Effects of Cooling Temperature and Duration on Flowering of the Nobile

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Cooling Temperature and Duration on Flowering of the Nobile JOBNAME: horts 43#6 2008 PAGE: 1 OUTPUT: August 20 15:29:49 2008 tsp/horts/171632/02915 HORTSCIENCE 43(6):1765–1769. 2008. Sw. produces flower buds having nearly fully developed anthers and all other floral parts and then undergoes dormancy. Floral devel- Effects of Cooling Temperature and opment resumes in the dormant flower buds after a sudden temperature drop of 5 °C Duration on Flowering of the Nobile (exact temperature unspecified), which is often associated with rainstorms in southeast Dendrobium Orchid Asia (Goh et al., 1982). The low temperatures that induce flower Christine Yung-Ting Yen1 and Terri W. Starman2,5 initiation vary among orchid genera and even Department of Horticultural Sciences, 2133 TAMU, Texas A&M University, differ from one species to another or among College Station, TX 77843-2133 hybrids in the same genus. Regardless of daylength, several Cymbidium Sw. hybrids Yin-Tung Wang3 (C. Madeleine, C. Doreen, C. Zebra, and C. Department of Horticultural Sciences, Texas A&M University System, Texas No. 2212) and Paphiopedilum insigne Lindl. flowered at a low temperature of 13 °C AgriLife Research and Extension Center at Weslaco, 2415 East Highway 83, (Rotor, 1952, 1959). Nishimura et al. (1976) Weslaco, TX 78596 reported that the transition from vegetative 4 growth to flower development in Phalaenop- Genhua Niu sis Sea Mist required relatively low temper- Department of Horticultural Sciences, Texas AgriLife Research and atures of 15 to 18 °C. Two to 5 weeks of night Extension Center at El Paso, 1380 A&M Circle, El Paso, TX 79927 temperature between 12 and 17 °C and day temperature not over 27 °C for flower initi- Additional index words. cooling requirement, Dendrobium nobile, flower induction, flower ation in Phalaenopsis amabilis Blume and initiation Phalaenopsis schilleriana Rchb. f. was re- Abstract. The effects of cooling temperature [constant (10, 13, 15, or 18 8C, or 15, 18, or ported by Tran Thanh Van (1974). 21 8C)] and duration (2, 3, 4, 5, or 6 weeks, or 3, 4, 5, 6, or 7 weeks) at two separate locations Relatively high temperatures may be (College Station and Weslaco, TX) on growth and flowering of Dendrobium Sea Mary unfavorable to flower induction. Several ‘Snow King’, a Dendrobium nobile Lindl. hybrid, were investigated and the cooling Cymbidium hybrids, Paphiopedilum insigne requirement for flowering was quantified. Interactions between temperature and cooling and D. nobile plants held at 18 °C, compared duration were significant on time required to reach anthesis from either the beginning or with 13 °C, remained vegetative (Rotor, completion of cooling, average flower number per flowering node, and percentage of nodes 1952, 1959). Flowering of P. amabilis was with aborted buds. Increasing cooling duration from 2 to 6 or 3 to 7 weeks resulted in less inhibited when plants were grown under high time to reach anthesis after the completion of cooling. However, the increased cooling temperatures (30 °C day/23 °C night) com- durations extended the time needed for producing a flowering crop. Plants cooled at a pared with low temperatures at 25 °C day/ relatively higher temperature among 10, 13, and 15 8C required less time to reach anthesis 20 °C night (Chen et al., 1994). The inflores- after the completion of cooling. Plants had more flowering nodes and total flowers when cence of P. amabilis did not emerge when cooled at 10, 13, or 15 8Cthanat188C in College Station or at 15 or 18 8Cthanat218Cin temperature was over 28 °C (Sakanishi et al., Weslaco. The results suggest that 3 weeks at 13 8C has saturated the cooling requirement, 1980). Wang et al. (2006) observed that and 3 weeks at 13 or 15 8C is a recommended cooling treatment that saves production cost when day temperature was maintained at 28 or without retarding flower development. 30 °C, certain Phalaenopsis hybrids re- mained vegetative even when night temper- ature dropped to 19 and 14 °C, respectively. Dendrobium was reported to be the sec- to determine the cultural requirements are Therefore, if the threshold temperature for ond most valued orchid genus in Japan in needed to improve the cultivation system and initiating flowers, promoting the best flower 2002 with a market share of 20%, only behind to make year-round flowering. quality, or that adversely affects plant growth Phalaenopsis with a 30% market share Dendrobium nobile, the progenitor of or inhibits flowering is known, flowering can (Laws, 2004; Wang, 2004). Dendrobium nobile-type dendrobium hybrids, is native to be programmed to meet a specific market has been the most economically important habitats ranging from the Himalayas to time. flowering pot orchid genus in Hawaii with a southeast Asia and much of southern China The objectives of this study were to wholesale value of $6 million in both 2005 (Baker and Baker, 1996). Plants must be quantify the cooling requirement for flower and 2006 (U.S. Department of Agriculture, exposed to moderately low temperatures to initiation and to define an optimum cooling 2007). However, the nobile-type den- induce flowering (Arditti, 1966; Goh et al., treatment for producing quality flowering drobiums, cultivars bred mainly from the 1982; Rotor, 1952, 1959), which usually D. Sea Mary ‘Snow King’ plants. species D. nobile (Ichihashi, 1997), are still occurs in the fall or after sudden rainstorms a relatively new mass-produced commercial in its habitats. Rotor (1952, 1959) reported Materials and Methods crop having a high market potential. Studies that D. nobile plants, exposed to 13 °C, produced flowers regardless of photoperiod. Plant materials and growing conditions. The best flowering performance in two no- One-year-old liners of Dendrobium Sea Mary bile dendrobium cultivars, D. Snowflake ‘Snow King’, a D. nobile hybrid propagated Received for publication 25 Mar. 2008. Accepted ‘Red Star’ and D. Hinode ‘Toutenkou’, was from single-node cuttings and planted in for publication 6 June 2008. achieved when cooling plants at 15 to 20 °C/ sphagnum moss with an average pseudobulb We thank the Fred C. Gloeckner Foundation, 10 to 12.5 °C (8 h day/16 h night) for 40 d (i.e., a thickened portion of the stem in Norman Fang and his family, and the American (Sinoda et al., 1988). orchids functioning as a water and food Orchid Society for funding the project. 1 Besides the nobile-type dendrobiums, storage organ) height of 7 to 10 cm, were Graduate Research Assistant. several other dendrobiums also require low shipped from Yamamoto Dendrobiums in 2Associate Professor. 3Professor. Current address: Matsui Nursery, Salinas, temperatures for flower induction. Flower Mountain View, HI. Plants arrived at Texas CA. initiation in D. phalaenopsis Fitzg. was A&M University, College Station on 15 Feb. 4Assistant Professor. induced by low temperature of 13 °C regard- 2006 and were immediately potted into 10.2- 5To whom reprint requests should be addressed; less of daylength (Rotor, 1952, 1959). In cm (top diameter, 414 mL vol.) standard e-mail [email protected] nature, the inflorescence of D. crumenatum green plastic pots and placed in a greenhouse HORTSCIENCE VOL. 43(6) OCTOBER 2008 1765 JOBNAME: horts 43#6 2008 PAGE: 2 OUTPUT: August 20 15:29:49 2008 tsp/horts/171632/02915 having glass walls and a polycarbonate roof. needed to reduce light level, overheating, or included in statistical analysis), continued The root substrate consisted of two parts of severe temperature drop in the greenhouse. receiving nutrients at 0.67 gÁL–1 throughout coarse peat (Sunshine Peat; Sun Gro Horti- Pots were irrigated as needed with a nutrient the experimental period, and remained in the culture, Bellevue, WA), one part coarse solution made with RO water and a 15N– greenhouse without cooling. perlite, and one part No. 3 grade diatomite 2.2P–12.5K (Peters Excel 15-5-15 Cal-Mag; Experiment in Weslaco. A similar exper- (Diatomite USA, Elma, NY) amended with Scotts) water-soluble fertilizer at 0.67 gÁL–1. iment was conducted in Weslaco, TX. All powdered Micromax (Scotts, Marysville, Plain RO water was used after nutrient plant materials and cultural treatments were OH) at 1 gÁL–1 as a source of micronutrients application was ended on 1 Sept. 2006. the same as used in College Station unless and powdered dolomitic limestone at 5 gÁL–1. Pesticides [Bacillus thuringiensis (Gnatrol); stated otherwise. The experiment was a 3 · 5 A wetting agent, Aqua Gro 2000 G (Scotts), Valent BioSciences Corporation, Liberty- factorial with three cooling temperatures was added to the medium at 0.5 gÁL–1. ville, IL; azadirachtin (Azatin) and cyfluthrin (constant 15, 18, and 21 °C) and five dura- Plants were potted with the root substrate (Decathlon), OHP, Mainland, PA; imidaclo- tions (3, 4, 5, 6, and 7 weeks). A randomized packed tightly to secure them in place when prid (Marathon II), OHP] were applied when complete block design with 15 replications lifted up only by the upper portion of the necessary to control fungus gnats, caterpil- was used. A total of 225 vegetatively prop- pseudobulbs. Immediately after potting, lars, and mealy bugs, respectively. agated nobile dendrobium plants were used. plants were irrigated with reverse osmosis The experiment was a 4 · 5 factorial with Plants were subjected to cooling treatments (RO) water containing fungicides (etridiazole four cooling temperatures (constant 10, 13, in growth chambers starting on 1 Nov. 2006. and thiophanate-methyl, Banrot 40% WP; 15, and 18 °C) and five cooling durations (2, The average air temperatures from the end of Scotts) at 0.6 gÁL–1 to prevent root rot. Plants 3, 4, 5, and 6 weeks). A randomized complete cooling until full flowering were 26.0 °C day/ were spaced pot-to-pot in 30.8 · 51.4-cm block design with 12 single plant replications 17.0 °C night.
Recommended publications
  • An Integrated Orchid Functional Genomics Database
    Orchidstra: An Integrated Orchid Functional Genomics Database Special Focus Issue Chun-lin Su1,3, Ya-Ting Chao1,3, Shao-Hua Yen1, Chun-Yi Chen1, Wan-Chieh Chen1, Yao-Chien Alex Chang2 and Ming-Che Shih1,* 1Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan 2Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan. 3These authors contributed equally to this work. *Corresponding author: E-mail: [email protected]; Fax, +886-2-26515693. (Received November 9, 2012; Accepted January 5, 2013) A specialized orchid database, named Orchidstra (URL: Abbreviations: BLAST, basic local alignment search tool; – Databases http://orchidstra.abrc.sinica.edu.tw), has been constructed CAM, crassulacean acid metabolism; EIF5A, eukaryotic trans- to collect, annotate and share genomic information for lation initiation factor 5A; EST, expressed sequence tag; GO, orchid functional genomics studies. The Orchidaceae is a Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and large family of Angiosperms that exhibits extraordinary bio- Genomes; miRNA, microRNA; NGS, next-generation sequen- diversity in terms of both the number of species and their cing; SRA, sequence read archive; TSA, transcriptome distribution worldwide. Orchids exhibit many unique biolo- shotgun assembly. gical features; however, investigation of these traits is cur- rently constrained due to the limited availability of genomic information. Transcriptome information for five orchid spe- Introduction cies and one commercial hybrid has been included in the Orchidaceae, the orchid family, diverged from the Liliaceae Orchidstra database. Altogether, these comprise >380,000 and Amaryllidaceae, is the largest family of Angiosperms, with non-redundant orchid transcript sequences, of which >800 genera and >25,000 species.
    [Show full text]
  • PGR Diversity and Economic Utilization of Orchids
    Int.J.Curr.Microbiol.App.Sci (2019) 8(10): 1865-1887 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 10 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.810.217 PGR Diversity and Economic Utilization of Orchids R. K. Pamarthi, R. Devadas, Raj Kumar, D. Rai, P. Kiran Babu, A. L. Meitei, L. C. De, S. Chakrabarthy, D. Barman and D. R. Singh* ICAR-NRC for Orchids, Pakyong, Sikkim, India ICAR-IARI, Kalimpong, West Bengal, India *Corresponding author ABSTRACT Orchids are one of the highly commercial crops in floriculture sector and are robustly exploited due to the high ornamental and economic value. ICAR-NRC for Orchids Pakyong, Sikkim, India, majorly focused on collection, characterization, K e yw or ds evaluation, conservation and utilization of genetic resources available in the country particularly in north-eastern region and developed a National repository of Orchids, Collection, Conservation, orchids. From 1996 to till date, several exploration programmes carried across the Utilization country and a total of 351 species under 94 genera was collected and conserved at Article Info this institute. Among the collections, 205 species were categorized as threatened species, followed by 90 species having breeding value, 87 species which are used Accepted: in traditional medicine, 77 species having fragrance and 11 species were used in 15 September 2019 traditional dietary. Successful DNA bank of 260 species was constructed for Available Online: 10 October 2019 future utilization in various research works. The collected orchid germplasm which includes native orchids was successfully utilized in breeding programme for development of novel varieties and hybrids.
    [Show full text]
  • Medicinal Properties of Some Dendrobium Orchids – a Review
    J Appl Adv Res 2019: 4(4) Journal of Applied and Advanced Research, 2019: 4(4) 119128 http://dx.doi.org/10.21839/jaar.2019.v4i4.72 ISSN 2519-9412 / © 2019 Phoenix Research Publishers Review Article – Ethnobotany Medicinal properties of some Dendrobium orchids – A review M. Koperuncholan1, R. Praveena1, K. Ganeshkumari1, J. Vanithamani1, P. Muruganantham1 ,1٭T. Ramesh P. Renganathan2 1Department of Botany, Srimad Andavan Arts and Science College (Autonomous) Tiruchirappalli –620005, Tamil Nadu, India 2Department of Botany (DDE), Annamalai University Annamalainagar – 608 002, Tamil Nadu, India (Received: 19-01-2019; Accepted 22-08-2019; Published Online 26-08-2019) Corresponding author٭ Abstract Orchids are known for their aesthetic qualities, and they are often used as decorative items in homes, offices, and public places. While most people admire them for their good looks, others have found practical uses for them. Since a long time ago, people from various parts of the world have used orchids for medicinal purposes. However, the use of orchids in medicine has declined over the years because not enough research has been done to determine their effectiveness and adverse effects. Key words: Medicinal, orchids, Dendrobium Introduction distributed in Taiwan (Lin, 1975). D. candidum is native to the regions of Southern China. In the mountain ranges of Yun- Dendrobium is the second largest genus in the family Orchidaceae. It exhibits a vast diversity in vegetative and Nan, Guang-Xi, Gui-Zhou, and Fu-Jian provinces of China, this species is distributed at an elevation of 900–1500m above floral characteristics and is of considerable interest due to its broad geographic distribution and high value of hybrids as a sea level, with an annual average temperature of 12–188C and floricultural commodity (Hawkes, 1970; Jones et al., 1998).
    [Show full text]
  • Review Article Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids
    Hindawi International Journal of Agronomy Volume 2020, Article ID 2795108, 12 pages https://doi.org/10.1155/2020/2795108 Review Article Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids Edy Setiti Wida Utami and Sucipto Hariyanto Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia Correspondence should be addressed to Sucipto Hariyanto; [email protected] Received 26 January 2020; Revised 9 May 2020; Accepted 23 May 2020; Published 11 June 2020 Academic Editor: Isabel Marques Copyright © 2020 Edy Setiti Wida Utami and Sucipto Hariyanto. ,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In nature, orchid seed germination is obligatory following infection by mycorrhizal fungi, which supplies the developing embryo with water, carbohydrates, vitamins, and minerals, causing the seeds to germinate relatively slowly and at a low germination rate. ,e nonsymbiotic germination of orchid seeds found in 1922 is applicable to in vitro propagation. ,e success of seed germination in vitro is influenced by supplementation with organic compounds. Here, we review the scientific literature in terms of the contents and role of organic supplements in promoting seed germination, protocorm development, and seedling growth in orchids. We systematically collected information from scientific literature databases including Scopus, Google Scholar, and ProQuest, as well as published books and conference proceedings. Various organic compounds, i.e., coconut water (CW), peptone (P), banana homogenate (BH), potato homogenate (PH), chitosan (CHT), tomato juice (TJ), and yeast extract (YE), can promote seed germination and growth and development of various orchids.
    [Show full text]
  • Vascular Epiphytic Medicinal Plants As Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities
    biomolecules Review Vascular Epiphytic Medicinal Plants as Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities Ari Satia Nugraha 1,* , Bawon Triatmoko 1 , Phurpa Wangchuk 2 and Paul A. Keller 3,* 1 Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, University of Jember, Jember, Jawa Timur 68121, Indonesia; [email protected] 2 Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; [email protected] 3 School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, and Illawarra Health & Medical Research Institute, Wollongong, NSW 2522 Australia * Correspondence: [email protected] (A.S.N.); [email protected] (P.A.K.); Tel.: +62-3-3132-4736 (A.S.N.); +61-2-4221-4692 (P.A.K.) Received: 17 December 2019; Accepted: 21 January 2020; Published: 24 January 2020 Abstract: This is an extensive review on epiphytic plants that have been used traditionally as medicines. It provides information on 185 epiphytes and their traditional medicinal uses, regions where Indigenous people use the plants, parts of the plants used as medicines and their preparation, and their reported phytochemical properties and pharmacological properties aligned with their traditional uses. These epiphytic medicinal plants are able to produce a range of secondary metabolites, including alkaloids, and a total of 842 phytochemicals have been identified to date. As many as 71 epiphytic medicinal plants were studied for their biological activities, showing promising pharmacological activities, including as anti-inflammatory, antimicrobial, and anticancer agents. There are several species that were not investigated for their activities and are worthy of exploration.
    [Show full text]
  • PC22 Doc. 22.1 Annex (In English Only / Únicamente En Inglés / Seulement En Anglais)
    Original language: English PC22 Doc. 22.1 Annex (in English only / únicamente en inglés / seulement en anglais) Quick scan of Orchidaceae species in European commerce as components of cosmetic, food and medicinal products Prepared by Josef A. Brinckmann Sebastopol, California, 95472 USA Commissioned by Federal Food Safety and Veterinary Office FSVO CITES Management Authorithy of Switzerland and Lichtenstein 2014 PC22 Doc 22.1 – p. 1 Contents Abbreviations and Acronyms ........................................................................................................................ 7 Executive Summary ...................................................................................................................................... 8 Information about the Databases Used ...................................................................................................... 11 1. Anoectochilus formosanus .................................................................................................................. 13 1.1. Countries of origin ................................................................................................................. 13 1.2. Commercially traded forms ................................................................................................... 13 1.2.1. Anoectochilus Formosanus Cell Culture Extract (CosIng) ............................................ 13 1.2.2. Anoectochilus Formosanus Extract (CosIng) ................................................................ 13 1.3. Selected finished
    [Show full text]
  • Indian Floriculture & Orchid Potential of North East India
    ORCHIDS: COMMERCIAL PROSPECTS Courtesy: Dr. R. P. Medhi, Director National Research Centre for Orchids Pakyong, East Sikkim ORCHID FLOWER-UNIQUENESS INDIA FAVORING ORCHIDS Total land area of India - 329 million hectare. India is situated between 6o45’-37 o6’N latitude 68o7’-97o25’E longitudes. The distribution pattern reveals five major plant geographical regions viz., o North Eastern Himalayas o Peninsular region o Western Himalayas o Westerns Ghats and o Andaman and Nicobar group of Islands ORCHID RESOURCES OF INDIA (Number of Species-total) 1000 900 800 700 600 500 400 No. of species No. 300 200 100 0 Himalayan Eastern Peninsular Central Andaman mountain Himalayas India India & and region Gangetic Nicobar plains Islands Regions STATE WISE ORCHID DISTRIBUTION IN INDIA Name of the State Orchids (Number) Name of the Orchids (Number) State Genus Species Genus Species Andaman & Nicobar Group of Islands 59 117 Maharashtra 34 110 Andhra Pradesh 33 67 Manipur 66 251 Arunachal Pradesh 133 600 Meghalaya 104 352 Assam 75 191 Mizoram 74 246 Bihar (incl. Jharkhand) 36 100 Nagaland 63 241 Chhatisgarh 27 68 Orissa 48 129 Goa, Daman & Diu 18 29 Punjab 12 21 Gujrat 10 25 Rajasthan 6 10 Haryana 3 3 Sikkim 122 515 Himachal Pradesh 24 62 Tamil Nadu 67 199 Jammu & Kashmir 27 51 Tripura 34 48 Karnataka 52 177 Uttaranchal 72 237 Kerela 77 230 Uttar Pradesh 19 30 Madhya Pradesh (inc. Chhattisgarh) 34 89 ORCHID RESOURCES OF INDIA (Endemic) 6 15 13 10 76 88 N.E. INDIA E. INDIA W. INDIA PENINSULAR INDIA W. HIMALAYAS ANDAMANS ORCHID RESOURCES OF INDIA (Endangered) 52 34 25 105 44 N.E.
    [Show full text]
  • Breeding Dendrobium Phalaenopsis-Cane Type Hybrid in India in Hybrid Type Phalaenopsis-Cane Dendrobium Breeding “Emma White”X Fig
    Indian J. Genet., 69(3): 237-242 (2009) Breeding Dendrobium phalaenopsis-cane type hybrid in India: NRCO- 42 (Den. “Emma White” x Den. “Pompadour’’) R. Devadas1, P. Khatiwara1, D. Barman2 and S. P. Das3 1Division of Plant Breeding, 2Division of Horticulture, NRC for Orchids, ICAR, Pakyong 737 106 3Division of Plant Breeding, ICAR RC NRHR, Tripura Centre, Lembucherra 799 210 (Received: August 2009; Revised: August 2009; Accepted: August 2009) Abstract Newzeland and the Pacific Island [1]. It belongs to sub- A new Dendrobium hybrid, NRCO-42 is developed using family: Epidendroideae, sub-tribe: Dendrobiinae [2, 3] Dendrobium “Emma White” and Dendrobium “Pompadour” of Orchidaceae. Even though breeding in Dendrobiums as parents. The crossing and in-vitro raising of progeny had been done by English and European firms earlier, was done during 2003-04 and flowering obtained in 2007- later by Japan and Hawaii [4], but development of many 08. This double hybrid flowered with features of moth type hybrids was restricted to commercial firms only. The D. Dendrobium (D. phalaenopsis-cane type) with bigger petals, overlapping petals and sepals (unlike D. nobile- nobile-cane type Dendrobiums of Eastern Himalayas cane types) and purple colored (RHS N78A) having whitish and D. phalaenopsis-cane type of Eastern Asia were shade at base. Colour enrichment over male parent could the most frequently used parents in hybridization be due to the parentage of the hybrids used in crossing programs. Broad range of attractive hybrids, varieties program and their pedigree record. More numbers of flowers are recorded in D. “Emma White” (9.5) than NRCO- or cultivars of genus Dendrobium have become 42 (5).
    [Show full text]
  • Plant Development and Nutrient Uptake Rate in Dendrobium Nobile Lindl
    Journal of Plant Nutrition ISSN: 0190-4167 (Print) 1532-4087 (Online) Journal homepage: https://www.tandfonline.com/loi/lpla20 Plant development and nutrient uptake rate in Dendrobium nobile Lindl Juliana Garcia dos Santos Ichinose, Cibele Mantovani, Renata Bachin Mazzini-Guedes, Kathia Fernandes Lopes Pivetta, Ricardo Tadeu de Faria, Roberto Lyra Villas Bôas & Rodrigo Thibes Hoshino To cite this article: Juliana Garcia dos Santos Ichinose, Cibele Mantovani, Renata Bachin Mazzini- Guedes, Kathia Fernandes Lopes Pivetta, Ricardo Tadeu de Faria, Roberto Lyra Villas Bôas & Rodrigo Thibes Hoshino (2018) Plant development and nutrient uptake rate in Dendrobiumnobile Lindl, Journal of Plant Nutrition, 41:15, 1937-1945, DOI: 10.1080/01904167.2018.1482913 To link to this article: https://doi.org/10.1080/01904167.2018.1482913 Published online: 05 Sep 2018. Submit your article to this journal Article views: 55 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=lpla20 JOURNAL OF PLANT NUTRITION 2018, VOL. 41, NO. 15, 1937–1945 https://doi.org/10.1080/01904167.2018.1482913 Plant development and nutrient uptake rate in Dendrobium nobile Lindl Juliana Garcia dos Santos Ichinosea, Cibele Mantovania , Renata Bachin Mazzini-Guedesb, Kathia Fernandes Lopes Pivettaa, Ricardo Tadeu de Fariac, Roberto Lyra Villas Boas^ d, and Rodrigo Thibes Hoshinoc aSchool of Agricultural and Veterinarian Sciences (UNESP/FCAV), Path of Access Professor Paulo Donato Castellane, S~ao Paulo State University, S~ao Paulo, Brazil; bCampus in Jandaia do Sul, Federal University of Parana (UFPR), Jandaia do Sul, Parana, Brazil; cState University of Londrina (UEL), Londrina, Parana, Brazil; dSchool of Agriculture (UNESP/FCA), S~ao Paulo State University, Botucatu, S~ao Paulo, Brazil ABSTRACT ARTICLE HISTORY Dendrobium nobile Lindl.
    [Show full text]
  • Diversity of Dendrobium Sw. Its Distributional Patterns and Present Status in the Northeast India
    International Journal of Scientific and Research Publications, Volume 3, Issue 5, May 2013 1 ISSN 2250-3153 Diversity of Dendrobium Sw. Its Distributional Patterns and Present Status in the Northeast India Adani Lokho Department of Botany, Institute of Science, Visva-Bharati University, Santiniketan, West Bengal-731235 Abstract- The family Orchidaceae is one of the largest groups Nagaland; Singh et al., (1990) for Mizoram; Chowdhury (1998); among the angiosperms and distributed throughout the world. Singh (1999); Khyanjeet Gogoi et al., (2012); Chaya Deori et al., The genus Dendrobium is the second largest group among the (2009); Khyanjeet Gogoi (2011); Bhattacharjee & Dutta (2010); orchid plant in India and exhibit diverse shapes, colour and Borgohain et al., (2010); Lucksom (2007); Rao (2010); Rao morphological characters. They are widely distributed (2007) and Khyanjeet Gogoi et al.,(2012). throughout the Northeastern states and recorded with 82 species In the recent past, from the statistical analysis of the from the region. The highest number of occurrence with 49 angiospermic flora it has revealed that the family Orchidaceae species has been recorded in Arunachal Pradesh and the least with 184 genera and 1,229 species forms the second largest number with 5 species in Tripura state from the region. The family of flowering plants in India (Karthikeyan, 2000). The present analysis reveals 71.95 per cent of the species require fascination of an orchid flower is the mimicking of the animals attention for conservation, 36.58 per cent of the total species are morphology and anatomy parts, like wasps, bees, moths, lizards, widely distributed throughout the region, while 26.89 per cent of butterflies, swans, doves and even human form.
    [Show full text]
  • Tropicalexotique First Q 2020
    Plant List TropicalExotique First Q 2020 Your Size when shipped When mature, well grown size CAD/Plant Total (CAD) Name Order P1 Aerangis fastuosa single growth, blooming size small plant 35 - P2 Aerides multiflorum single growth, blooming size medium plant 30 - P3 Aerides odorata "Pink form" single growth, blooming size medium plant 25 - P4 Aerides rosea single growth, blooming size medium plant 30 - P5 Amesiella minor single growth, blooming size miniature 50 - P6 Amesiella monticola single growth, blooming size small plant 30 - P7 Angraecum didieri seedling size medium plant 25 - P8 Anthogonium gracile per bulb small plant 25 - P9 Appendicula elegans 3-5 bulb plant small plant 30 - P10 Arachnis labrosa single growth, blooming size large plant 40 - P11 Armodorum siamemse blooming size medium plant 25 - P12 Arundina graminifolia (mini type, dark red) Single growth small plant 40 - P13 Arundina graminifolia (mini type, pink) multi-growth, blooming size medium plant 40 - P14 Ascocentrum (Holcoglossum) himalaicum single growth, blooming size medium plant 60 - P15 Ascocentrum (Vanda) ampullaceum single growth medium plant 30 - P16 Ascocentrum (Vanda) ampullaceum forma alba seedling size medium plant 25 - P17 Ascocentrum (Vanda) ampullaceum forma aurantiacum single growth medium plant 45 - P18 Ascocentrum (Vanda) christensonianum single growth, blooming size medium plant 40 - P19 Ascocentrum (Vanda) curvifolium single growth medium plant 20 - P20 Ascocentrum (Vanda) curvifolium "Pink form" single growth medium plant 30 - P21 Ascocentrum (Vanda)
    [Show full text]
  • Medicinal Value of Orchid-A Novel Perspective
    Volume 3 – Issue 7 Online ISSN: 2582-368X MEDICINAL VALUE OF ORCHID-A NOVEL PERSPECTIVE Article Id: AL202171 1Raghuram Pawar*, 2S. T. Bhatt and 1R. M.Mangroliya 1Department of Floriculture and Landscape Architecture, Navsari Agricultural University, Navsari -396450, Gujarat, India 2Horticulture Polytechnic Navsari Agricultural University, Navsari -396450, Gujarat, India Email: [email protected] rchids are members of the family Orchidaceae, one of the largest families of flowering plants. The estimated number of orchid species varies from 12,000 to O 35,000, contributing up to 10% of all flowering plant species in the world (Dressler, 1981). Orchids form 9% of our flora, and about 1331 species are reported from India (Mishra, 2007). Orchids are extremely popular for their mesmerizing marvelous flowers in the whole world, but it is in the lesser know that many species are used in traditional systems of medicine and form remedial measures for a number of ailments. Out of many medicinal and aromatic plants, orchids have been used as the traditional system of medicines. This may account for the use of orchids as aphrodisiacs in ancient civilization. When we study the history of the ancient alternative system of medicine, Ayurveda and Traditional Chinese Medicine (TCM) are one of the forefronts. Asthavargha is an important ingredient of various classical Ayurveda formulations like chyawanprasha. Out of eight constituents of Asthavargha, four have been reported to be orchids as „Jivaka‟ (Malaxismuscifera), „Rishbhaka‟ (M. acuminate), „Riddhi‟ (Habenaria intermedia), and „Vriddhi‟ (H. edgeworthii). A wide range of chemical compounds is, presented, including alkaloids, bibenzyle derivatives, flavonoids, phenanthrenes, and terpenoids which have been isolated from various orchids from different parts of the world.
    [Show full text]