NMHS Fellowship Grant Progress Page 1 of 21

Total Page:16

File Type:pdf, Size:1020Kb

NMHS Fellowship Grant Progress Page 1 of 21 NMHS Fellowship Grant Progress Page 1 of 21 National Mission on Himalayan Studies (NMHS) HIMALAYAN RESEARCH FELLOWSHIP (PRO FORMA FOR THE HALF YEARLY PROGRESS REPORT) [Reporting Period: from 01-07-18 to 31-12-18] Kindly fill the NMHS Fellowship Annual Progress Report segregated into the following 7 segments, as applicable to the NMHS Fellowship nature and outcomes. 1. Fellowship Grant Information and Other Details 2. Fellowship Description at Himalayan Research Associates (H-RAs) Level 3. Fellowship Description at Himalayan Junior Research Associates (H-JRFs) Level 4. Fellowship Description at Institutional/ University Level 5. Fellowship Concluding Remarks/ Annual Summary 6. Specific Research Question(s) Addressed with Succinct Answer(s) 7. Any other information Please let us know in case of any query at: [email protected] PRO FORMA NMHS-Fellowship Half Yearly Progress Report 1. Fellowship Grant Information and Other Details NMHS Fellowship Grant ID: GBPI/NMHS/MF/RA/2015-16, dt:30-03-2016 Name of the Institution/ University: ICAR – National Research Centre for Orchids, Pakyong – Sikkim No. of Himalayan Research/Project 02 Associates: No. of Himalayan Junior Research/Project 05 Fellows: NMHS Fellowship Grant Progress Page 2 of 21 2. Fellowship Description at H-RA Level Himalayan Research Associates (H-RAs) H-RAs Profile Description: Date of Name of the PI S. No. Name of RA Research Title Qualification Joining and Designation Conservation, sustainable use Dr. Avanish Kumar of orchids resources of Ph.D. 1. 08/10/2018 Dr. D. R. Singh Singh Sikkim Himalayan region. (Horticulture) Long-term Ecological/ Environmental monitoring of 01-06-2018 orchids & assessment of Ph.D. 2. Dr. Roshna Gazmer threats to biodiversity and Dr. D. R. Singh (Agricultural Extent of IKP documentation Entomology) & strengthened. Progress Brief (to be filled for each H-RA in separate row): RA Research Addressed Research/ Experimental Achievements No. Objective(s) Deliverables Work* Some seed capsules were collected from polyhouse in our institute which are as follow:- paphiopendilum villosum, Aerides odoratum, . Rare species of Cym. Aloifolium, 1. To develop orchids which have Epedundrum Redicans effective in- medicinal and valuable situ properties are Below seed capsules conserved by in-situ conservation collected from farmers site ( conservation practiced and kartok) east Sikkim. Established an information baseline as plant tissue culture for in situ conservation for orchids. management techniques Cym.Sikkimmensis, Cym. interventions Maspersis, Cym. Tracyanum. 2. completed priority setting for target for the 2. these rare species species. selected are reproducing of Gathered information about orchids in large scale by using specific species of orchid 3. Initiated the standardization of mass plant tissue culture Sikkim which are exist in east multiplication protocol of rare orchids techniques for mass 1. Himalayan species. production in suitable Sikkim. region. nutrient medium 4. Initiated in-vitro inoculation of 08 2. To determine Out of this 4 species are species in different media. the appropriate 3. the Possibility of successfully in running condition for in development of new condition which are as vitro mass race variety of orchids follow: Paphiopendilum propagation of through somaclonal Venustum, Calanthe [Annexure I] selected Orchid variation in in –vitro conservation through Sylvatica, Arundina species. Gramanifolia, Dienis 3. Development of plant tissue culture techniques. Ophrydis. DNA Bank. Few more species I will farther added for tissue culture as per the seoson and availability. NMHS Fellowship Grant Progress Page 3 of 21 Population study of Diplomeris hirsuta conducted at 2 study sites viz. 1. Chavang, North Sikkim and 2. Study site for population of Assam Lingzey, East Diplomeris hirsuta at Identification of Sikkim. Chavang, North Sikkim and 2. sites for long-term Population study of Selected 3 plots Assam Lingzey, East Sikkim. environmental orchid species for long irrespective of Study site for population of term environmental monitoring. species composition orchid species at Parakha, East study for orchid species Mainstreaming of altitude wise Sikkim. at Parakha, East long-term (Tropical, Sikkim. Study site for population of monitoring and Temperate and orchid species at Kitam Bird Population study of Alpine zones of Sanctuary, Namchi. building scientific orchid species for long Sikkim). 2 evidence across term environmental Survey and Documentation of Conducted Survey Indigenous Knowledge and key sectors study for orchid species regarding at Kitam Bird Practices on orchid at villages achieved. Documentation of Sanctuary, Namchi. of East and North Sikkim has Indigenous Indigenous been done. Survey and Knowledge and Knowledge and documentation of Identification of orchid Practices (IKP) in Practices (IKP) Indigenous Knowledge species, Otochilus lancilabius villages of Sikkim systematically and Practices (IKP) on and Dendrobium amplum having orchid documented and orchid at villages of through IKP documentation habitat. having indigenous importance linked to scientific Sikkim. at villages of East Sikkim. evidence base. Identification of orchid species, Otochilus lancilabius and [Annexure II] Dendrobium amplum through IKP documentation having indigenous importance. *Experimental work giving full details (in separate sheet, within 300 words) of experimental set up, methods adopted, data collected supported by necessary table, charts, diagrams & photographs. Note: Data, table and figures may be attached as separate source file (.docx, .xls, jpg, .jpeg, .png, .shp, etc. ). 3. Fellowship Description at H-JRF Level Himalayan Junior Research Project Fellows (H-JRFs) H-JRFs Profile Description: S. Name of JRF Date of Joining Name of the PI Qualification No. 1. M.Sc. Remote Sensing & Abhishek Timothy Rai 05-10-18 Dr. D. R. Singh GIS 2. Prashant Chaturvedi 17-05-18 Dr. D. R. Singh M. Tech (C.S.E-HPCS) 3. Deepak Rai 31-05-16 Dr. D. R. Singh M.Sc. Horticulture 4. Nima Tshering Bhutia 16-05-16 Dr. D. R. Singh M.Sc. Agriculture 5. A. Loyanganba Meitei 07-11-17 Dr. D. R. Singh M.Sc. Ag. Biotechnology Progress Brief (to be filled for each JRF in separate row): JRF Research/ Experimental Research Objectives Deliverable Achievements No. Work* NMHS Fellowship Grant Progress Page 4 of 21 To study the spatial Map showing orchid distribution of orchid Prepared Map Layout of population in East Sikkim population in Sikkim orchids population were prepared. Himalayas. available in East Sikkim Survey & collection with regards to available Map showing orchid of in-situ data with reports) and collected population in West Sikkim GPS based 1. reference to point GPS data. were prepared. coordinates of a mapping of orchids particular species. Prepared Map of orchid’s GIS software based To integrate GIS and population found during shapefile of India and data to provide the field visit to West Sikkim. location maps where Sikkim. the orchid population [Annexure III] originates. Complied the Orchids Prepared new database species List for Sikkim and platform. Darjeeling Himalayas Prepared Database web- Preparing datasets of enabled Home page. Prepared Database query. To develop Orchid orchids available in Sikkim PHP language and Prepared List of orchids biodiversity 2. MySQL query Attended and presented with full details. database of nd Darjeeling and language poster during the “2 Prepared IUCN/RET 100 Sikkim Himalayas Himalayan Researchers Species with full details. Consortium, Gangtok – Prepared 300 Orchids th Sikkim (26–27 November species in database of 2018.) Sikkim. [Annexure IV] Field survey was carried out at some of the place where orchids were found at East Sikkim and West Sikkim base on altitude wise for the sturdy of Orchids distribution pattern. Completed the population Survey was done to some of distibution studies of Cymbidium the host area of different whiteae Orchid Species to know their flowering time. To study the orchids Field survey to East, West population in natural and some part of North habitats throughout Completed the population studies Sikkim was done to sturdy Sikkim Himalayan the host-specificity of orchids range. of Leconorchis sikkimensis, a rare on tree plants in Sikkim. To study flowering and threatened orchid. Visited East, West and North Assessment of time, distribution Sikkim to Study the Natural resources pattern and phyto- Presented a paper entitled’ ITK population and distribution of 3. accounting methods geographic affinities Aspects of Farm Produces by RET Orchids species and and Field Testing. among orchids Farming Community of Sikkim” their conservation. species of Sikkim th at 9 extension education Preparation of two Himalayan region. congress 2018 held at CAU manuscripts for publication To evaluate the Ranipool Sikkim. (under process). status of endemic and Distribution and conservation national endemic orchid species in Communicated 02 (two) status of Dactylorhiza hatagirea because it is Sikkim Himalaya. manuscripts for publication, ot of which 01 accepted. endemic to the Hindu- Kush Himalaya. It is categorized as endangered in CAMP Pokhara (2001) conservation list, and strictly banned for collection, utilization and sale and during my field survey I had found a host area at East Sikkim and Sturdy are in under process. Preparation of Orchids NMHS Fellowship Grant Progress Page 5 of 21 species distribution maps of Sikkim Himalaya. [Annexure V] Artificial hand pollination
Recommended publications
  • An Integrated Orchid Functional Genomics Database
    Orchidstra: An Integrated Orchid Functional Genomics Database Special Focus Issue Chun-lin Su1,3, Ya-Ting Chao1,3, Shao-Hua Yen1, Chun-Yi Chen1, Wan-Chieh Chen1, Yao-Chien Alex Chang2 and Ming-Che Shih1,* 1Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan 2Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan. 3These authors contributed equally to this work. *Corresponding author: E-mail: [email protected]; Fax, +886-2-26515693. (Received November 9, 2012; Accepted January 5, 2013) A specialized orchid database, named Orchidstra (URL: Abbreviations: BLAST, basic local alignment search tool; – Databases http://orchidstra.abrc.sinica.edu.tw), has been constructed CAM, crassulacean acid metabolism; EIF5A, eukaryotic trans- to collect, annotate and share genomic information for lation initiation factor 5A; EST, expressed sequence tag; GO, orchid functional genomics studies. The Orchidaceae is a Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and large family of Angiosperms that exhibits extraordinary bio- Genomes; miRNA, microRNA; NGS, next-generation sequen- diversity in terms of both the number of species and their cing; SRA, sequence read archive; TSA, transcriptome distribution worldwide. Orchids exhibit many unique biolo- shotgun assembly. gical features; however, investigation of these traits is cur- rently constrained due to the limited availability of genomic information. Transcriptome information for five orchid spe- Introduction cies and one commercial hybrid has been included in the Orchidaceae, the orchid family, diverged from the Liliaceae Orchidstra database. Altogether, these comprise >380,000 and Amaryllidaceae, is the largest family of Angiosperms, with non-redundant orchid transcript sequences, of which >800 genera and >25,000 species.
    [Show full text]
  • PGR Diversity and Economic Utilization of Orchids
    Int.J.Curr.Microbiol.App.Sci (2019) 8(10): 1865-1887 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 10 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.810.217 PGR Diversity and Economic Utilization of Orchids R. K. Pamarthi, R. Devadas, Raj Kumar, D. Rai, P. Kiran Babu, A. L. Meitei, L. C. De, S. Chakrabarthy, D. Barman and D. R. Singh* ICAR-NRC for Orchids, Pakyong, Sikkim, India ICAR-IARI, Kalimpong, West Bengal, India *Corresponding author ABSTRACT Orchids are one of the highly commercial crops in floriculture sector and are robustly exploited due to the high ornamental and economic value. ICAR-NRC for Orchids Pakyong, Sikkim, India, majorly focused on collection, characterization, K e yw or ds evaluation, conservation and utilization of genetic resources available in the country particularly in north-eastern region and developed a National repository of Orchids, Collection, Conservation, orchids. From 1996 to till date, several exploration programmes carried across the Utilization country and a total of 351 species under 94 genera was collected and conserved at Article Info this institute. Among the collections, 205 species were categorized as threatened species, followed by 90 species having breeding value, 87 species which are used Accepted: in traditional medicine, 77 species having fragrance and 11 species were used in 15 September 2019 traditional dietary. Successful DNA bank of 260 species was constructed for Available Online: 10 October 2019 future utilization in various research works. The collected orchid germplasm which includes native orchids was successfully utilized in breeding programme for development of novel varieties and hybrids.
    [Show full text]
  • Medicinal Properties of Some Dendrobium Orchids – a Review
    J Appl Adv Res 2019: 4(4) Journal of Applied and Advanced Research, 2019: 4(4) 119128 http://dx.doi.org/10.21839/jaar.2019.v4i4.72 ISSN 2519-9412 / © 2019 Phoenix Research Publishers Review Article – Ethnobotany Medicinal properties of some Dendrobium orchids – A review M. Koperuncholan1, R. Praveena1, K. Ganeshkumari1, J. Vanithamani1, P. Muruganantham1 ,1٭T. Ramesh P. Renganathan2 1Department of Botany, Srimad Andavan Arts and Science College (Autonomous) Tiruchirappalli –620005, Tamil Nadu, India 2Department of Botany (DDE), Annamalai University Annamalainagar – 608 002, Tamil Nadu, India (Received: 19-01-2019; Accepted 22-08-2019; Published Online 26-08-2019) Corresponding author٭ Abstract Orchids are known for their aesthetic qualities, and they are often used as decorative items in homes, offices, and public places. While most people admire them for their good looks, others have found practical uses for them. Since a long time ago, people from various parts of the world have used orchids for medicinal purposes. However, the use of orchids in medicine has declined over the years because not enough research has been done to determine their effectiveness and adverse effects. Key words: Medicinal, orchids, Dendrobium Introduction distributed in Taiwan (Lin, 1975). D. candidum is native to the regions of Southern China. In the mountain ranges of Yun- Dendrobium is the second largest genus in the family Orchidaceae. It exhibits a vast diversity in vegetative and Nan, Guang-Xi, Gui-Zhou, and Fu-Jian provinces of China, this species is distributed at an elevation of 900–1500m above floral characteristics and is of considerable interest due to its broad geographic distribution and high value of hybrids as a sea level, with an annual average temperature of 12–188C and floricultural commodity (Hawkes, 1970; Jones et al., 1998).
    [Show full text]
  • Review Article Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids
    Hindawi International Journal of Agronomy Volume 2020, Article ID 2795108, 12 pages https://doi.org/10.1155/2020/2795108 Review Article Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids Edy Setiti Wida Utami and Sucipto Hariyanto Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia Correspondence should be addressed to Sucipto Hariyanto; [email protected] Received 26 January 2020; Revised 9 May 2020; Accepted 23 May 2020; Published 11 June 2020 Academic Editor: Isabel Marques Copyright © 2020 Edy Setiti Wida Utami and Sucipto Hariyanto. ,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In nature, orchid seed germination is obligatory following infection by mycorrhizal fungi, which supplies the developing embryo with water, carbohydrates, vitamins, and minerals, causing the seeds to germinate relatively slowly and at a low germination rate. ,e nonsymbiotic germination of orchid seeds found in 1922 is applicable to in vitro propagation. ,e success of seed germination in vitro is influenced by supplementation with organic compounds. Here, we review the scientific literature in terms of the contents and role of organic supplements in promoting seed germination, protocorm development, and seedling growth in orchids. We systematically collected information from scientific literature databases including Scopus, Google Scholar, and ProQuest, as well as published books and conference proceedings. Various organic compounds, i.e., coconut water (CW), peptone (P), banana homogenate (BH), potato homogenate (PH), chitosan (CHT), tomato juice (TJ), and yeast extract (YE), can promote seed germination and growth and development of various orchids.
    [Show full text]
  • Vascular Epiphytic Medicinal Plants As Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities
    biomolecules Review Vascular Epiphytic Medicinal Plants as Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities Ari Satia Nugraha 1,* , Bawon Triatmoko 1 , Phurpa Wangchuk 2 and Paul A. Keller 3,* 1 Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, University of Jember, Jember, Jawa Timur 68121, Indonesia; [email protected] 2 Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; [email protected] 3 School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, and Illawarra Health & Medical Research Institute, Wollongong, NSW 2522 Australia * Correspondence: [email protected] (A.S.N.); [email protected] (P.A.K.); Tel.: +62-3-3132-4736 (A.S.N.); +61-2-4221-4692 (P.A.K.) Received: 17 December 2019; Accepted: 21 January 2020; Published: 24 January 2020 Abstract: This is an extensive review on epiphytic plants that have been used traditionally as medicines. It provides information on 185 epiphytes and their traditional medicinal uses, regions where Indigenous people use the plants, parts of the plants used as medicines and their preparation, and their reported phytochemical properties and pharmacological properties aligned with their traditional uses. These epiphytic medicinal plants are able to produce a range of secondary metabolites, including alkaloids, and a total of 842 phytochemicals have been identified to date. As many as 71 epiphytic medicinal plants were studied for their biological activities, showing promising pharmacological activities, including as anti-inflammatory, antimicrobial, and anticancer agents. There are several species that were not investigated for their activities and are worthy of exploration.
    [Show full text]
  • PC22 Doc. 22.1 Annex (In English Only / Únicamente En Inglés / Seulement En Anglais)
    Original language: English PC22 Doc. 22.1 Annex (in English only / únicamente en inglés / seulement en anglais) Quick scan of Orchidaceae species in European commerce as components of cosmetic, food and medicinal products Prepared by Josef A. Brinckmann Sebastopol, California, 95472 USA Commissioned by Federal Food Safety and Veterinary Office FSVO CITES Management Authorithy of Switzerland and Lichtenstein 2014 PC22 Doc 22.1 – p. 1 Contents Abbreviations and Acronyms ........................................................................................................................ 7 Executive Summary ...................................................................................................................................... 8 Information about the Databases Used ...................................................................................................... 11 1. Anoectochilus formosanus .................................................................................................................. 13 1.1. Countries of origin ................................................................................................................. 13 1.2. Commercially traded forms ................................................................................................... 13 1.2.1. Anoectochilus Formosanus Cell Culture Extract (CosIng) ............................................ 13 1.2.2. Anoectochilus Formosanus Extract (CosIng) ................................................................ 13 1.3. Selected finished
    [Show full text]
  • Indian Floriculture & Orchid Potential of North East India
    ORCHIDS: COMMERCIAL PROSPECTS Courtesy: Dr. R. P. Medhi, Director National Research Centre for Orchids Pakyong, East Sikkim ORCHID FLOWER-UNIQUENESS INDIA FAVORING ORCHIDS Total land area of India - 329 million hectare. India is situated between 6o45’-37 o6’N latitude 68o7’-97o25’E longitudes. The distribution pattern reveals five major plant geographical regions viz., o North Eastern Himalayas o Peninsular region o Western Himalayas o Westerns Ghats and o Andaman and Nicobar group of Islands ORCHID RESOURCES OF INDIA (Number of Species-total) 1000 900 800 700 600 500 400 No. of species No. 300 200 100 0 Himalayan Eastern Peninsular Central Andaman mountain Himalayas India India & and region Gangetic Nicobar plains Islands Regions STATE WISE ORCHID DISTRIBUTION IN INDIA Name of the State Orchids (Number) Name of the Orchids (Number) State Genus Species Genus Species Andaman & Nicobar Group of Islands 59 117 Maharashtra 34 110 Andhra Pradesh 33 67 Manipur 66 251 Arunachal Pradesh 133 600 Meghalaya 104 352 Assam 75 191 Mizoram 74 246 Bihar (incl. Jharkhand) 36 100 Nagaland 63 241 Chhatisgarh 27 68 Orissa 48 129 Goa, Daman & Diu 18 29 Punjab 12 21 Gujrat 10 25 Rajasthan 6 10 Haryana 3 3 Sikkim 122 515 Himachal Pradesh 24 62 Tamil Nadu 67 199 Jammu & Kashmir 27 51 Tripura 34 48 Karnataka 52 177 Uttaranchal 72 237 Kerela 77 230 Uttar Pradesh 19 30 Madhya Pradesh (inc. Chhattisgarh) 34 89 ORCHID RESOURCES OF INDIA (Endemic) 6 15 13 10 76 88 N.E. INDIA E. INDIA W. INDIA PENINSULAR INDIA W. HIMALAYAS ANDAMANS ORCHID RESOURCES OF INDIA (Endangered) 52 34 25 105 44 N.E.
    [Show full text]
  • Breeding Dendrobium Phalaenopsis-Cane Type Hybrid in India in Hybrid Type Phalaenopsis-Cane Dendrobium Breeding “Emma White”X Fig
    Indian J. Genet., 69(3): 237-242 (2009) Breeding Dendrobium phalaenopsis-cane type hybrid in India: NRCO- 42 (Den. “Emma White” x Den. “Pompadour’’) R. Devadas1, P. Khatiwara1, D. Barman2 and S. P. Das3 1Division of Plant Breeding, 2Division of Horticulture, NRC for Orchids, ICAR, Pakyong 737 106 3Division of Plant Breeding, ICAR RC NRHR, Tripura Centre, Lembucherra 799 210 (Received: August 2009; Revised: August 2009; Accepted: August 2009) Abstract Newzeland and the Pacific Island [1]. It belongs to sub- A new Dendrobium hybrid, NRCO-42 is developed using family: Epidendroideae, sub-tribe: Dendrobiinae [2, 3] Dendrobium “Emma White” and Dendrobium “Pompadour” of Orchidaceae. Even though breeding in Dendrobiums as parents. The crossing and in-vitro raising of progeny had been done by English and European firms earlier, was done during 2003-04 and flowering obtained in 2007- later by Japan and Hawaii [4], but development of many 08. This double hybrid flowered with features of moth type hybrids was restricted to commercial firms only. The D. Dendrobium (D. phalaenopsis-cane type) with bigger petals, overlapping petals and sepals (unlike D. nobile- nobile-cane type Dendrobiums of Eastern Himalayas cane types) and purple colored (RHS N78A) having whitish and D. phalaenopsis-cane type of Eastern Asia were shade at base. Colour enrichment over male parent could the most frequently used parents in hybridization be due to the parentage of the hybrids used in crossing programs. Broad range of attractive hybrids, varieties program and their pedigree record. More numbers of flowers are recorded in D. “Emma White” (9.5) than NRCO- or cultivars of genus Dendrobium have become 42 (5).
    [Show full text]
  • Effects of Cooling Temperature and Duration on Flowering of the Nobile
    JOBNAME: horts 43#6 2008 PAGE: 1 OUTPUT: August 20 15:29:49 2008 tsp/horts/171632/02915 HORTSCIENCE 43(6):1765–1769. 2008. Sw. produces flower buds having nearly fully developed anthers and all other floral parts and then undergoes dormancy. Floral devel- Effects of Cooling Temperature and opment resumes in the dormant flower buds after a sudden temperature drop of 5 °C Duration on Flowering of the Nobile (exact temperature unspecified), which is often associated with rainstorms in southeast Dendrobium Orchid Asia (Goh et al., 1982). The low temperatures that induce flower Christine Yung-Ting Yen1 and Terri W. Starman2,5 initiation vary among orchid genera and even Department of Horticultural Sciences, 2133 TAMU, Texas A&M University, differ from one species to another or among College Station, TX 77843-2133 hybrids in the same genus. Regardless of daylength, several Cymbidium Sw. hybrids Yin-Tung Wang3 (C. Madeleine, C. Doreen, C. Zebra, and C. Department of Horticultural Sciences, Texas A&M University System, Texas No. 2212) and Paphiopedilum insigne Lindl. flowered at a low temperature of 13 °C AgriLife Research and Extension Center at Weslaco, 2415 East Highway 83, (Rotor, 1952, 1959). Nishimura et al. (1976) Weslaco, TX 78596 reported that the transition from vegetative 4 growth to flower development in Phalaenop- Genhua Niu sis Sea Mist required relatively low temper- Department of Horticultural Sciences, Texas AgriLife Research and atures of 15 to 18 °C. Two to 5 weeks of night Extension Center at El Paso, 1380 A&M Circle, El Paso, TX 79927 temperature between 12 and 17 °C and day temperature not over 27 °C for flower initi- Additional index words.
    [Show full text]
  • Plant Development and Nutrient Uptake Rate in Dendrobium Nobile Lindl
    Journal of Plant Nutrition ISSN: 0190-4167 (Print) 1532-4087 (Online) Journal homepage: https://www.tandfonline.com/loi/lpla20 Plant development and nutrient uptake rate in Dendrobium nobile Lindl Juliana Garcia dos Santos Ichinose, Cibele Mantovani, Renata Bachin Mazzini-Guedes, Kathia Fernandes Lopes Pivetta, Ricardo Tadeu de Faria, Roberto Lyra Villas Bôas & Rodrigo Thibes Hoshino To cite this article: Juliana Garcia dos Santos Ichinose, Cibele Mantovani, Renata Bachin Mazzini- Guedes, Kathia Fernandes Lopes Pivetta, Ricardo Tadeu de Faria, Roberto Lyra Villas Bôas & Rodrigo Thibes Hoshino (2018) Plant development and nutrient uptake rate in Dendrobiumnobile Lindl, Journal of Plant Nutrition, 41:15, 1937-1945, DOI: 10.1080/01904167.2018.1482913 To link to this article: https://doi.org/10.1080/01904167.2018.1482913 Published online: 05 Sep 2018. Submit your article to this journal Article views: 55 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=lpla20 JOURNAL OF PLANT NUTRITION 2018, VOL. 41, NO. 15, 1937–1945 https://doi.org/10.1080/01904167.2018.1482913 Plant development and nutrient uptake rate in Dendrobium nobile Lindl Juliana Garcia dos Santos Ichinosea, Cibele Mantovania , Renata Bachin Mazzini-Guedesb, Kathia Fernandes Lopes Pivettaa, Ricardo Tadeu de Fariac, Roberto Lyra Villas Boas^ d, and Rodrigo Thibes Hoshinoc aSchool of Agricultural and Veterinarian Sciences (UNESP/FCAV), Path of Access Professor Paulo Donato Castellane, S~ao Paulo State University, S~ao Paulo, Brazil; bCampus in Jandaia do Sul, Federal University of Parana (UFPR), Jandaia do Sul, Parana, Brazil; cState University of Londrina (UEL), Londrina, Parana, Brazil; dSchool of Agriculture (UNESP/FCA), S~ao Paulo State University, Botucatu, S~ao Paulo, Brazil ABSTRACT ARTICLE HISTORY Dendrobium nobile Lindl.
    [Show full text]
  • Diversity of Dendrobium Sw. Its Distributional Patterns and Present Status in the Northeast India
    International Journal of Scientific and Research Publications, Volume 3, Issue 5, May 2013 1 ISSN 2250-3153 Diversity of Dendrobium Sw. Its Distributional Patterns and Present Status in the Northeast India Adani Lokho Department of Botany, Institute of Science, Visva-Bharati University, Santiniketan, West Bengal-731235 Abstract- The family Orchidaceae is one of the largest groups Nagaland; Singh et al., (1990) for Mizoram; Chowdhury (1998); among the angiosperms and distributed throughout the world. Singh (1999); Khyanjeet Gogoi et al., (2012); Chaya Deori et al., The genus Dendrobium is the second largest group among the (2009); Khyanjeet Gogoi (2011); Bhattacharjee & Dutta (2010); orchid plant in India and exhibit diverse shapes, colour and Borgohain et al., (2010); Lucksom (2007); Rao (2010); Rao morphological characters. They are widely distributed (2007) and Khyanjeet Gogoi et al.,(2012). throughout the Northeastern states and recorded with 82 species In the recent past, from the statistical analysis of the from the region. The highest number of occurrence with 49 angiospermic flora it has revealed that the family Orchidaceae species has been recorded in Arunachal Pradesh and the least with 184 genera and 1,229 species forms the second largest number with 5 species in Tripura state from the region. The family of flowering plants in India (Karthikeyan, 2000). The present analysis reveals 71.95 per cent of the species require fascination of an orchid flower is the mimicking of the animals attention for conservation, 36.58 per cent of the total species are morphology and anatomy parts, like wasps, bees, moths, lizards, widely distributed throughout the region, while 26.89 per cent of butterflies, swans, doves and even human form.
    [Show full text]
  • Tropicalexotique First Q 2020
    Plant List TropicalExotique First Q 2020 Your Size when shipped When mature, well grown size CAD/Plant Total (CAD) Name Order P1 Aerangis fastuosa single growth, blooming size small plant 35 - P2 Aerides multiflorum single growth, blooming size medium plant 30 - P3 Aerides odorata "Pink form" single growth, blooming size medium plant 25 - P4 Aerides rosea single growth, blooming size medium plant 30 - P5 Amesiella minor single growth, blooming size miniature 50 - P6 Amesiella monticola single growth, blooming size small plant 30 - P7 Angraecum didieri seedling size medium plant 25 - P8 Anthogonium gracile per bulb small plant 25 - P9 Appendicula elegans 3-5 bulb plant small plant 30 - P10 Arachnis labrosa single growth, blooming size large plant 40 - P11 Armodorum siamemse blooming size medium plant 25 - P12 Arundina graminifolia (mini type, dark red) Single growth small plant 40 - P13 Arundina graminifolia (mini type, pink) multi-growth, blooming size medium plant 40 - P14 Ascocentrum (Holcoglossum) himalaicum single growth, blooming size medium plant 60 - P15 Ascocentrum (Vanda) ampullaceum single growth medium plant 30 - P16 Ascocentrum (Vanda) ampullaceum forma alba seedling size medium plant 25 - P17 Ascocentrum (Vanda) ampullaceum forma aurantiacum single growth medium plant 45 - P18 Ascocentrum (Vanda) christensonianum single growth, blooming size medium plant 40 - P19 Ascocentrum (Vanda) curvifolium single growth medium plant 20 - P20 Ascocentrum (Vanda) curvifolium "Pink form" single growth medium plant 30 - P21 Ascocentrum (Vanda)
    [Show full text]