Potential Production of Molybdenum-99
Total Page:16
File Type:pdf, Size:1020Kb
DEVELOPMENT OF A 37-ELEMENT FUEL BUNDLE FOR THE PRODUCTION OF MOLYBDENUM-99 IN CANDU POWER REACTORS By Jawad Haroon A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science In The Faculty of Energy Systems and Nuclear Science Nuclear Engineering University of Ontario Institute of Technology August 2014 © Jawad Haroon, 2014 Abstract In this study, the potential use of CANDU power reactors for the production of Mo-99 is assessed. Five different modifications of a 37-element fuel bundle that could be used for the production of Mo-99 in existing CANDU type power reactors are explored. Since Mo-99 is generated by the fission of U-235 with a fission yield of 6.1%, the proposed designs use enriched uranium in the Mo-99 producing fuel pins. The challenge lies in designing a fuel that is able to produce significant quantities of Mo-99 while having similar neutronics and thermalhydraulic characteristics to the standard CANDU fuel. The proposed designs, when irradiated in the peak power channel of a CANDU core, are shown to produce significant quantities of Mo-99 while maintaining the necessary reactivity and power rating limits. The total Mo-99 production activities are found to be approximately 2335, 2297, 2336, 4131 and 4268 six-day Curies per bundle for Designs 1 to 5, respectively. The yield corresponds to approximately 19% (for Designs 1, 2 and 3) and 34% (for Designs 4 and 5) of the world weekly demand for Mo-99. A production cycle of 6 bundles per week (for Designs 1, 2 and 3), or 3 bundles per week (for Designs 4 and 5) can meet the global demand of Mo-99 medical isotopes. Keywords: Medical Isotopes, CANDU, DRAGON Code, Molybdenum-99, Six-Day Curies, Infinite Multiplication Factor, Linear Heat Rating, Fuel Centreline Temperature Page | ii Acknowledgement I am grateful to my research supervisor Dr. Eleodor Nichita for giving me this opportunity to research under his guidance. I sincerely thank him for his valuable advice and confidence in my abilities throughout my Masters. I thank him for all the guidance and information he provided that allowed me to start off this project, and helping me every time I felt lost. A special thank you to Wargha Peiman, who is a PhD candidate at the University of Ontario Institute of Technology for his help with the DRAGON code and the many interesting discussions we had on deciphering code manuals. I would like to dedicate this thesis to my mother and father, Sarwat Siddiqa and Haroon-ur-Rashid, who from an early age encouraged me to pursue my interest in science and engineering. Thank you for all the encouragement along the way and for the value placed on family. Thank you to my wonderful sister, Saba Haroon, who was there for me throughout the writing process to help me proofread and give suggestions. I would like to thank all my family and friends for their love and support throughout my Masters, in particular, Brooke Smyth for many years of happiness and continued love, support and inspiration. It has been an honour and a pleasure, thank you all. Page | iii Table of Contents ABSTRACT ........................................................................................................................................................ II ACKNOWLEDGEMENT ................................................................................................................................ III TABLE OF CONTENTS .................................................................................................................................. IV LIST OF ACRONYMS .................................................................................................................................... XII CHAPTER 1 INTRODUCTION ...................................................................................................................... 1 1.1 INTRODUCTION TO NUCLEAR MEDICINE .................................................................................................... 3 1.1.1 WHAT IS NUCLEAR MEDICINE? .............................................................................................................................. 3 1.1.2 MEDICAL ISOTOPES AND DISEASES ....................................................................................................................... 4 1.1.3 MOLYBDENUM-99/TECHNETIUM-99M: THE MOST COMMON RADIOISOTOPE ........................................... 5 1.2 DEMAND FOR MOLYBDENUM-99 ............................................................................................................... 5 1.3 THE BIG FIVE MEDICAL ISOTOPE PRODUCING REACTORS ....................................................................... 7 1.4 INTRODUCTION TO RADIOISOTOPE PRODUCTION IN NUCLEAR REACTORS ......................................... 11 1.5 ALTERNATIVE METHODS FOR PRODUCING MOLYBDENUM-99 ............................................................ 12 1.5.1 PHOTO-FISSION PROCESS 238U(Γ,F)99MO ......................................................................................................... 12 1.5.2 NEUTRON ACTIVATION OF MOLYBDENUM-98 ................................................................................................. 12 1.5.3 NEUTRON EMISSION FROM MOLYBDENUM-100 ............................................................................................. 13 1.6 RADIOACTIVE DECAY OF MOLYBDENUM-99/TECHNETIUM-99M ....................................................... 14 1.7 CONSIDERATIONS IN THE PRODUCTION OF MOLYBDENUM-99 IN NUCLEAR REACTORS .................... 16 1.7.1 MOLYBDENUM-99 TARGET PROCESSING TECHNIQUES ................................................................................. 18 Page | iv 1.7.2 TECHNETIUM-99M GENERATORS....................................................................................................................... 21 1.7.3 SPENT FUEL CONSIDERATIONS ........................................................................................................................... 23 1.8 CANDU REACTORS AND THE DRAGON LATTICE CODE ...................................................................... 26 1.8.1 USING CANDU REACTORS FOR MOLYBDENUM-99 PRODUCTION ............................................................... 26 1.8.2 THE DRAGON CODE ............................................................................................................................................ 30 CHAPTER 2 PRODUCTION OF MOLYBDENUM-99 IN NUCLEAR REACTORS: PRESENT AND FUTURE ........................................................................................................................................................... 33 2.1 CURRENT MOLYBDENUM-99 SUPPLY CHALLENGES .............................................................................. 34 2.2 CONVERSION OF MOLYBDENUM-99 TARGETS FROM HIGHLY-ENRICHED URANIUM TO LOW- ENRICHED URANIUM ....................................................................................................................................... 35 2.3 NEW PRODUCERS OF MOLYBDENUM-99 WORLDWIDE ........................................................................ 37 2.4 MOLYBDENUM-99 PRODUCTION IN POWER REACTORS ....................................................................... 38 CHAPTER 3 METHODOLOGY FOR THE DEVELOPMENT OF A MOLYBDENUM-99 PRODUCING 37-ELEMENT FUEL BUNDLE DESIGN ........................................................................... 41 3.1 DESIGN OBJECTIVES .................................................................................................................................. 41 3.2 DESIGN PLAN AND STRATEGY .................................................................................................................. 42 3.2.1 SATISFYING DESIGN REQUIREMENTS ................................................................................................................. 45 3.3 REACTOR OPERATING CONDITIONS AND ASSUMPTIONS ....................................................................... 51 3.3.1 REACTOR FUELLING CONSIDERATIONS ............................................................................................................. 52 3.4 DESIGN OPTIONS AND METHODOLOGY ................................................................................................... 54 3.4.1 METHOD FOR CALCULATING THE LINEAR HEAT RATING ............................................................................... 57 3.4.2 METHOD FOR CALCULATING THE RADIAL TEMPERATURE PROFILE ............................................................ 60 Page | v 3.4.3 METHOD FOR CALCULATING THE MASS AND ACTIVITY OF MOLYBDENUM-99 PRODUCED ..................... 69 CHAPTER 4 ASSESSMENT RESULTS AND DISCUSSION ................................................................... 73 4.1 TASK 1 - COMPARISON OF INFINITE MULTIPLICATIVE CONSTANTS ..................................................... 78 4.2 TASK 2 - COMPARISON OF LINEAR HEAT RATING ................................................................................. 85 4.3 TASK 3 - COMPARISON OF RADIAL TEMPERATURE PROFILES .............................................................. 92 4.4 MASS AND ACTIVITIES OF MOLYBDENUM-99 ...................................................................................... 113 CHAPTER 5 CONCLUDING REMARKS AND FUTURE WORK ........................................................ 117 REFERENCES ............................................................................................................................................... 120 APPENDICES