2014 SPECIALTY CROP BLOCK GRANT Final Report Agreement # 14-SCBGP-TX-0048

Total Page:16

File Type:pdf, Size:1020Kb

2014 SPECIALTY CROP BLOCK GRANT Final Report Agreement # 14-SCBGP-TX-0048 2014 SPECIALTY CROP BLOCK GRANT Final Report Agreement # 14-SCBGP-TX-0048 Submitted by: Karen Reichek, Director, Contracts & Grants Texas Department of Agriculture Trade & Business Development [email protected] or [email protected] Phone: (512) 936-2450 Fax: (888) 223-9048 Date Submitted: December 28, 2017 Final Revision Submitted: April 16, 2018 Table of Contents PROJECT 1: IDENTIFYING SUPERIOR PIERCE’S DISEASE RESISTANT GRAPE VARIETALS AND ROOTSTOCKS FOR TEXAS ..................................................................................................... 1 PROJECT 2: CONSERVING WATER IN RURAL AND URBAN VEGETABLE FARMING – YEAR 2 ...... 5 PROJECT 3: STRATEGIES TO PROMOTE NEW VARIETALS AND GRAPE GROWING ACREAGE OF TEXAS WIND GRAPES – SPECIALTY CROP PRODUCERS CONTINUING EDUCATION .................. 14 PROJECT 4: PECAN SCREENING NURSERY FOR COTTON ROOT ROT RESISTANCE .................... 21 PROJECT 5: EXPANDED PRODUCTION OF FRUIT AND SEED FOR NEW ENHANCED QUALITY, TAMU TOMATO CULTIVARS ............................................................................................. 35 PROJECT 6: INCREASING PROFITABILITY AND REDUCING INSECTICIDE USE IN TEXAS SOD PRODUCTION THROUGH MONITORING OF DESTRUCTIVE INSECT PESTS ................................. 42 PROJECT 7: SUSTAINABLE PRODUCTION OF MELON AND ARTICHOKE USING ECO-POLYMERS: DOES IT MATTER TO CONSUMERS? ..................................................................................... 53 PROJECT 8: NORTH TEXAS WINE GRAPE CULTIVAR & ROOTSTOCK EVALUATION ................. 64 PROJECT 9: INCREASING CONSUMER AWARENESS OF THE HEALTH AND ECONOMIC BENEFITS OF BUYING TEXAS VEGETABLES ........................................................................................ 71 PROJECT 10: INCREASING SALES AND BRAND AWARENESS THROUGH MARKETING THE QUALITY AND NUTRITION OF TEXAS GROWN WATERMELON ............................................... 85 PROJECT 11: FEASIBILITY STUDIES FOR THE USE OF FLUTRIALFOL AND DIFFERENT ROOTSTOCKS TO CONTROL COTTON ROOT IN TEXAS WINEGRAPE ........................................ 95 PROJECT 12: EXPANDING ADVISEMENT AND SERVICE ROLES INSIDE THE TEXAS CITRUS INDUSTRY: GROWER OUTREACH IN PSYLLID CONTROL AND HLB EARLY DETECTION .......... 106 PROJECT 13: FROM ARTISANAL TO MASS MARKET: GROWING AWARENESS, TRIAL, AND PURCHASE OF TEXAS GROWN OLIVE OIL ........................................................................... 111 PROJECT 14: INVESTIGATING MANAGEMENT PRACTICES AND VARIETAL SELECTION FOR IMPROVING OLIVE ORCHARD PRODUCTIVITY AND QUALITY OF FRUIT ................................. 120 PROJECT 15: DEVELOPING EFFICIENT SCIENCE BASED IRRIGATION PROGRAMS FOR THE TEXAS CITRUS INDUSTRY ................................................................................................. 145 PROJECT 16: TEXAS SPECIALTY CROPS IN INTERNATIONAL MARKETS ................................. 149 PROJECT 17: RETAIL PLANT AND PRODUCT PROMOTIONS AND CONSUMER EDUCATION ........ 152 PROJECT 1: IDENTIFYING SUPERIOR PIERCE’S DISEASE RESISTANT GRAPE VARIETALS AND ROOTSTOCKS FOR TEXAS Partner Organization: Primary – Texas Hill Country Wineries Association; Partner – Texas A&M AgriLife Extension Services Project Manager: January Weise (THCW) James Kamas (AgriLife) Contact Information: [email protected], 512.216.9897 Type of Report: Final Date Submitted: May 5, 2016 Summary Pierce’s Disease (PD) of grape is a devastating and major limiting factor to further development of grape production in Texas. The use of susceptible traditional (Vitis vinifera) varieties in areas which have moderate PD pressure represents a financial risk for producers. Current methods of disease management rely heavily on chemical control of the vector insect population, a costly strategy and one that could have negative environmental impacts. In regions with high PD pressure, grape production is limited to a small number of hybrid grape varieties with limited market appeal. The work completed through this project complemented and enhanced previous efforts funded through the Specialty Crop Block Grant Program by continuing the evaluation of existing and newly-bred PD resistant grape varieties and by facilitating the impact of properly selected rootstocks on the health and productivity of scion varieties. The project initially selected 32 potentially high quality, PD resistant varieties among known heirloom varieties, in addition to, selection from multiple, conventional breeding programs across the U.S. Of the initial 32 varieties, 9 varieties were identified and evaluated through this project. Additionally, 4 new varieties from the University of California, Davis breeding program were evaluated for disease tolerance and fruit quality. Project Approach Superior plot management was practiced during the 2015 growing season in three rootstock trial blocks and three PD resistant/tolerant variety trial blocks in Austin, Gillespie and Real Counties. These duties included pruning and training of grapevines, insect and fungal disease management, vineyard floor management, fertilization and proper timing and placement of supplemental irrigation water. These duties were performed to exacting standards on a timely basis in order to minimize variability within test sites in order for treatment differences to be accurately assessed. Rootstock Trial After pruning, 2014 grown pruning weights were taken, recorded and analyzed. These measurements are taken to compare vigor imparted by the twelve different root systems present in each of the three rootstock plots. Petiole samples were taken and submitted for analysis at bloom and véraison to compare the ability of each root system to forage for and assimilate nutrients among these three vastly different growing locations. Fruit maturity was monitored Texas Department of Agriculture 2014 Specialty Crop Block Grant –Final Report Page 1 through the summer and at mean peak maturity, fruit samples were taken to assess the impact of these rootstocks to impact fruit chemistry. Initial acidity, pH and soluble solids were assessed at harvest, but fruit samples were frozen to run complex analysis of color and flavor components. The growing conditions at the Real County location represent an extreme location in the Texas Hill Country with a high concentration of fractured limestone. These Spartan conditions quickly sorted out the twelve root systems with five of the twelve performing at a satisfactory level. 5BB, 5C, 1103P, Salt Creek and Dogridge (rootstock varieties) all provided sufficient vigor to at least grow and produce fruit. The other seven root systems did not perform well enough to support vine growth and productivity and there was an increasing percentage of death due to a variety of causes including cotton root rot infection and winter injury. To some degree both of those causes simply represent a lack of sufficient vigor to support vine growth and productivity at this site. The Real County rootstock block will be dropped for the 2016 growing season because project staff has the information needed for this location. The other two blocks in Gillespie and Austin counties are now at full maturity and will provide valuable knowledge on these rootstocks ability to impact date of bud-break, winter hardiness and influence on fruit quality. PD Resistant/Tolerant Variety Trial The Pierce's disease resistant/tolerant variety trial blocks have confirmed the existence of five selections, four from California and one from Florida with the confirmed ability to produce high quality wine grapes under high Pierce's disease pressure. California selections that have performed well include U0502-20 (white), U0502-38, U0505-35 and U0502-10 (reds). The Florida selection that continues to perform well is A-24-6-6 (white). While these selections perform well over a wide variety of climatic conditions, the California selections are more susceptible to downy mildew than other varieties traditionally grown in the Gulf Coast region, so growers will need to adapt more rigorous spray programs to manage this pathogen in wet seasons. This variable resistance to downy mildew makes some selections more adaptable to the Gulf Coast and others to the southwestern part of the Texas Hill Country, but wine quality among all of these selections make them suitable candidates for commercial production. Once again, in 2015, grapes from our research plots and other larger scale plots established in grower vineyards were used for small lots of wine for evaluation by a panel of Hill Country winemakers in early 2016. Research staff also saw first fruit of the U.C. Davis 94% V. vinifera selections this year from the Fredericksburg planting and collected initial data on fruit chemistry. Staff anticipate that larger blocks of the 94% selections in Industry and Leakey, Texas will be on-line for production in 2016 and there will be enough fruit to produce wine lots for evaluation. In anticipation of public release of the 88% selections, larger blocks of these selections have been propagated and established at the Fredericksburg Vineyard and Fruit Lab to be able to supply Texas growers with a source of propagation wood once these selections have been released. Problems and Delays An excessively wet spring presented high fungal disease pressure at all plot locations. To deal with this, increased fungicide sprays were applied and fruit quality was maintained. However, fruit from the Austin County rootstock trial was compromised by excessively high soil moisture and little valuable information
Recommended publications
  • Assessment of Maternal Effects and Genetic Variability in Resistance to Verticillium Dahliae in Olive Progenies
    plants Article Assessment of Maternal Effects and Genetic Variability in Resistance to Verticillium dahliae in Olive Progenies Pedro Valverde Caballero , Carlos Trapero Ramírez , Diego Barranco Navero, Francisco J. López-Escudero, Ana Gordon Bermúdez-Coronel and Concepción Muñoz Díez * Excellence Unit ‘María de Maeztu’ 2020-23, Department of Agronomy, ETSIAM, University of Córdoba, 14071 Córdoba, Spain; [email protected] (P.V.C.); [email protected] (C.T.R.); [email protected] (D.B.N.); [email protected] (F.J.L.-E.); [email protected] (A.G.B.-C.) * Correspondence: [email protected] Abstract: The use of genetic resistance is likely the most efficient, economically convenient and environmentally friendly control method for plant diseases, as well as a fundamental piece in an integrated management strategy. This is particularly important for woody crops affected by diseases in which mainly horizontal resistance mechanisms are operative, such as Verticillium wilt, caused by Verticillium dahliae. In this study, we analyzed the variability in resistance to Verticillium wilt of olive trees in progenies from five crosses: ‘Picual’ × ‘Frantoio’, ‘Arbosana’ × ‘Koroneiki’, ‘Sikitita’ × Citation: Valverde Caballero, P.; ‘Arbosana’, ‘Arbosana’ × ‘Frantoio’ and ‘Arbosana’ × ‘Arbequina’ and their respective reciprocal Trapero Ramírez, C.; Barranco crosses. Additionally, seedlings of ‘Picual’ and ‘Frantoio’ in open pollination were used as controls. Navero, D.; López-Escudero, F.J.; In October 2016 and 2018, the fruits were harvested, and seeds germinated. Six-week-old seedlings Gordon Bermúdez-Coronel, A.; Díez, were inoculated by dipping their bare roots in a conidial suspension of V. dahliae, and disease progress C.M. Assessment of Maternal Effects in terms of symptom severity and mortality was evaluated weekly.
    [Show full text]
  • Agricultura Revista Agropecuaria, ISSN: 0002-1334
    AGRICULTURA 2 copia:Maquetación 1 4/5/10 11:10 Página 362 DOSSIER PROGRAMA DE MEJORA ‘Sikitita’, nueva variedad para plantaciones de olivar en seto Foto 1. Vigor y hábito de crecimiento de ‘Sikitita’ (izquierda), ‘Arbequina’ (centro) y ‘Frantoio’ (derecha) a los siete años desde la plantación Luís Rallo ‘Sikitita’ es una nueva variedad de olivo procedente de un cruzamiento Diego Barranco Departamento de entre ‘Picual’ y ‘Arbequina’. Los resultados de la evaluación agronómica Agronomía, Universidad llevada a cabo en Córdoba han permitido su selección y registro como de Córdoba. una nueva variedad de precoz entrada en producción, alto contenido en Raúl de la Rosa aceite y elevada productividad. Su reducido vigor, su porte llorón y su Lorenzo León IFAPA Centro Alameda del alta densidad de ramos proporcionan una variedad particularmente Obispo. Córdoba. adaptada a las nuevas plantaciones de muy alta densidad en seto. Sikitita’ es la primera variedad ORIGEN Córdoba. La primera cosecha con los tres genitores del progra- desarrollada en el programa se obtuvo en 1996 y la evalua- ma original (‘Arbequina’, ‘Fran- ‘de mejora conjunto que se lle- La planta originaria de ‘Sikitita’ ción inicial de la planta se efec- toio’ y ‘Picual’) como testigos va a cabo entre la Universidad de (código UC-I 8-7 del programa de tuó durante tres cosechas con- fueron propagados por estaqui- Córdoba y el IFAPA. mejora) procede de un cruza- secutivas. La selección de la llado semileñoso en la primave- Este artículo resume la infor- miento entre ‘Picual’ (parental planta original de ‘Sikitita’ fue de- ra del año 2000 y se plantaron en mación obtenida hasta la fecha femenino) y ‘Arbequina’ (pa- bida a su precocidad de entrada un ensayo comparativo en blo- de esta nueva variedad e infor- rental masculino) llevado a cabo en producción (período juvenil ques al azar con 16 repeticiones ma sobre el estado actual de su en 1991 (Rallo, 1995).
    [Show full text]
  • Assessment of Maternal Effects and Genetic Variability in Resistance to Verticillium Dahliae in Olive Progenies
    Article Assessment of Maternal Effects and Genetic Variability in Resistance to Verticillium dahliae in Olive Progenies Pedro Valverde Caballero, Carlos Trapero Ramírez, Diego Barranco Navero, Francisco J. López-Escudero, Ana Gordon Bermúdez-Coronel and Concepción Muñoz Díez * Department of Agronomy (Excellence Unit ‘María de Maeztu’ 2020-23), ETSIAM, University of Córdoba, 14071 Córdoba, Spain; [email protected] (P.V.C.); [email protected] (C.T.R.); [email protected] (D.B.N.); [email protected] (F.J.L.-E.); [email protected] (A.G.B.-C.) * Correspondence: [email protected] Abstract: The use of genetic resistance is likely the most efficient, economically convenient and en- vironmentally friendly control method for plant diseases, as well as a fundamental piece in an inte- grated management strategy. This is particularly important for woody crops affected by diseases in which mainly horizontal resistance mechanisms are operative, such as Verticillium wilt, caused by Verticillium dahliae. In this study, we analyzed the variability in resistance to Verticillium wilt of olive trees in progenies from five crosses: ‘Picual’ × ‘Frantoio’, ‘Arbosana’ × ‘Koroneiki’, ‘Sikitita’ × Citation: Valverde, P.; Trapero, C.; ‘Arbosana’, ‘Arbosana’ × ‘Frantoio’ and ‘Arbosana’ × ‘Arbequina’ and their respective reciprocal Barranco, D.; López-Escudero, F.J.; crosses. Additionally, seedlings of ‘Picual’ and ‘Frantoio’ in open pollination were used as controls. Gordon, A.; Díez C. M. Assessment In October 2016 and 2018, the fruits were harvested, and seeds germinated. Six-week-old seedlings of maternal effect and genetic varia- were inoculated by dipping their bare roots in a conidial suspension of V. dahliae, and disease pro- bility in resistance to Verticillium gress in terms of symptom severity and mortality was evaluated weekly.
    [Show full text]
  • LA PRODUCTIVITE D'un VERGER D'olivier Eléments De Réflexion
    LA PRODUCTIVITE D’UN VERGER D’OLIVIER Eléments de réflexion Gordes, 30 septembre 2020 Hélène LASSERRE France Olive/ Pôle Conservation Recherche LA FILIÈRE OLÉICOLE FRANÇAISE 2020 Présentation de l’interprofession FRANCE OLIVE C’EST : ➢ L’association française interprofessionnelle de l’olive (ex. AFIDOL) ➢ Une association, reconnue par l’État, créée en 1999 ➢ Une représentation de tous les acteurs de la filière oléicole ➢ Un accord interprofessionnel triennal signé par les familles représentatives ➢ Un budget de 2 000 k€ financé pour : ⚫ 40 % : par les Cotisations Volontaires Etendues* de l’amont et de l’aval ⚫ 60 % : par les subventions européennes, nationales et régionales ➢ Trois antennes dans les trois principales régions productrices : Région Occitanie Région Sud, Provence-Alpes-Côte d’Azur Région Auvergne-Rhône-Alpes Mas de l'agriculture Maison des Agriculteurs 40, place de la Libération 1120, route de Saint-Gilles 22, avenue Henri Pontier 26110 Nyons 30932 Nîmes 13626 Aix-en-Provence Tél. 04 75 26 90 90 Tél. 04 66 08 19 34 Tél. 04 42 23 01 92 * CVE (ex. CVO) : « Volontaires » car décidées par les familles représentatives de la filière et « Etendues » car rendues obligatoires par l’Etat à l’ensemble des acteurs de la filière par extension de l’accord interprofessionnel. 3 millions de tonnes 5 000 tonnes 0,15% de la production mondiale 2,1 millions de tonnes Une production emblématique pour les régions du Sud de la France mais anecdotique au niveau mondial. Consommation française totale d'huile d'olive 108 000 tonnes Production française 5 000 tonnes Part dans la consommation nationale : 4 % - Une production issue d'entreprises familiales et artisanales - 25 % de la production sous label AOP (8 appellations d’origine) issue de variétés locales, typiques et uniques et une production « bio » importante (28% du verger) - Trois familles de goûts et une multitude de variantes au sein de chaque famille : en fonction de la ou des variétés, du terroir et du savoir-faire, les goûts de l’huile d’olive sont différents.
    [Show full text]
  • Μedals & Special Prizes
    5th Αthena International Olive Oil Competition • SPATA • June 11–13 2020 ΜEDALS & SPECIAL PRIZES Final Participation and Awards Results DOUBLE GOLD DOUBLE GOLD MEDALS EVOOIL EVOO PRODUCER VARIETAL MAKE UP COUNTRY REGION WEBSITE FLAVOR ΒΙΟ Longnan Xiangyu Olive Xiangyu Coratina Coratina China Longnan, Gansu www.xiangyuoliveoil.com Development ✓ Mitera Raio Mitera Rajo Italy Umbria, Perugia www.mitera.ch Kyklopas Early Harvest Kyklopas Makris Greece Thrace, Evros www.kyklopas.com Aprutino Pescarese Sandro di Azienda Agricola Sandro di 80% Dritta, Italy Abruzzo, Pescara Giacomo Giacomo 20% Intosso Picualia Premium Reserva Picualia Picual Spain Andalusia, Jaén www.picualia.com Il Re dei Sassi Le Mandrie Moraiolo Italy Umbria, Perugia www.agriturismomandriesanpaolo.it ✓ Jeff’s Blend Fedra Olive Grove Frantoio Australia New South Wales, Collector www.fedraolivegrove.com.au 70% Koroneiki, Cretanthos Early Harvest Organic Cretanthos Greece Crete, Rethymno www.cretanthos.gr 30% Tsounati ✓ Bose Oil Bose Oil Briška Črnica Slovenia Goriška, Goriška Brda Iliada Agrovim Koroneiki Greece Peloponnese, Messenia www.agrovim.gr Domaine Petraghje Domaine Petraghje Germana di Casinca France Corsica, Haute-Corse Organic Biodynamic Picudo Cortijo el Puerto Picudo Spain Andalusia, Sevilla www.cortijoelpuerto.com ✓ Organic Biodynamic Hojiblanca Cortijo el Puerto Hojiblanca Spain Andalusia, Sevilla www.cortijoelpuerto.com ✓ Mediterre Olympia Organic Early 90% Koroneiki, Mediterre Eurofood Greece Peloponnese, Elis www.mediterre.com Harvest 10% Kolireiki ✓ 45% Hojiblanca,
    [Show full text]
  • Packaging Design Awards
    2020 PACKAGING DESIGN AWARDS Art/Illustration Use of original illustration as the driving element of the package design Gold Medal Cortijo El Puerto, Koroneiki, Andalucia, Spain, 2019 – Delicate www.CortijoElPuerto.com De Carlo, Peranzana, Puglia, Italy – Medium www.OlioDeCarlo.com Olave, Premium Blend, Region del Maule, Chile – Medium www.SoHoComercial.cl Olea Farm, Les Larmes Du Diable, Templeton - Flavored www.OleaFarm.com Olive Truck, Frantoio, Yolo County – Robust www.OliveTruck.com Olivos De Casuto, Organico, Los Vilos, 2019 – Medium www.OlivosdeCasuto.com Silver Medal Bona Furtuna, Biancolilla Centinara, Organic, PDO Sicily, 2019 – Medium www.BonaFurtuna.com Kisthene, Bergamot, Northern Agean – Flavored www.OzemLeyasam.com Moura Barrancos, Azeite de Moura DOP Portugal – Delicate www.CoopMouraBarrancos.pt Organic Roots, Arbequina, California – Medium www.OrganicRootsOliveOil.com PJ Kabos, Koroneiki, Peloponnese, Greece, 2019 – Delicate www.PJKabos.com Tayga Iyi Gida, Memecik, Ismir, Turkey, 2020 – Medium www.TaygaIyiGida.com Wild Poppies, Aptos, Santa Cruz County, 2019 – Medium www.WildPoppiesOliveOil.com Bronze Medal Farchioni, Selezione Del Mediterraneos, 2020 – Medium www.OlioFarchioni.com Fontana Lupo, Traditional, Italy - Medium www.Petrazzuoli.com Solana, Orange, San Miguel – Flavored www.SolanaOliveOil.com Stories Of Greek Origins, Koroneiki, PDO Sitia Lasithi, Crete – Medium www.StoriesOfGreekOrigins.com Color & Type Use of color and typography elements to carry the package design, clean, simple and striking Gold Medal Fat
    [Show full text]
  • Results ATHENA 2019
    Αthena InternationalΧΑΛΚΙΝΑ ΜΕΤΑΛΛΙΑ*Olive Oil Competition OLIVE OIL PRODUCER VARIETAL MAKE-UP COUNTRY NAFPLIONREGION PROVINCE WEBSITE FLAVOURED ΒΙΟ 18–20 March 2019 ΜEDALS & SPECIAL PRIZES Final Participation and Awards Results DOUBLE GOLD 2019 DOUBLE GOLD MEDALS OLIVE OIL PRODUCER VARIETAL MAKE-UP COUNTRY REGION PROVINCE WEBSITE FLAVOURED ΒΙΟ One & Olive One & Olive Koroneiki Greece Peloponnese, Messinia Manesi www.oneolive.gr No Conde de Mirasol Aceites Mirasol Hojiblanca Spain Andalusia Córdoba www.condedemirasol.com No Palacio de Los Olivos Olivapalacios Picual Spain Castilla-La Mancha Ciudad Real www.olivapalacios.es No 60% Picual, Oro Del Desierto Coupage Rafael Alonso Aguilera Spain Andalusia Almeria www.orodeldesierto.com Yes 40% Hojiblanca Picualia Picualia Picual Spain Andalusia Jaén www.picualia.com No Horta Real Olive Gallery Picual Spain Castilla-La Mancha Toledo www.olivegallery.es No Aprutino Pescarese San- Azienda Agricola Sandro 90% Dritta, Italy Abruzzo Pescara No dro di Giacomo di Giacomo 10% Intosso 80% Hojiblanco, Venta del Barón Muela Olives Spain Andalusia Córdoba www.mueloliva.es No 20% Picudo GOLD 2019 GOLD MEDALS OLIVE OIL PRODUCER VARIETAL MAKE-UP COUNTRY REGION PROVINCE WEBSITE FLAVOURED ΒΙΟ Valdenvero Hojiblanco Colival Hojiblanca Spain Castilla-La Mancha Ciudad Real www.colival.com No Hispasur Gold Knolive Oils Picual Spain Andalusia Córdoba www.knolive.com No Aceitera Peninsular 50% Picuda, Olíria Coupage Spain Andalusia Córdoba www.aceiterapeninsular.com No Española 50% Hojiblanca Safir Basil Herbes de
    [Show full text]
  • Cultivar Influence on Variability in Olive Oil Phenolic Profiles Determined Through an Extensive Germplasm Survey
    Cultivar influence on variability in olive oil phenolic profiles determined through an extensive germplasm survey H. Miho, C.M. Díez, A. Mena-Bravo, V. Sánchez de Medina, J. Moral, E. Meillou, P. Magiatis, L. Rallo, D. Barranco, F. Priego-Capote [email protected] Resumen Material and methods Despite the evident influence of the cultivar on olive oil composition, few studies have Vegetal material was collected from the World Olive Germplasm Bank of Cordoba (WOGB) (CAP-UCO-IFAPA), specifically in the collection located at the University of been devoted to exploring the variability of phenols in a representative number of Cordoba (Cordoba, Spain, 37°55'56.5" N, 4°43'13.3" W and 173 m a.s.l.). A set of 80 olive cultivars were selected during the 2015–2016 crop season according to their monovarietal olive oils. In this study, oil samples from 80 cultivars selected for their importance for the worldwide olive oil production, their geographical origin, and fruit availability (Table 1). Fruit were independently collected from two olive trees impact on worldwide oil production were analyzed to compare their phenolic compo- per cultivar. The trees were sampled from October to December with fruits ripening index (RI) equal to 2.0 (yellowish-red color). The virgen olive oil (VOO) were ob- sition by using a method based on LC–MS/MS. Secoiridoid derivatives were the most tained using an Abencor extraction system (30 min at 28 OC). concentrated phenols in virgin olive oil, showing high variability that was significantly Determination of phenolic compounds due to the cultivar. Multivariate analysis allowed discrimination between four groups Sample preparation—Phenolic compounds were isolated by liquid-liquid extraction , where 1 g of VOO was mixed with 2 mL n-hexane; then, 1 mL of 60:40 (v/v) met- of cultivars through their phenolic profiles: (i) richer in aglycon isomers of oleuropein hanol-water was added and shaken for 2 min, and the hydroalcoholic phase was separated by centrifugation.
    [Show full text]
  • Determinant Factors in Olive Oil Accumulation for Optimizing Harvest Time in a Context of Climate Change
    EGU21-14278 https://doi.org/10.5194/egusphere-egu21-14278 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Determinant factors in olive oil accumulation for optimizing harvest time in a context of climate change José M. Cabezas, Estrella Muñoz, Raúl De la Rosa, Lorenzo León, and Ignacio J. Lorite ([email protected]) Olive is a woody crop extended over 10 Mha around the world (FAOSTAT, 2019), being Spain the country with the largest area (2.7 Mha). Andalusia is located in the South of Spain, with 1.6 Mha cultivated with olive trees, most of them (around 90%) dedicated to olive oil production (MAPA, 2020). This region is characterized by a great diversity of weather conditions. This diversity greatly affects important agronomic parameters of olive as the pattern of oil accumulation. This influence is different depending on the cultivar considered. In addition, this pattern of oil accumulation is a key aspect since is the most relevant trait determining the optimal harvest time. For that reason, in the present study, the relative influence of cultivar and environment, and their interaction, have been evaluated for the full pattern of oil accumulation. This study was carried out in four locations of Andalusia covering a wide range of weather conditions, and where olive trees are well established or under expansion: Antequera (Málaga), Córdoba, Úbeda (Jaén) and Gibraleón (Huelva). In 2008, five cultivars were planted in a randomized complete block design consisting in four blocks and four trees per elementary plot: Arbequina, Hojiblanca, Koroneiki, Picual and Sikitita-3 (a new registered cultivar from the olive breeding program developed by the University of Córdoba and IFAPA).
    [Show full text]
  • Oleocanthal (P-HPEA-EDA) (Pubchem CID: Virgin Olive Oil, Showing High Variability That Was Significantly Due to the Cultivar
    Food Chemistry 266 (2018) 192–199 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Cultivar influence on variability in olive oil phenolic profiles determined T through an extensive germplasm survey H. Mihoa, C.M. Díeza, A. Mena-Bravob,c,d, V. Sánchez de Medinab, J. Morala,g, E. Melliouf, ⁎ P. Magiatisf, L. Ralloa, D. Barrancoa, F. Priego-Capoteb,c,d, a Department of Agronomy, Campus of Rabanales, University of Cordoba, Spain b Department of Analytical Chemistry, Campus of Rabanales, University of Cordoba, Spain c Agroalimentary Excellence Campus (ceiA3), Campus of Rabanales, University of Cordoba, Spain d Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofia University Hospital, Spain f Laboratory of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Greece g Plant Pathology Department, University of California Davis, Davis, USA ARTICLE INFO ABSTRACT Chemical compounds studied in this article: Despite the evident influence of the cultivar on olive oil composition, few studies have been devoted to exploring Hydroxytyrosol (PubChem CID: 82755) the variability of phenols in a representative number of monovarietal olive oils. In this study, oil samples from 80 Oleacein (3,4-DHPEA-EDA) (PubChem CID: cultivars selected for their impact on worldwide oil production were analyzed to compare their phenolic com- 18684078) position by using a method based on LC–MS/MS. Secoiridoid derivatives were the most concentrated phenols in Oleocanthal (p-HPEA-EDA) (PubChem CID: virgin olive oil, showing high variability that was significantly due to the cultivar. Multivariate analysis allowed 16681728) discrimination between four groups of cultivars through their phenolic profiles: (i) richer in aglycon isomers of Oleuropein aglycon (3,4-DHPEA-EA) fl (PubChem CID: 124202093) oleuropein and ligstroside; (ii) richer in oleocanthal and oleacein; (iii) richer in avonoids; and (iv) oils with Luteolin (PubChem CID: 5280445) balanced but reduced phenolic concentrations.
    [Show full text]
  • Awards by Division Class Los Angeles Extra Virgin Olive Oil
    Los Angeles Extra Virgin Olive Oil Awards Awards by Division Class Northern Hemisphere Extra Virgin Olive Oil Mission GOLD MEDAL The Olive Press www.TheOlivePress.com Delicate, Heritage Mission, Capay Valley 2019 SILVER MEDAL Calolea www.Calolea.com Robust, Mission Blend, Yuba County Foothills 2019 Central Coast Olive Company www.CentralCoastOliveCompany.com Medium, Reserve, Central Coast 2019 Sutter's Gold www.SuttersGoldOliveOil.com Medium, California BRONZE MEDAL Mangini Ranch www.ManginiRanch.com Medium, Mission, Calaveras Oils of Paicines www.WeLoveOliveOil.com Medium, San Benito County 2020 Scripps College www.ScrippsCollege.edu Medium, Mission, Claremont, California 2019 Bronze - Olive Branch - Solana www.SolanaOliveOil.com Medium, Mission, San Miguel 2019 Coratina GOLD MEDAL Alta Cresta Olive Oil www.AltaCresta.com Robust, Coratina, Paso Robles 2019 Corti Brothers www.CortiBrothers.com Medium, Pablo's Oil, Yolo County 2019 SILVER MEDAL Jack Rabbit California Olive Oil www.JackRabbitOliveOil.com Medium, Coratina, Capay Valley 2020 BRONZE MEDAL Grumpy Goats Farm www.GrumpyGoatsFarm.com Medium, Organic, Coratina, Capay Valley 2019 Frantoio Best of Show - Delicate, BEST OF CLASS, GOLD MEDAL Jack Rabbit California Olive Oil www.JackRabbitOliveOil.com Delicate, Frantoio, Capay Valley 2020 SILVER MEDAL Los Angeles Extra Virgin Olive Oil Awards Awards by Division Class Northern Hemisphere Extra Virgin Olive Oil Frantoio Corti Brothers www.CortiBrothers.com Medium, Frantoio, Yolo County 2019 Frantoio Grove www.FrantoioGrove.com Medium,
    [Show full text]
  • Awards by Producer Los Angeles Extra Virgin Olive Oil Awards
    Los Angeles Extra Virgin Olive Oil Awards Awards by Producer 11 Olives www.11Olives.com SILVER MEDAL Flavored, Herbs De Provence, California/Australia 2020 BRONZE MEDAL Flavored, Sicilian Herb, California/Australia 2020 1492 www.Quepu.cl BRONZE MEDAL Delicate, Arbequina, Region Del Maule 1758 www.EncomiendaDeCervera.com SILVER MEDAL Medium, Family Reserve, Campo de Calatrava 43 Ranch Olive Oil www.43Ranch.com Best of Show - Medium, Marco Mugelli Award, BEST OF CLASS, GOLD MEDAL Medium, Picual, Gold - Traditional - Central Coast 2019 GOLD MEDAL Medium, Helen's Blend, Central Coast 2019 SILVER MEDAL Medium, Leccino, Central Coast 2019 Accademia Olearia www.AccademiaOlearia.com SILVER MEDAL Medium, Bosana, Alghero 2020 Agrestis Fiore D'Oro www.Agrestis.eu BRONZE MEDAL Medium, Tonda Iblea, DOP Monti Iblei Monte Lauro Ajroudi www.Ajroudi-Officiel.com SILVER MEDAL Medium, Blend, Hammemet 2019 SILVER MEDAL Medium, Chetoui, Hammemet 2019 SILVER MEDAL Delicate, Sahli, Hammemet 2019 ALMAOLIVA www.AlmazarasDeLaSubbetica.com GOLD MEDAL Medium, Arbequino, Cordoba Bronze - Color & Type - SILVER MEDAL Medium, BIO, Cordoba Alonso www.AlonsOliveOil.com BRONZE MEDAL Robust, Coratina, La Estrella Alsea Neo www.Alsea.gr BRONZE MEDAL Medium, Agriniou, Greece 2019 Silver - Modern Classic - Los Angeles Extra Virgin Olive Oil Awards Awards by Producer Alta Cresta Olive Oil www.AltaCresta.com GOLD MEDAL Robust, Coratina, Paso Robles 2019 SILVER MEDAL Robust, Tuscan Blend, Paso Robles 2019 SILVER MEDAL Robust, Italian Blend, Paso Robles 2019 Apollo Olive Oil www.ApolloOliveOil.com
    [Show full text]