Status of Genus Helvella (Pezizomycetes, Ascomycota) In

Total Page:16

File Type:pdf, Size:1020Kb

Status of Genus Helvella (Pezizomycetes, Ascomycota) In AMC 2019 Poster Presentation 1 P1-16 Status of genus Helvella (Pezizomycetes, Ascomycota) in Pakistan Abdul Rehman Niazi, Simab Asghar, Abdul Nasir Khalid, Najam ul Sehar Afshan University of the Punjab, Pakistan Purpose: The order Pezizales is the most diverse group of ascomycetes represented in Pakistan. The Pezizales, the only order of the Pezizomycetes, is characterized by asci that generally open by rupturing to form a terminal lid called operculum. Most of these Ascomycetes are found in Himalayan moist temperate forests which occupy Kashmir, Murree & Hazara hills, Gilgit and Baltistan, lower Dir, upper part of Khurram Agency and some humid areas of upper Swat, because of moisture and dense vegetation cover. Helvella belongs to family Helvellaceae which has worldwide distribution comprising of 59 species specifically recognized by the pileus shape which is saddle like. From Pakistan, 11 species of Helvella are previously reported from different northern areas of Pakistan. Fruiting bodies of Helvella grow above ground generally; have stems and cap which is irregularly shaped. Methods: During present study, by molecular and morphological data, we have described five new species of Helvella with their specific location, as the targeted rDNA of the specimen was amplified by using ITSIF and ITS4. Results and Conclusions: The described species are new to science which extended the status of genus Helvella in Pakistan. This study suggests that forests of Pakistan are rich in fungal flora and there is need to explore different areas to document and enlist fungi of Pakistan. Asian Mycological Congress 2019.
Recommended publications
  • 2. Typification of Gyromitra Fastigiata and Helvella Grandis
    Preliminary phylogenetic and morphological studies in the Gyromitra gigas lineage (Pezizales). 2. Typification of Gyromitra fastigiata and Helvella grandis Nicolas VAN VOOREN Abstract: Helvella fastigiata and H. grandis are epitypified with material collected in the original area. Matteo CARBONE Gyromitra grandis is proposed as a new combination and regarded as a priority synonym of G. fastigiata. The status of Gyromitra slonevskii is also discussed. photographs of fresh specimens and original plates illustrate the article. Keywords: ascomycota, phylogeny, taxonomy, four new typifications. Ascomycete.org, 11 (3) : 69–74 Mise en ligne le 08/05/2019 Résumé : Helvella fastigiata et H. grandis sont épitypifiés avec du matériel récolté dans la région d’origine. 10.25664/ART-0261 Gyromitra grandis est proposé comme combinaison nouvelle et regardé comme synonyme prioritaire de G. fastigiata. le statut de Gyromitra slonevskii est également discuté. Des photographies de spécimens frais et des planches originales illustrent cet article. Riassunto: Helvella fastigiata e H. grandis vengono epitipificate con materiale raccolto nelle rispettive zone d’origine. Gyromitra grandis viene proposta come nuova combinazione e ritenuta sinonimo prioritario di G. fastigiata. Viene inoltre discusso lo status di Gyromitra slonevskii. l’articolo viene corredato da foto di esem- plari freschi e delle tavole originali. Introduction paul-de-Varces, alt. 1160 m, 45.07999° n 5.627088° e, in a mixed for- est, 11 May 2004, leg. e. Mazet, pers. herb. n.V. 2004.05.01. During a preliminary morphological and phylogenetic study in the subgenus Discina (Fr.) Harmaja (Carbone et al., 2018), especially Results the group of species close to Gyromitra gigas (Krombh.) Quél., we sequenced collections of G.
    [Show full text]
  • A Four-Locus Phylogeny of Rib-Stiped Cupulate Species Of
    A peer-reviewed open-access journal MycoKeys 60: 45–67 (2019) A four-locus phylogeny of of Helvella 45 doi: 10.3897/mycokeys.60.38186 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research A four-locus phylogeny of rib-stiped cupulate species of Helvella (Helvellaceae, Pezizales) with discovery of three new species Xin-Cun Wang1, Tie-Zhi Liu2, Shuang-Lin Chen3, Yi Li4, Wen-Ying Zhuang1 1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 2 College of Life Sciences, Chifeng University, Chifeng, Inner Mongolia 024000, China 3 College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China 4 College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China Corresponding author: Wen-Ying Zhuang ([email protected]) Academic editor: T. Lumbsch | Received 11 July 2019 | Accepted 18 September 2019 | Published 31 October 2019 Citation: Wang X-C, Liu T-Z, Chen S-L, Li Y, Zhuang W-Y (2019) A four-locus phylogeny of rib-stiped cupulate species of Helvella (Helvellaceae, Pezizales) with discovery of three new species. MycoKeys 60: 45–67. https://doi. org/10.3897/mycokeys.60.38186 Abstract Helvella species are ascomycetous macrofungi with saddle-shaped or cupulate apothecia. They are distri- buted worldwide and play an important ecological role as ectomycorrhizal symbionts. A recent multi-locus phylogenetic study of the genus suggested that the cupulate group of Helvella was in need of comprehen- sive revision. In this study, all the specimens of cupulate Helvella sensu lato with ribbed stipes deposited in HMAS were examined morphologically and molecularly.
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • A Synopsis of the Saddle Fungi (Helvella: Ascomycota) in Europe – Species Delimitation, Taxonomy and Typification
    Persoonia 39, 2017: 201–253 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.09 A synopsis of the saddle fungi (Helvella: Ascomycota) in Europe – species delimitation, taxonomy and typification I. Skrede1,*, T. Carlsen1, T. Schumacher1 Key words Abstract Helvella is a widespread, speciose genus of large apothecial ascomycetes (Pezizomycete: Pezizales) that are found in terrestrial biomes of the Northern and Southern Hemispheres. This study represents a beginning on molecular phylogeny assessing species limits and applying correct names for Helvella species based on type material and specimens in the Pezizales university herbaria (fungaria) of Copenhagen (C), Harvard (FH) and Oslo (O). We use morphology and phylogenetic systematics evidence from four loci – heat shock protein 90 (hsp), translation elongation factor alpha (tef), RNA polymerase II (rpb2) and the nuclear large subunit ribosomal DNA (LSU) – to assess species boundaries in an expanded sample of Helvella specimens from Europe. We combine the morphological and phylogenetic information from 55 Helvella species from Europe with a small sample of Helvella species from other regions of the world. Little intraspecific variation was detected within the species using these molecular markers; hsp and rpb2 markers provided useful barcodes for species delimitation in this genus, while LSU provided more variable resolution among the pertinent species. We discuss typification issues and identify molecular characteristics for 55 European Helvella species, designate neo- and epitypes for 30 species, and describe seven Helvella species new to science, i.e., H. alpicola, H. alpina, H. carnosa, H. danica, H. nannfeldtii, H. pubescens and H.
    [Show full text]
  • Gyromitrin Poisoning: More Questions Than Answers
    Gyromitrin poisoning: more questions than answers Denis R. Benjamin, MD some dedicated mycophagist, who had Many of these clues to the toxin never eaten the mushroom for many years made any coherent sense, even though it “It is perhaps ironic for a mushroom, without any ill effects, would suddenly was known for some years that the toxins Gyromitra esculenta, whose very name and unaccountably take ill. This too could be destroyed by cooking.” (From means edible, to be so poisonous under was passed off as the development of an Benjamin, 1995.) certain circumstances. Surprisingly, allergy in the unfortunate individual, the toxins were only characterized as that the mushrooms had been mistaken ll the enigmas related to this recently as 1968. A number of factors for a poisonous variety, or a rotten toxin remain unresolved. The conspired against the investigators of this batch had been eaten. To compound the current literature merely repeats mushroom poison (Lincoff and Mitchel, difficulties, Gyromitra esculenta caused Awhat was published before 1990. A 1977). The first was the observation that many poisonings in Europe, while in the deluge of “cut and paste.” No meaningful only a few of the participants eating the western USA, the seemingly identical research has been done in the past same quantity of the same mushroom species appeared largely harmless. All three decades. This is due to a number would become ill. Because of this, the sorts of explanations were proposed of factors. The first was the demise of poisoning was immediately ascribed to to explain this discrepancy, including academic pharmacognosy departments, ‘allergy’ or ‘individual idiosyncrasy.’ The such fanciful ones as suggesting that responsible for investigating the biology next problematic observation was that Americans cook their vegetables better.
    [Show full text]
  • Downloaded from by IP: 199.133.24.106 On: Mon, 18 Sep 2017 10:43:32 Spatafora Et Al
    UC Riverside UC Riverside Previously Published Works Title The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Permalink https://escholarship.org/uc/item/4485m01m Journal Microbiology spectrum, 5(5) ISSN 2165-0497 Authors Spatafora, Joseph W Aime, M Catherine Grigoriev, Igor V et al. Publication Date 2017-09-01 DOI 10.1128/microbiolspec.funk-0053-2016 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies JOSEPH W. SPATAFORA,1 M. CATHERINE AIME,2 IGOR V. GRIGORIEV,3 FRANCIS MARTIN,4 JASON E. STAJICH,5 and MEREDITH BLACKWELL6 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; 2Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907; 3U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; 4Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d’Excellence Recherches Avancés sur la Biologie de l’Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France; 5Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California–Riverside, Riverside, CA 92521; 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 ABSTRACT The kingdom Fungi is one of the more diverse INTRODUCTION clades of eukaryotes in terrestrial ecosystems, where they In 1996 the genome of Saccharomyces cerevisiae was provide numerous ecological services ranging from published and marked the beginning of a new era in decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and fungal biology (1).
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • 2 the Numbers Behind Mushroom Biodiversity
    15 2 The Numbers Behind Mushroom Biodiversity Anabela Martins Polytechnic Institute of Bragança, School of Agriculture (IPB-ESA), Portugal 2.1 ­Origin and Diversity of Fungi Fungi are difficult to preserve and fossilize and due to the poor preservation of most fungal structures, it has been difficult to interpret the fossil record of fungi. Hyphae, the vegetative bodies of fungi, bear few distinctive morphological characteristicss, and organisms as diverse as cyanobacteria, eukaryotic algal groups, and oomycetes can easily be mistaken for them (Taylor & Taylor 1993). Fossils provide minimum ages for divergences and genetic lineages can be much older than even the oldest fossil representative found. According to Berbee and Taylor (2010), molecular clocks (conversion of molecular changes into geological time) calibrated by fossils are the only available tools to estimate timing of evolutionary events in fossil‐poor groups, such as fungi. The arbuscular mycorrhizal symbiotic fungi from the division Glomeromycota, gen- erally accepted as the phylogenetic sister clade to the Ascomycota and Basidiomycota, have left the most ancient fossils in the Rhynie Chert of Aberdeenshire in the north of Scotland (400 million years old). The Glomeromycota and several other fungi have been found associated with the preserved tissues of early vascular plants (Taylor et al. 2004a). Fossil spores from these shallow marine sediments from the Ordovician that closely resemble Glomeromycota spores and finely branched hyphae arbuscules within plant cells were clearly preserved in cells of stems of a 400 Ma primitive land plant, Aglaophyton, from Rhynie chert 455–460 Ma in age (Redecker et al. 2000; Remy et al. 1994) and from roots from the Triassic (250–199 Ma) (Berbee & Taylor 2010; Stubblefield et al.
    [Show full text]
  • Ascomycete Fungi Species List
    Ascomycete Fungi Species List Higher Classification1 Kingdom: Fungi, Phylum: Ascomycota Class (C:), Order (O:) and Family (F:) Scientific Name1 English Name(s)2 C: Geoglossomycetes (Earth Tongues) O: Geoglossales F: Geoglossaceae Trichoglossum hirsutum Black Earth Tongue C: Leotiomycetes O: Helotiales F: Bulgariaceae Bulgaria inquinans Black Bulgar F: Helotiaceae Chlorociboria aeruginascens Green Elfcup, Green Wood Cup, Green Stain Fungus F: Leotiaceae Leotia lubrica Jellybaby F: Vibrisseaceae Vibrissea truncorum O: Pezizales F: Helvellaceae Gyromitra infula Hooded False Morel, Elfin Saddle Helvella macropus Felt Saddle Fungus Helvella spp. Elfin Saddles F: Pyronemataceae Cheilymenia theleboloides Scutellinia scutellata Eyelash Cup F: Sarcoscyphaceae Cookeina speciosa Cookeina venezuelae C: Sordariomycetes O: Hypocreales F: Clavicipitaceae Ophiocordyceps melolonthae O: Xylariales F: Xylariaceae Daldinia sp. Xylaria globosa Xylaria hypoxylon Candlestick Fungus, Candlesnuff Fungus, Stag's Horn Fungus Xylaria polymorpha Dead Man's Fingers Xylaria spp. Xylocoremium sp. Page 1 of 2 Cloudbridge Nature Reserve, Costa Rica Last Updated: February 3, 2017 Ascomycete Fungi Species List NOTES: Short-forms: sp. = one species of the given genus identified; spp. = more than one of species of the given genus identified 1, Classification and scientific names based on current classifications as found on MycoBank (www.mycobank.org) 2, English names are not standardized for fungi and the English names provided are not considered the definitive names for the given species. English names were gathered from a variety of sources including mushroom identification books and various fungi related websites. Contributors: Major Contributor – Baptiste Saunier. Other Contributors – Ranzeth Gómez Navarro. Page 2 of 2 Cloudbridge Nature Reserve, Costa Rica Last Updated: February 3, 2017 .
    [Show full text]
  • Morchella Esculenta</Em>
    Journal of Bioresource Management Volume 3 Issue 1 Article 6 In Vitro Propagation of Morchella esculenta and Study of its Life Cycle Nazish Kanwal Institute of Natural and Management Sciences, Rawalpindi, Pakistan Kainaat William Bioresource Research Centre, Islamabad, Pakistan Kishwar Sultana Institute of Natural and Management Sciences, Rawalpindi, Pakistan Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Biodiversity Commons, and the Biology Commons Recommended Citation Kanwal, N., William, K., & Sultana, K. (2016). In Vitro Propagation of Morchella esculenta and Study of its Life Cycle, Journal of Bioresource Management, 3 (1). DOI: https://doi.org/10.35691/JBM.6102.0044 ISSN: 2309-3854 online This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. In Vitro Propagation of Morchella esculenta and Study of its Life Cycle © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited. Journal of Bioresource Management does not grant you any other rights in relation to this website or the material on this website. In other words, all other rights are reserved. For the avoidance of doubt, you must not adapt, edit, change, transform, publish, republish, distribute, redistribute, broadcast, rebroadcast or show or play in public this website or the material on this website (in any form or media) without appropriately and conspicuously citing the original work and source or Journal of Bioresource Management’s prior written permission.
    [Show full text]
  • Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity
    Journal of Fungi Article Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity Daniel Peterson 1, Tang Li 2, Ana M. Calvo 1,* and Yanbin Yin 2,* 1 Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; [email protected] 2 Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA; [email protected] * Correspondence: [email protected] (A.M.C.); [email protected] (Y.Y.); Tel.: +1-(815)-753-0451 (A.M.C.); +1-(402)-472-4303 (Y.Y.) Abstract: Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest Citation: Peterson, D.; Li, T.; Calvo, occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are A.M.; Yin, Y. Categorization of Orthologous Gene Clusters in 92 also identified to have higher significance and occurrence in group-specific orthogroups.
    [Show full text]
  • A 1969 Supplement
    Supplement to Raudabaugh et al. (2021) – Aquat Microb Ecol 86: 191–207 – https://doi.org/10.3354/ame01969 Table S1. Presumptive OTU and culture taxonomic match and distribution. Streams1 Peatlands1 Culture Phylum Class OTU Taxonomic determination HC NP PR BB TV BM Ascomycota Archaeorhizomycetes Archaeorhizomyces sp. X X X X X Ascomycota Arthoniomycetes X X Arthothelium spectabile X Ascomycota Dothideomycetes Allophoma sp. X X Alternaria alternata X X X X X X Alternaria sp. X X X X X X Ampelomyces quisqualis X Ascochyta medicaginicola var. X macrospora Aureobasidium pullulans X X X X Aureobasidium thailandense X X Barriopsis fusca X Biatriospora mackinnonii X X Bipolaris zeicola X X Boeremia exigua X X Boeremia exigua X Calyptrozyma sp. X Capnobotryella renispora X X X X Capnodium sp.. X Cenococcum geophilum X X X X Cercospora sp. X Cladosporium cladosporioides X Cladosporium dominicanum X X X X Cladosporium iridis X Cladosporium oxysporum X X X Cladosporium perangustum X Cladosporium sp. X X X Coniothyrium carteri X Coniothyrium fuckelii X 1 Supplement to Raudabaugh et al. (2021) – Aquat Microb Ecol 86: 191–207 – https://doi.org/10.3354/ame01969 Streams1 Peatlands1 Culture Phylum Class OTU Taxonomic determination HC NP PR BB TV BM Ascomycota Dothideomycetes Coniothyrium pyrinum X Coniothyrium sp. X Curvularia hawaiiensis X Curvularia inaequalis X Curvularia intermedia X Curvularia trifolii X X X X Cylindrosympodium lauri X Dendryphiella sp. X Devriesia pseudoamerica X X Devriesia sp. X X X Devriesia strelitziicola X Didymella bellidis X X X Didymella boeremae X Didymella sp. X X X Diplodia X Dothiorella sp. X X Endoconidioma populi X X Epicoccum nigrum X X X X X X X Epicoccum plurivorum X X X Exserohilum pedicellatum X Fusicladium effusum X Fusicladium sp.
    [Show full text]