Optimized Morphologic Evaluation of Biostructures by Examination in Polarized Light and Differential Interference Contrast Microscopy

Total Page:16

File Type:pdf, Size:1020Kb

Optimized Morphologic Evaluation of Biostructures by Examination in Polarized Light and Differential Interference Contrast Microscopy Rom J Leg Med [22] 275-282 [2014] DOI: 10.4323/rjlm.2014.275 © 2014 Romanian Society of Legal Medicine Optimized morphologic evaluation of biostructures by examination in polarized light and differential interference contrast microscopy Elena Patrascu1, Petru Razvan Melinte1, Gheorghe S. Dragoi2,* _________________________________________________________________________________________ Abstract: Differential interference contrast microscopy (DIC) was possible after the invention of Wollaston prisms that were modified by Nomarski and could duplicate linear polarized light before passing through a specimen (Condenser DIC prism) and to recompose it afterwards (Objective DIC prism), thus creating the phenomenon of interference that depends on the thickness and birefringence of the studied structures. The authors proposed themselves to discuss the performances of this microscope and to widen the area of its usage in the optimized microanatomic analysis of cells and tissues on the native or stained sections. The authors consider it necessary to use DIC microscopy both in forensic medicine (identification of diatoms) as well as in reproduction biology (spermogram) and in early discovery of uterine cervix cancer. Key Words: DIC microscopy, Wollaston prism, Nomarski prism, polarized light, interference. he progresses achieved in the area of wave (Maxwell, 1864) [2] and has a photogenic improvement and diversification of structure (Einstein, 1921) [3]. It consists of an electric T optic systems determined the increase of photonic and a magnetic field, orthogonal, which vibrate in microscopes performances regarding the phase contrast, phase, in the direction of propagation. Within an polarized light and not least, differential interference electromagnetic wave, the electric and the magnetic contrast (DIC) examinations.They assure nowadays fields oscillate simultaneously, but in different planes. the optimization of biostructural assessment due to The usage of these characteristics brought to Einstein transformation effects of enlighten electromagnetic the Nobel Prize for Physics in 1922. waves when passing through optic prism systems, The usage of prisms as device for the study of which leads to personalized views. Our aim is to light phenomena - dispersion, refraction, reflection, highlight the performances of these microscopes polarization, diffraction and rays-of-light interference with the purpose of determining their capacity in the made famous various scientists. Newton (1660) [4] optimization of biostructures assessment, in ortology proved that white light, passing thought a triangular as well as in general and forensics pathology. prism, decomposes into “colored rays” (spectrum), which can recombine into white light when passing Stages in the history of practical and theoretical through a second prism. Rasmus Bartholin (1669) [5] acknowledgement of enlighten electromagnetic waves discovered the double refraction (birefringence) of the It is known that light has an undulate light when passing through “Iceland spatula” (Calcite). component (Huygens, 1678) [1]; it is an electromagnetic Louis Malus (1809) [6] established the polarization 1) University of Medicine and Pharmacy of Craiova, Departament of Anatomy, Romania 2) Romanian Academy of Medical Sciences, Bucharest, Romania * Corresponding author: Prof.MD, PhD, E-mail [email protected] 275 Patrascu E. et al Optimized morphologic evaluation of biostructures concept through reflection and refraction. William tube had the highest success. It was able to suppress Nicol (1823) [7] achieved the polarization of light the halo phenomena, inherent to phase contrast. F.H. using a calcite rhomboid crystal (“Iceland spatula”), Smith (1947) [14] was the first to use Wallastone cut under a 68 degrees angle, then sectioned in prisms in order to separate and recombine fascicles diagonal and reattached (glued) with Canada balm. of polarized light. Still, the system achieved by Smith The passing of the light through this prism determined had a major practical inconvenient: the prism used for the appearance of two rays: one that suffers a total fascicles recombination had to be placed in the frontal reflection at the level of Canada balm, called “ordinal plane of the objective, or, more specific, exactly inside ray” and another one which is completely transmitted, the objective - inaccessible places. The prism placement called “extraordinary ray” (Diagram 1B)). This prism problem was solved by Nomarski, using equally the invented by Nicol is a “polarizer”, widely used in Wallastone prisms for the externalization of fringes polarized light microscopy and in the interference and the placement of the prism at a certain distance contrast one (DIC). from the objective, in post-objective microscope’s The polarizer converts an unpolarized wave tower. This system determined with certainty the into linear polarized light, in the case of polarized improvement of interferential contrast microscopy. light microscope and DIC. The analyzer is a device The first microscopes with differential interference identical with the polarizer, but acts at the level of the contrast were called Nomarski microscopes; they were already polarized wave (Diagram 1 D). Wallastone produced by Carl Zeiss society, in 1965. From this (1766-1828) [8] invented a prism that transforms a ray moment on, they have been used in large scale in the of polarized or unpolarized light into two orthogonal scientific laboratories, due to the quality of obtained rays of linear polarized light. This prism is component images. They were also used for reflection system of DIC microscope prisms system (Diagram 1 C). (episcopic enlighten) and for transmission (diascopic Nomarski (1919-1997) [9] invented the differential enlighten). interference contrast microscope (DIC). He modified Nomarski (1919-1997) [9] contributed to the the Wallastone prism in order to lead the linear achievement of differential interference contrast (DIC) polarized rays of light into a focal point, exterior to the microscope, with applications in the microanatomic prism (Diagram 1 E). Diffraction and interference, as research of biostructures. It suppresses the halo markers of undulate characteristics of light, represent phenomena, which appears at the examination with the basis of differential interference contrast (DIU) the contrast phase microscope invented by Zernike microscopy. Experimental evidences have been (1953- Nobel Prize for Physics) [13]. Within the presented by Francois Arago [10] and Fresnel (1819) structure of DIC microscope, there are the following [11], for light diffraction and by Thomas Young (1773- optic systems: polarizer, Nomarski prism inside the 1829) for interference of the light. Huygens principle condenser, Nomarski prism inside the objective and (1678) [1] explains the diffraction phenomena. He the analyzer. The polarizer transforms source light into stated that every point of a wave front can be considered linear polarized light. The condenser prism separates a source of secondary spheroid waves and in a time (t), each ray of polarized light into two rays, perpendicular the new position of the wave front, will be at tangent to each other and separated through a distance lesser surface to the secondary waves. than a micron. Later, the two rays are submitted to Interference of the light is the overlapping a different phase shift, when they cross neighboring phenomena of two or more coherent light waves points of the sample. The prism of the objective, which (rays), in a certain area in space, which determines is placed in reverse to the one inside the condenser, the appearance of a stationary frame with minimal recombines the two phase-shifted rays, which cross and maximal fringes that repeats periodically in the the analyzer, perpendicular oriented to the polarizer same area. In order to obtain a stationary interference (Diagram 2). phenomena, the rays of light must have the same frequency and must be coherent, meaning, they must MATERIALS AND METHODS have a constant phase difference. In 1933, Frederic Zernike (1888-1966) [13], We selected fragments of bone, uterine discovered the contrast phase technique which he cervix and superior sympathetic cervical ganglion applies to optic microscope, in order to observe the neuroganglion and we evaluated them by examining internal structure of uncolored cells, preserving in polarized light and differential interference contrast in this manner, their integrity. The first contrast microscopy.The harvested fragments were fixed in 8% phase microscope (or interferential) was achieved in formaldehyde solution, buffered at 7.8 pH; afterwards 1942. Later, other systems have been developed. The they were embedded in paraffin and sectioned at 5 interferential device, placed inside the microscope’s microns interval. The examination was carried out 276 Romanian Journal of Legal Medicine Vol. XXII, No 4(2014) B C A E D F Diagram 1. Transformation of electromagnetic waves inside optic systems: phase rings in phase contrast microscopy (A); Nicol prism in polarized light microscopy (B); Wollaston (W) and Nomarski (N) prisms in differential interference contrast microscopy (C-F). A – location of phase rings; B – transformation of non polarized light wave into a linear polarized wave; C, E, F – duplication of linear polarized light while passing through Wollaston prism (C) and Nomarski (D). (After Charlotte P. – Technique de generation en microscopie) [15]. 277 Patrascu E. et al Optimized morphologic evaluation of biostructures
Recommended publications
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • Dual Beam Detection Technique to Study Magneto-Optical Kerr
    DUAL BEAM DETECTION TECHNIQUE TO STUDY MAGNETO-OPTICAL KERR EFFECT By Shankar Chandra Acharya, Msc A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Science with a Major in Physics May 2019 Committee Members: Wilhelmus J Geerts, Chair Nikoleta Theodoropoulou Alexander Zakhidov COPYRIGHT By Shankar Chandra Acharya 2019 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgement. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, Shankar Chandra Acharya, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. ACKNOWLEDGEMENTS First of all, I would like to than my supervisor Dr. Wilhelmus J Geerts for his constant support and guidance. I feel grateful to have worked under such an inspiring researcher who has given me this opportunity to learn and explore scientific knowledge. I would also like to thank my committee members Dr. Nikoleta Theodoropoulou and Dr. Alexander Zakhidov for their constructive feedback which have contributed to my thesis project. I am grateful for my family and friends for their motivation and encouragement all these years of my studies. My mother and father have supported me during the difficult times and inspired me throughout my research.
    [Show full text]
  • De Sénarmont Bias Retardation in DIC Microscopy Stanley Schwartz1, Douglas B
    de Sénarmont Bias Retardation in DIC Microscopy Stanley Schwartz1, Douglas B. Murphy2, Kenneth R. Spring3, and Michael W. Davidson4 1Bioscience Department, Nikon Instruments, Inc., 1300 Walt Whitman Road, Melville, New York 11747. 2Department of Cell Biology and Anatomy and Microscope Facility, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 107 WBSB, Baltimore, Maryland 21205. 3National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 6N260, Bethesda, Maryland 20892 4National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 3231 Keywords: microscopy, de Senarmont, Henri Hureau de Sénarmont, Francis Smith, Georges Nomarski, William Hyde Wollaston, Michel- Levy color chart, contrast-enhancement techniques, depth of field, bias, retardation, compensating, plates, DIC, differential interference, contrast, prisms, compensators, shadow-cast, relief, pseudo, three-dimensional, birefringence, optical staining, sectioning, spherical aberrations, wavefronts, shear, fast, slow, axes, axis, linear, circularly, elliptically, polarized light, polarizers, analyzers, orthogonal, path, differences, OPD, gradients, phase, ordinary, extraordinary, maximum extinction, quarter-wavelength, full-wave plates, first-order red, halo, artifacts, interference plane, VEC, video enhanced, VE-DIC, Newtonian, interference colors, Nikon, Eclipse E600, microscopes, buccal, mucosa, epithelial, cheek cells, ctenoid, fish scales, Obelia, hydroids, polyps, coelenterates, murine, rodents, rats,
    [Show full text]
  • Polarization Phenomena of Certain Fluorites
    142 TIIE AMERICAN MINERALOGIST Pleochroic,e :colorless, ,:pale blue-green, It thus differs from the average vesuvianite only in slightly higher birefringence. The writer wishes to acknowledge his indebtedness to Col. Roebling, Mr. Gage, and Ward's Natural ScienceEstablishment for the privilege of examining specimensand to Dr. Larsen for the opticaldeterminations. POLARIZATION PHENOMENA OF CERTAIN FLUORITES A. L. PansoNs, Uniaersity oJ Toronto While determining the refractive index of fluorite by the method of minimum deviation the writer introduced a nicol prism before the telescopeof the goniometer to determine the plane of polarization of the refracted ray. On rotating the nicol no difference in the intensity of light could be observed,but on examining the reflected ray nearly complete polarization was obtained so that it was thought that the prism was not cut at the angle that should give polarization if Brewster's law applies to isometric crystals. A new prism was then cut from a crystal of fluorite from Madoc, Ontario, so that the angle between the reflected ray and the refracted ray should be ninety degrees. With this new prism the same phenomena were observed. A second nicol was now intro- duced between the collimator and the crystal so that the signal was extinguished. On rotating the two nicols simultaneously extinction was obtained throughout a complete rotation so that it would appear as though we may accept without question the state- ment that a ray of light passing through fluorite vibrates with equal facility in all directions at right angles to the direction of propagation and is not polarized.
    [Show full text]
  • GEOL 221 Mineralogy and Mineral Optics Course Syllabus
    SAN DIEGO STATE UNIVERSITY GEOL 221 Mineralogy and Mineral Optics Course Syllabus Instructor: Professor David L. Kimbrough Email: [email protected], Phone: 594-1385 Lecture: MW 1000-1050 CSL 422, Lab: W 1400-1640, Lab study: M 1400-1640 CSL 425 Office: GMCS-229A; Office hours: MW 1100-1200; T 1115-1215; by appointment TA: Mark Nahabidian GMCS-133 TBA Course Prerequisite: Chem 200 or concurrent registration. Credit or concurrent registration in OCEAN 100 or GEOL 100 and 101 or GEOL 104 and 101; Geol 200; Required Texts: Introduction to Mineralogy, William D. Nesse, Oxford University Press. Minerals in Thin Section, Perkins & Henke, Prentice Hall Recommended Text: Dictionary of Geological Terms, AGI Bates & Jackson eds. or similar, The Complete Guide to Rocks & Minerals by John Farndon or similar Other required materials: Hand lens; calculator Classroom management: Attendance is crucial. Please let me know if you’re going to be absent for any reason. Be on time for class, don’t participate in excessive side-chatter or cause disruptions during class. Always respond to the instructor, the Teaching Assistant, and your fellow students in a respectful and civil manner. Cheating or plagiarism is not tolerated. It’s easy to spot and constitutes serious academic misconduct. Helpful hints to make Mineralogy easier and more fun! Attend class: Studies show that the most valuable time commitment by students in a course is the time actually spent in the classroom. Class time is the most important determinant of student success and yields the greatest improvement in student learning outcomes. Information is covered in class that is not in the textbook, and parts of the book are hard to understand.
    [Show full text]
  • B.Sc.( Srmester-3) Subject: Physics Course: US03CPHY01 Title: Optics
    B.Sc.( Srmester-3) Subject: Physics Course: US03CPHY01 Title: Optics UNIT – III Polarization Introduction:- • Interference and diffraction phenomena proved that light is a wave motion. These phenomena are used to find wavelength of light. However, they do not give any indication regarding the character of waves. • Maxwell developed electromagnetic theory and suggested that light-waves are electromagnetic waves. Electromagnetic waves are transverse waves, so it is obvious that light waves are also transverse waves. • Longitudinal waves are waves in which particles of medium oscillate along the direction of propagation of wave (e.g. sound wave). • Transverse waves are waves in which particles of medium oscillate perpendicular to the direction of propagation of wave. (e.g. Electromagnetic waves.) • Polarization is possible in transverse wave. • Unpolarized Light is the light is which the planes of vibration are symmetrically distributed about the propagation direction of the wave. • Plane Polarized light is a wave in which the electric vector is everywhere confined to a single plane. • A linearly polarized light wave is a wave in which the electric vector oscillates in a given constant orientation. Production of Linearly Polarized Light: Linearly polarized light may be produced from unpolarized light using following optical phenomena. (i) Reflection (ii) Refraction (iii) Scattering (iv) Selective absorption (v) Double reflection. Polarized light has many important applications in industry and engineering. One of the most important applications is in liquid crystal displays (LCDs) which are widely used in wristwatches, calculators, T.V. Screens etc. An understanding of polarization is essential for understanding the propagation of electromagnetic waves guided through wave-guides and optical fibers.
    [Show full text]
  • Chapter 8 Polarization
    Phys 322 Chapter 8 Lecture 22 Polarization Reminder: Exam 2, October 22nd (see webpage) Dichroism = selective absorption of light of certain polarization Linear dichroism - selective absorption of one of the two P-state (linear) orthogonal polarizations Circular dichroism - selective absorption of L-state or R-state circular polarizations Using dichroic materials one can build a polarizer Dichroic crystals Anisotropic crystal structure: one polarization is absorbed more than the other Example: tourmaline Elastic constants for electrons may be different along two axes Polaroid 1928: dichroic sheet polarizer, J-sheet long tiny crystals of herapathite aligned in the plastic sheet Edwin Land 1938: H-sheet 1909-1991 Attach Iodine molecules to polymer molecules - molecular size iodine wires Presently produced: HN-38, HN-32, HN-22 Birefringence Elastic constants for electrons may be different along axes Resonance frequencies will be different for light polarized Refraction index depends on along different axes polarization: birefringence Dichroic crystal - absorbs one of the orthogonal P-states, transmits the other Optic axis of a crystal: the direction of linear polarization along which the resonance is different from the other two axes (assuming them equal) Calcite (CaCO3) Ca C O Image doubles Ordinary rays (o-rays) - unbent Extraordinary rays (e-rays) - bend Calcite (CaCO3) emerging rays are orthogonaly polarized Principal plane - any plane that contains optical axis Principal section - principal plane that is normal to one of the cleavage
    [Show full text]
  • Optic Axis of a Crystal: the Direction of Linear Polarization Along Which the Resonance Is Different from the Other Two Axes (Assuming Them Equal) Calcite (Caco3)
    Phys 322 Chapter 8 Lecture 22 Polarization Dichroism = selective absorption of light of certain polarization Linear dichroism - selective absorption of one of the two P-state (linear) orthogonal polarizations Circular dichroism - selective absorption of L-state or R-state circular polarizations Using dichroic materials one can build a polarizer Dichroic crystals Anisotropic crystal structure: one polarization is absorbed more than the other Example: tourmaline Elastic constants for electrons may be different along two axes Polaroid 1928: dichroic sheet polarizer, J-sheet long tiny crystals of herapathite aligned in the plastic sheet Edwin Land 1938: H-sheet 1909-1991 Attach Iodine molecules to polymer molecules - molecular size iodine wires Presently produced: HN-38, HN-32, HN-22 Birefringence Elastic constants for electrons may be different along axes Resonance frequencies will be different for light polarized Refraction index depends on along different axes polarization: birefringence Dichroic crystal - absorbs one of the orthogonal P-states, transmits the other Optic axis of a crystal: the direction of linear polarization along which the resonance is different from the other two axes (assuming them equal) Calcite (CaCO3) Ca C O Image doubles Ordinary rays (o-rays) - unbent Extraordinary rays (e-rays) - bend Calcite (CaCO3) emerging rays are orthogonaly polarized Principal plane - any plane that contains optical axis Principal section - principal plane that is normal to one of the cleavage surfaces Birefringence and Huygens’ principle
    [Show full text]
  • The Role of the Petrographic Microscope in Criminal Investigations George T
    Journal of Criminal Law and Criminology Volume 31 Article 12 Issue 2 July-August Summer 1940 The Role of the Petrographic Microscope in Criminal Investigations George T. Faust Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/jclc Part of the Criminal Law Commons, Criminology Commons, and the Criminology and Criminal Justice Commons Recommended Citation George T. Faust, The Role of the Petrographic Microscope in Criminal Investigations, 31 Am. Inst. Crim. L. & Criminology 246 (1940-1941) This Criminology is brought to you for free and open access by Northwestern University School of Law Scholarly Commons. It has been accepted for inclusion in Journal of Criminal Law and Criminology by an authorized editor of Northwestern University School of Law Scholarly Commons. THE ROLE OF THE PETROGRAPHIC MICROSCOPE IN CRIMINAL INVESTIGATIONS George T. Fust* There are many instances when it is objective. The purpose of the lower not possible to completely solve prob- one is to plane polarize the light which lems involving the analysis of sub- passes through the microscope. 2 The stances by either chemical or spectro- second prism, in combination with the graphic means. In such cases the de- polarizer, is utilized to determine the termination of the index of refraction optical properties of the crystal being and other optical properties by means studied.' of the petrographic microscope may While the applications of the petro- prove of value. (The index of refrac- graphic microscope are extensive, prob- tion is an optical property character- ably its most frequent use is found in istic of any particular crystalline sub- studies of the refractive index of glass stance, and it is measured by the ve- fragments picked up at crime scenes, locity with which light is transmitted and of abrasives which have been used through that substance, as compared in sabotage cases.
    [Show full text]
  • Fig: 5, 9 I Inventor Patented May 22, 1934 1959,549
    May 22, 1934. H. SAUER 1,959,549 POLARIZATION PHOTOMETER Filed March 23, 1933 0LLSLL0SLLLSLSLSLLSL0LLL0LLLSLLSLLLTLLLLSLLLLLLLL LLLLLLLLSLLLLS0SSSLSLL0LSLSSSLSLS0SSLLLLLSLSLLL 7 12?% fig: 5, 9 I Inventor Patented May 22, 1934 1959,549 UNITED STATES PATENT OFFICE 1959,549 POLARIZATION PHOTOMETER Hans Sauer, Jena, Germany, assignor to firm Carl Zeiss, Jena, Germany Application March 23, 1933, Serial No. 662,277 in Germany March 24, 1932 4. Claims. (C. 88-23) The invention concerns a polarization pho tions in which the one or the other photometric tometer having a polarization prism, an analyzer Comparison field is just absolutely dark. prism, and a bi-prism. To avoid measuring disturbing light effects, the In the known photometers of this kind, the po light-entrance apertures, the optical members, larization prism, the bi-prism, and the two light and, eventually, diaphragms, may be so posi 60 entrance apertures have such positions relatively tioned that only those two of the ray pencils to each other that the two prisms deviate the ray emanating from the polarization prism enter the pencils emanating from the two light entrance Succeeding optical members which are used for apertures into a plane containing the centres of the comparison measurement. If the analyzer the light entrance apertures or of images of these prism is behind the polarization prism, these two 65 10 apertures. This constructional form is not very prisms are conveniently given such a distance advantageous in So far as using light of different apart and their apertures are so dimensioned that wave-lengths entails the necessity of specially ad only those images due to the polarization prism justing the instrument, which causes those im enter the analyzer prism which are used for meas ages of the light-entrance apertures to touch uring 70 15 each other which are due only to the polarization The accompanying drawing represents a con prism.
    [Show full text]
  • How to Generate Polarized Light?
    Before this lecture there were two lectures: 1. Qualitative description of polarization and generation of various polarized light. 2. Quantitative derivation and explaining the observations. 08/08/2017 How to generate Polarized Light? 1.Dichroic materials 2.Polarizer 3.Birefringent materials 4.Reflection 5.Scattering Wire grid polarizer Birefringence Polarized Reflecting Light • When an unpolarized light wave reflects off a non-metallic surface, it can be completely polarized, partially polarized or unpolarized depending on the angle of incidence. A completely polarized wave occurs for an angle called Brewster’s angle (named after Sir David Brewster) Snell's law Incident Reflected ray ray p n 90o 1 n2 r n1sin P = n2sin r n1sin P = n2sin r = n2sin (90-P) = n2cos P tan P = n2/n1 P = Brewster’s angel Reflection • When an unpolarized wave reflects off a nonmetallic surface, the reflected wave is partially plane polarized parallel to the surface. The amount of polarization depends upon the angle (more later). The reflected ray contains more vibrations parallel to the reflecting surface while the transmitted beam contains more vibrations at right angles to these. Applications • Knowing that reflected light or glare from surfaces is at least partially plane polarized, one can use Polaroid sunglasses. The polarization axes of the lenses are vertical as the glare usually comes from reflection off horizontal surfaces. Polarized Lens on a Camera Reduce Reflections Polarization by Scattering • When a light wave passes through a gas, it will be absorbed and then re-radiated in a variety of directions. This process is called scattering. y Gas molecule z O Unpolarized x sunlight Light scattered at right angles is plane-polarized Polarization by Scatterings Retarders • In retarders, one polarization gets ‘retarded’, or delayed, with respect to the other one.
    [Show full text]
  • Polarisation
    Polarisation In plane polarised light, the plane containing the direction of POLARISATION vibration and propagation of light is called plane of vibration. Polarisation Plane which is perpendicular to the plane of vibration is called plane of polarisation. The phenomenon due to which vibrations of light waves are restricted in a particular plane is called polarisation. In an ordinary beam of light from a source, the vibrations occur normal to the direction of propagation in all possible planes. Such beam of light called unpolarised light. If by some methods (reflection, refraction or scattering) a beam of light is produced in which vibrations are confined to only one plane, then it is called as plane polarised light. Hence, polarisation is the phenomenon of producing plane polarised light from unpolarised light. In above diagram plane ABCD represents the plane of vibration and EFGH represents the plane of polarisation. There are three type of polarized light 1) Plane Polarized Light 2) Circularly Polarized Light 3) Elliptically Polarized Light Page 1 of 12 Prof. A. P. Manage DMSM’s Bhaurao Kakatkar College, Belgaum Polarisation Huygen’s theory of double refraction According to Huygen’s theory, a point in a doubly refracting or birefringent crystal produces 2 types of wavefronts. The wavefront corresponding to the O-ray is spherical wavefront. The ordinary wave travels with same velocity in all directions and so the corresponding wavefront is spherical. The wavefront corresponding to the E-ray is ellipsoidal wavefront. Extraordinary waves have different velocities in Polarised light can be produced by either reflection, different directions, so the corresponding wavefront is elliptical.
    [Show full text]