal of the Mechanical Behavior of Materials 2020; 29:195–202 Research Article Tran Anh Dung*, Mai Van Tham, Do Xuan Quy, Tran The Truyen, Pham Van Ky, and Le Hai Ha Numerical and experimental study of the dynamic factor of the dynamic load on the urban railway https://doi.org/10.1515/jmbm-2020-0020 (1972) had used dynamic load factor for high speed railway Received Jul 30, 2020; accepted Dec 24, 2020 track that incorporates train speed and the condition of the track [4]. The Office of Research and Experiments (ORE) of Abstract: This paper presents simulation calculations and the International Union of Railways and Birmann [5] had experimental measurements to determine the dynamic load proposed dynamic load factor for speeds up to 200 km/h factor (DLF) of train on the urban railway in Vietnam. Sim- incorporates the track geometry, vehicle suspension, ve- ulation calculations are performed by SIMPACK software. hicle speed, vehicle center of gravity, age of track, curve Dynamic measurement experiments were conducted on radius, super-elevation, and cant deficiency. The Germany Cat Linh – Ha Dong line. The simulation and experimental Railways (1943) using an equation with the train speed is no results provide the DLF values with the largest difference of more than 200 km/h to calculate the dynamic load factor 2.46% when the train speed varies from 0 km/h to 80 km/h only using train speed [6]. The dynamic load factor formula Keywords: dynamic load, dynamic load factor, urban rail- is used for South African Railways is similar to the Talbot way, train speed, track stiffness formula, but is calculated for narrow gauge track [2].
    [Show full text]