Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques foods Review Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques Ramona Abbattista 1, Giovanni Ventura 1 , Cosima Damiana Calvano 2,3,* , Tommaso R. I. Cataldi 1,2 and Ilario Losito 1,2,* 1 Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; [email protected] (R.A.); [email protected] (G.V.); [email protected] (T.R.I.C.) 2 Interdepartmental Centre SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy 3 Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy * Correspondence: [email protected] (C.D.C.); [email protected] (I.L.) Abstract: In recent years, a remarkable increase in olive oil consumption has occurred worldwide, favoured by its organoleptic properties and the growing awareness of its health benefits. Currently, olive oil production represents an important economic income for Mediterranean countries, where roughly 98% of the world production is located. Both the cultivation of olive trees and the production of industrial and table olive oil generate huge amounts of solid wastes and dark liquid effluents, including olive leaves and pomace and olive oil mill wastewaters. Besides representing an economic problem for producers, these by-products also pose serious environmental concerns, thus their partial reuse, like that of all agronomical production residues, represents a goal to pursue. This Citation: Abbattista, R.; Ventura, G.; aspect is particularly important since the cited by-products are rich in bioactive compounds, which, Calvano, C.D.; Cataldi, T.R.I.; Losito, once extracted, may represent ingredients with remarkable added value for food, cosmetic and I. Bioactive Compounds in Waste nutraceutical industries. Indeed, they contain considerable amounts of valuable organic acids, By-Products from Olive Oil carbohydrates, proteins, fibers, and above all, phenolic compounds, that are variably distributed Production: Applications and among the different wastes, depending on the employed production process of olive oils and table Structural Characterization by Mass olives and agronomical practices. Yet, extraction and recovery of bioactive components from selected Spectrometry Techniques. Foods 2021, 10, 1236. https://doi.org/10.3390/ by-products constitute a critical issue for their rational valorization and detailed identification and foods10061236 quantification are mandatory. The most used analytical methods adopted to identify and quantify bioactive compounds in olive oil by-products are based on the coupling between gas- (GC) or liquid Academic Editor: Enrico Valli chromatography (LC) and mass spectrometry (MS), with MS being the most useful and successful detection tool for providing structural information. Without derivatization, LC-MS with electrospray Received: 30 April 2021 (ESI) or atmospheric pressure chemical (APCI) ionization sources has become one of the most relevant Accepted: 27 May 2021 and versatile instrumental platforms for identifying phenolic bioactive compounds. In this review, Published: 29 May 2021 the major LC-MS accomplishments reported in the literature over the last two decades to investigate olive oil processing by-products, specifically olive leaves and pomace and olive oil mill wastewaters, Publisher’s Note: MDPI stays neutral are described, focusing on phenolics and related compounds. with regard to jurisdictional claims in published maps and institutional affil- Keywords: LC-ESI-MS; MALDI-MS; bioactive phenolics; olive oil; olive leaves; olive pomace; olive iations. oil mill wastewater Copyright: © 2021 by the authors. 1. Introduction Licensee MDPI, Basel, Switzerland. The production of high-quality olive oils implies the generation of vast quantities of This article is an open access article solid residues and/or wastewaters that may have a great impact on terrestrial and aquatic distributed under the terms and environments because of their high phytotoxicity [1]. Depending on the techniques used conditions of the Creative Commons for olive oil production, namely, on the type of horizontal centrifugation (two-phase or Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ three-phase), the process most adopted to separate olive oil from olive paste obtained after 4.0/). malaxation, different by-products are obtained (Figure1). Foods 2021, 10, 1236. https://doi.org/10.3390/foods10061236 https://www.mdpi.com/journal/foods Foods 2021, 10, x FOR PEER REVIEW 2 of 30 Foods 2021, 10, 1236 three-phase), the process most adopted to separate olive oil from olive paste obtained2 after of 28 malaxation, different by-products are obtained (Figure 1). Figure 1. Layout of the main steps of olive oil production involving two- or three-phase horizontal centrifugation and the Figure 1. Layout of the main steps of olive oil production involving two- or three-phase horizontal centrifugation and the main by-products obtained.obtained. When two-phase decanters are used for horizontal centrifugation, whereby water When two-phase decanters are used for horizontal centrifugation, whereby water is is not purposely added to the olive paste resulting from malaxation, a humid semi-solid not purposely added to the olive paste resulting from malaxation, a humid semi-solid pomace is obtained as by-product (wet olive pomace, wet OP, or alperujo), consisting pomace is obtained as by-product (wet olive pomace, wet OP, or alperujo), consisting in in olive pulp and husk, crushed olive stone and aqueous solution. In the case of three- olive pulp and husk, crushed olive stone and aqueous solution. In the case of three-phase phase centrifugal technology, solid OP and olive oil mill wastewater (OMWW) or alpechin centrifugal technology, solid OP and olive oil mill wastewater (OMWW) or alpechin are are the two major by-products. Notably, the modern two-phase centrifugal extraction the two major by-products. Notably, the modern two-phase centrifugal extraction tech- technology merges OP with OMWW to produce a single by-product named olive mill nology merges OP with OMWW to produce a single by-product named olive mill waste waste (OMW) [2]. OMW shows a broad spectrum of toxicity, antimicrobial activity, high (OMW) [2]. OMW shows a broad spectrum of toxicity, antimicrobial activity, high acidity acidity and phytotoxicity, that make its biological degradation challenging and its disposal and phytotoxicity, that make its biological degradation challenging and its disposal prob- problematic for major producing countries (all located in the Mediterranean basin), given lematicthe significant for major amounts producing of OMW countries generated (all located every in year. the ResearchMediterranean efforts basin), have thusgiven been the significantfocused on amounts valorizing of theOMW OMW generated in various every ways, year. such Research as using efforts it as have energy thus source been [fo-3] cusedor as fertilizer, on valorizing biomass, the OMW or additive in various in animal ways, feed such [ 4as]. using However, it as energy a large source quantity [3] of or by- as productsfertilizer, resultingbiomass, fromor additive oliveoil in productionanimal feed remains [4]. However, unexploited, a large with quantity their of potentially by-prod- uctshigh resulting biological from value olive being oil neglected.production Indeed, remains wastes unexploited, remaining with after their the potentially production high of biologicalolive oil are value a heterogeneous being neglected. mixture Indeed, of many wastes chemical remaining components, after the production such as metal of olive ions, oilcarbohydrates, are a heterogeneous and polyphenols, mixture of thatmany may chem exertical different components, biological such as activities, metal ions, primarily carbo- hydrates,acting as antioxidantsand polyphenols, [5]. Phenolic that may compounds exert different from biological olive fruits activities, are mostly primarily retained acting in the ascorresponding antioxidants waste,[5]. Phenolic whereas compounds just a small from percentage olive fruits (ca. are 2%) mostly is transferred retained to in olive the cor- oils respondingduring production, waste, whereas thus making just a by-productssmall percenta ange interesting (ca. 2%) is alternativetransferred source to olive of oils natural dur- ingantioxidants production, for thus application making inby-products the food and an pharmaceuticalinteresting alternative industries source [5, 6of]. natural In the lastan- tioxidantsfew years, for health application benefits in related the food to and the assumptionpharmaceutical of novel industries olive [5,6]. by-products-based In the last few preparationsyears, health havebenefits encouraged related to the the research assump totion identify of novel the mainolive compoundsby-products-based recognized prepa- for rationstheir positive have encouraged physiological the effects.research In to this iden context,tify the main the phenolic compounds composition recognized of olivefor their oil productionpositive physiological by-products effects. has been In this extensively context, studiedthe phenolic and severalcomposition authors of haveolive appliedoil pro- ductionchromatographic by-products methods has been for extensively their isolation stud andied analysis,and several such authors as reversed-phase have applied liquid chro- chromatography (RPLC) coupled to mass spectrometry (MS) [7,8], fractionation
Recommended publications
  • Oh Ho Oh Oh Oh Oh O Ho Ch3o N N H O Ho Oh Oh Oh Oh O Ho Ch3o N N
    CHEM1611 2008-J-11 June 2008 Marks • Quinine has long been used for the treatment of malaria. For an intramuscular 4 injection, quinine is reacted with gluconic acid. Structures and molar masses for these substances are shown below. HO N H OH OH O CH O 3 HO OH N OH OH quinine gluconic acid molar mass 324.41 g mol –1 molar mass 196.16 g mol –1 Quinine and gluconic acid can undergo an acid-base reaction to form a salt, or a condensation reaction to form an ester. One molecule of each substance is required for the transformation, and a 160.0 mg dose of quinine gluconate is equivalent to a 100.0 mg dose of quinine. By determining the molar mass of the product formed, or otherwise, determine whether the product formed is an ester or a salt. The two possible products, and their molar masses, are shown below. HO OH OH O N H HO CH3O H O OH OH N Salt: formed by proton transfer from acid group on gluconic acid to quinine -1 amine, with no loss of mass. Formula C 26 H26 N2O9 and molar mass 520.57 g mol OH OH O HO O OH OH N H CH3O N Ester: formed from acid group on gluconic aicd and –OH group on quinine with -1 elimination of water. Formula C 26 H24 N2O8 and molar mass 502.56 g mol ANSWER CONTINUES ON THE NEXT PAGE CHEM1611 2008-J-11 June 2008 100.0 mg of quinine corresponds to: ̡̭̳̳ ̊̉̉.̉Ɛ̊̉ ̌ ̧ number of moles = Ɣ = 3.083 × 10 -4 mol ̡̭̯̬̲ ̡̭̳̳ ̌̋̍.̍̊ ̧ ̭̯̬ ̊ 160.0 mg of the salt product corresponds to: ̡̭̳̳ ̊̏̉.̉Ɛ̊̉ ̌ ̧ number of moles = Ɣ = 3.074 × 10 -4 mol ̡̭̯̬̲ ̡̭̳̳ ̎̋̉.̎̐ ̧ ̭̯̬ ̊ 160.0 mg of the ester product corresponds to: ̡̭̳̳ ̊̏̉.̉Ɛ̊̉ ̌ ̧ number of moles = Ɣ = 3.184 × 10 -4 mol ̡̭̯̬̲ ̡̭̳̳ ̎̉̋.̎̏ ̧ ̭̯̬ ̊ As the dosages are the same, it must be the salt which is being administered.
    [Show full text]
  • Assessment of Maternal Effects and Genetic Variability in Resistance to Verticillium Dahliae in Olive Progenies
    plants Article Assessment of Maternal Effects and Genetic Variability in Resistance to Verticillium dahliae in Olive Progenies Pedro Valverde Caballero , Carlos Trapero Ramírez , Diego Barranco Navero, Francisco J. López-Escudero, Ana Gordon Bermúdez-Coronel and Concepción Muñoz Díez * Excellence Unit ‘María de Maeztu’ 2020-23, Department of Agronomy, ETSIAM, University of Córdoba, 14071 Córdoba, Spain; [email protected] (P.V.C.); [email protected] (C.T.R.); [email protected] (D.B.N.); [email protected] (F.J.L.-E.); [email protected] (A.G.B.-C.) * Correspondence: [email protected] Abstract: The use of genetic resistance is likely the most efficient, economically convenient and environmentally friendly control method for plant diseases, as well as a fundamental piece in an integrated management strategy. This is particularly important for woody crops affected by diseases in which mainly horizontal resistance mechanisms are operative, such as Verticillium wilt, caused by Verticillium dahliae. In this study, we analyzed the variability in resistance to Verticillium wilt of olive trees in progenies from five crosses: ‘Picual’ × ‘Frantoio’, ‘Arbosana’ × ‘Koroneiki’, ‘Sikitita’ × Citation: Valverde Caballero, P.; ‘Arbosana’, ‘Arbosana’ × ‘Frantoio’ and ‘Arbosana’ × ‘Arbequina’ and their respective reciprocal Trapero Ramírez, C.; Barranco crosses. Additionally, seedlings of ‘Picual’ and ‘Frantoio’ in open pollination were used as controls. Navero, D.; López-Escudero, F.J.; In October 2016 and 2018, the fruits were harvested, and seeds germinated. Six-week-old seedlings Gordon Bermúdez-Coronel, A.; Díez, were inoculated by dipping their bare roots in a conidial suspension of V. dahliae, and disease progress C.M. Assessment of Maternal Effects in terms of symptom severity and mortality was evaluated weekly.
    [Show full text]
  • Agricultura Revista Agropecuaria, ISSN: 0002-1334
    AGRICULTURA 2 copia:Maquetación 1 4/5/10 11:10 Página 362 DOSSIER PROGRAMA DE MEJORA ‘Sikitita’, nueva variedad para plantaciones de olivar en seto Foto 1. Vigor y hábito de crecimiento de ‘Sikitita’ (izquierda), ‘Arbequina’ (centro) y ‘Frantoio’ (derecha) a los siete años desde la plantación Luís Rallo ‘Sikitita’ es una nueva variedad de olivo procedente de un cruzamiento Diego Barranco Departamento de entre ‘Picual’ y ‘Arbequina’. Los resultados de la evaluación agronómica Agronomía, Universidad llevada a cabo en Córdoba han permitido su selección y registro como de Córdoba. una nueva variedad de precoz entrada en producción, alto contenido en Raúl de la Rosa aceite y elevada productividad. Su reducido vigor, su porte llorón y su Lorenzo León IFAPA Centro Alameda del alta densidad de ramos proporcionan una variedad particularmente Obispo. Córdoba. adaptada a las nuevas plantaciones de muy alta densidad en seto. Sikitita’ es la primera variedad ORIGEN Córdoba. La primera cosecha con los tres genitores del progra- desarrollada en el programa se obtuvo en 1996 y la evalua- ma original (‘Arbequina’, ‘Fran- ‘de mejora conjunto que se lle- La planta originaria de ‘Sikitita’ ción inicial de la planta se efec- toio’ y ‘Picual’) como testigos va a cabo entre la Universidad de (código UC-I 8-7 del programa de tuó durante tres cosechas con- fueron propagados por estaqui- Córdoba y el IFAPA. mejora) procede de un cruza- secutivas. La selección de la llado semileñoso en la primave- Este artículo resume la infor- miento entre ‘Picual’ (parental planta original de ‘Sikitita’ fue de- ra del año 2000 y se plantaron en mación obtenida hasta la fecha femenino) y ‘Arbequina’ (pa- bida a su precocidad de entrada un ensayo comparativo en blo- de esta nueva variedad e infor- rental masculino) llevado a cabo en producción (período juvenil ques al azar con 16 repeticiones ma sobre el estado actual de su en 1991 (Rallo, 1995).
    [Show full text]
  • Promising Strain of Acinetobacter from Soil for Utilization of Gluconic Acid Production Topraktaki Gelecek Vaadeden Acinetobacte
    S. Dinç et al. / Hacettepe J. Biol. & Chem., 2017, 45 (4), 603-607 Promising Strain of Acinetobacter from Soil for Utilization of Gluconic Acid Production Topraktaki Gelecek Vaadeden Acinetobacter Suşunun Glukonik Asit Üretiminde Kullanımı Research Article Saliha Dinç 1,2*, Meryem Kara2,3, Mehmet Öğüt3, Fatih Er1, Hacer Çiçekçi2 1Selcuk University Cumra School of Applied Sciences, Konya-Turkey. 2Selcuk Uni. Advanced Technology Research and Application Center, Konya-Turkey. 3Selcuk University Cumra Vocational High School, Konya-Turkey. ABSTRACT luconic acid, a food additive, is used in many foods to control acidity or binds metals such as calcium, Giron. Acinetobacter sp. WR326, newly isolated from soil possesses high phosphate solubilizing activity and do not require pyrroloquinoline quinone (PQQ) for glucose dehydrogenase (GDH) activity as cofactor In this study the gluconic acid production potential of this bacterium was investigated. Firstly, Acinetobacter sp. WR326 was incubated in tricalcium phosphate medium (TCP) with varying glucose concentrations (100, 250, 500 mM), at a temperature of 30°C for 5 days (120 hours). The highest gluconic acid yield (59%) was found at a glucose concentration of 100 mM. Then three different levels of gluconic acid addition to the medium (50, 100, 200 mM) were tested. When Acinetobacter sp. WR326 strain was cultivated with a 100 mM glucose and 100 mM gluconic acid the yield increased to 95.27%. In any trials 2 -keto D-gluconic acid, causes problems in processing and purification of the gluconic acid, was not detected in the medium. As a conclusion, Acinetobac- ter sp. WR326 may be considered novel potential bacterial strain for gluconic acid production.
    [Show full text]
  • Assessment of Maternal Effects and Genetic Variability in Resistance to Verticillium Dahliae in Olive Progenies
    Article Assessment of Maternal Effects and Genetic Variability in Resistance to Verticillium dahliae in Olive Progenies Pedro Valverde Caballero, Carlos Trapero Ramírez, Diego Barranco Navero, Francisco J. López-Escudero, Ana Gordon Bermúdez-Coronel and Concepción Muñoz Díez * Department of Agronomy (Excellence Unit ‘María de Maeztu’ 2020-23), ETSIAM, University of Córdoba, 14071 Córdoba, Spain; [email protected] (P.V.C.); [email protected] (C.T.R.); [email protected] (D.B.N.); [email protected] (F.J.L.-E.); [email protected] (A.G.B.-C.) * Correspondence: [email protected] Abstract: The use of genetic resistance is likely the most efficient, economically convenient and en- vironmentally friendly control method for plant diseases, as well as a fundamental piece in an inte- grated management strategy. This is particularly important for woody crops affected by diseases in which mainly horizontal resistance mechanisms are operative, such as Verticillium wilt, caused by Verticillium dahliae. In this study, we analyzed the variability in resistance to Verticillium wilt of olive trees in progenies from five crosses: ‘Picual’ × ‘Frantoio’, ‘Arbosana’ × ‘Koroneiki’, ‘Sikitita’ × Citation: Valverde, P.; Trapero, C.; ‘Arbosana’, ‘Arbosana’ × ‘Frantoio’ and ‘Arbosana’ × ‘Arbequina’ and their respective reciprocal Barranco, D.; López-Escudero, F.J.; crosses. Additionally, seedlings of ‘Picual’ and ‘Frantoio’ in open pollination were used as controls. Gordon, A.; Díez C. M. Assessment In October 2016 and 2018, the fruits were harvested, and seeds germinated. Six-week-old seedlings of maternal effect and genetic varia- were inoculated by dipping their bare roots in a conidial suspension of V. dahliae, and disease pro- bility in resistance to Verticillium gress in terms of symptom severity and mortality was evaluated weekly.
    [Show full text]
  • Biosynthesis of Abscisic Acid by the Direct Pathway Via Ionylideneethane in a Fungus, Cercospora Cruenta
    Biosci. Biotechnol. Biochem., 68 (12), 2571–2580, 2004 Biosynthesis of Abscisic Acid by the Direct Pathway via Ionylideneethane in a Fungus, Cercospora cruenta y Masahiro INOMATA,1 Nobuhiro HIRAI,2; Ryuji YOSHIDA,3 and Hajime OHIGASHI1 1Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan 2International Innovation Center, Kyoto University, Kyoto 606-8501, Japan 3Department of Agriculture Technology, Toyama Prefectural University, Toyama 939-0311, Japan Received August 11, 2004; Accepted September 12, 2004 We examined the biosynthetic pathway of abscisic Key words: Cercospora cruenta; abscisic acid; allofar- acid (ABA) after isopentenyl diphosphate in a fungus, nesene; -ionylideneethane; all-E-7,8-dihy- Cercospora cruenta. All oxygen atoms at C-1, -1, -10, and dro- -carotene -40 of ABA produced by this fungus were labeled with 18 18 O from O2. The fungus did not produce the 9Z- A sesquiterpenoid, abscisic acid (ABA, 1), is a plant carotenoid possessing -ring that is likely a precursor hormone which regulates seed dormancy and induces for the carotenoid pathway, but produced new sesqui- dehydration tolerance by reducing the stomatal aper- terpenoids, 2E,4E- -ionylideneethane and 2Z,4E- -ion- ture.1) ABA is biosynthesized by some phytopathogenic ylideneethane, along with 2E,4E,6E-allofarnesene. The fungi in addition to plants,2) but the biosynthetic origin fungus converted these sesquiterpenoids labeled with of isopentenyl diphosphate (IDP) for fungal ABA is 13C to ABA, and the incorporation ratio of 2Z,4E- - different from that for plant ABA (Fig. 1). Fungi use ionylideneethane was higher than that of 2E,4E- - IDP derived from the mevalonate pathway for ABA, ionylideneethane.
    [Show full text]
  • Bioactive Compounds of Tomatoes As Health Promoters
    48 Natural Bioactive Compounds from Fruits and Vegetables, 2016, Ed. 2, 48-91 CHAPTER 3 Bioactive Compounds of Tomatoes as Health Promoters José Pinela1,2, M. Beatriz P. P Oliveira2, Isabel C.F.R. Ferreira1,* 1 Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal 2 REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal Abstract: Tomato (Lycopersicon esculentum Mill.) is one of the most consumed vegetables in the world and probably the most preferred garden crop. It is a key component of the Mediterranean diet, commonly associated with a reduced risk of chronic degenerative diseases. Currently there are a large number of tomato cultivars with different morphological and sensorial characteristics and tomato-based products, being major sources of nourishment for the world’s population. Its consumption brings health benefits, linked with its high levels of bioactive ingredients. The main compounds are carotenoids such as β-carotene, a precursor of vitamin A, and mostly lycopene, which is responsible for the red colour, vitamins in particular ascorbic acid and tocopherols, phenolic compounds including hydroxycinnamic acid derivatives and flavonoids, and lectins. The content of these compounds is variety dependent. Besides, unlike unripe tomatoes, which contain a high content of tomatine (glycoalkaloid) but no lycopene, ripe red tomatoes contain high amounts of lycopene and a lower quantity of glycoalkaloids. Current studies demonstrate the several benefits of these bioactive compounds, either isolated or in combined extracts, namely anticarcinogenic, cardioprotective and hepatoprotective effects among other health benefits, mainly due to its antioxidant and anti-inflammatory properties.
    [Show full text]
  • LA PRODUCTIVITE D'un VERGER D'olivier Eléments De Réflexion
    LA PRODUCTIVITE D’UN VERGER D’OLIVIER Eléments de réflexion Gordes, 30 septembre 2020 Hélène LASSERRE France Olive/ Pôle Conservation Recherche LA FILIÈRE OLÉICOLE FRANÇAISE 2020 Présentation de l’interprofession FRANCE OLIVE C’EST : ➢ L’association française interprofessionnelle de l’olive (ex. AFIDOL) ➢ Une association, reconnue par l’État, créée en 1999 ➢ Une représentation de tous les acteurs de la filière oléicole ➢ Un accord interprofessionnel triennal signé par les familles représentatives ➢ Un budget de 2 000 k€ financé pour : ⚫ 40 % : par les Cotisations Volontaires Etendues* de l’amont et de l’aval ⚫ 60 % : par les subventions européennes, nationales et régionales ➢ Trois antennes dans les trois principales régions productrices : Région Occitanie Région Sud, Provence-Alpes-Côte d’Azur Région Auvergne-Rhône-Alpes Mas de l'agriculture Maison des Agriculteurs 40, place de la Libération 1120, route de Saint-Gilles 22, avenue Henri Pontier 26110 Nyons 30932 Nîmes 13626 Aix-en-Provence Tél. 04 75 26 90 90 Tél. 04 66 08 19 34 Tél. 04 42 23 01 92 * CVE (ex. CVO) : « Volontaires » car décidées par les familles représentatives de la filière et « Etendues » car rendues obligatoires par l’Etat à l’ensemble des acteurs de la filière par extension de l’accord interprofessionnel. 3 millions de tonnes 5 000 tonnes 0,15% de la production mondiale 2,1 millions de tonnes Une production emblématique pour les régions du Sud de la France mais anecdotique au niveau mondial. Consommation française totale d'huile d'olive 108 000 tonnes Production française 5 000 tonnes Part dans la consommation nationale : 4 % - Une production issue d'entreprises familiales et artisanales - 25 % de la production sous label AOP (8 appellations d’origine) issue de variétés locales, typiques et uniques et une production « bio » importante (28% du verger) - Trois familles de goûts et une multitude de variantes au sein de chaque famille : en fonction de la ou des variétés, du terroir et du savoir-faire, les goûts de l’huile d’olive sont différents.
    [Show full text]
  • Μedals & Special Prizes
    5th Αthena International Olive Oil Competition • SPATA • June 11–13 2020 ΜEDALS & SPECIAL PRIZES Final Participation and Awards Results DOUBLE GOLD DOUBLE GOLD MEDALS EVOOIL EVOO PRODUCER VARIETAL MAKE UP COUNTRY REGION WEBSITE FLAVOR ΒΙΟ Longnan Xiangyu Olive Xiangyu Coratina Coratina China Longnan, Gansu www.xiangyuoliveoil.com Development ✓ Mitera Raio Mitera Rajo Italy Umbria, Perugia www.mitera.ch Kyklopas Early Harvest Kyklopas Makris Greece Thrace, Evros www.kyklopas.com Aprutino Pescarese Sandro di Azienda Agricola Sandro di 80% Dritta, Italy Abruzzo, Pescara Giacomo Giacomo 20% Intosso Picualia Premium Reserva Picualia Picual Spain Andalusia, Jaén www.picualia.com Il Re dei Sassi Le Mandrie Moraiolo Italy Umbria, Perugia www.agriturismomandriesanpaolo.it ✓ Jeff’s Blend Fedra Olive Grove Frantoio Australia New South Wales, Collector www.fedraolivegrove.com.au 70% Koroneiki, Cretanthos Early Harvest Organic Cretanthos Greece Crete, Rethymno www.cretanthos.gr 30% Tsounati ✓ Bose Oil Bose Oil Briška Črnica Slovenia Goriška, Goriška Brda Iliada Agrovim Koroneiki Greece Peloponnese, Messenia www.agrovim.gr Domaine Petraghje Domaine Petraghje Germana di Casinca France Corsica, Haute-Corse Organic Biodynamic Picudo Cortijo el Puerto Picudo Spain Andalusia, Sevilla www.cortijoelpuerto.com ✓ Organic Biodynamic Hojiblanca Cortijo el Puerto Hojiblanca Spain Andalusia, Sevilla www.cortijoelpuerto.com ✓ Mediterre Olympia Organic Early 90% Koroneiki, Mediterre Eurofood Greece Peloponnese, Elis www.mediterre.com Harvest 10% Kolireiki ✓ 45% Hojiblanca,
    [Show full text]
  • Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
    Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E
    [Show full text]
  • The Possibility of Recovering of Hydroxytyrosol from Olive Milling Wastewater by Enzymatic Bioconversion 265
    ProvisionalChapter chapter 14 The PossibilityPossibility of of Recovering Recovering of Hydroxytyrosolof Hydroxytyrosol from fromOlive Milling Wastewater by Enzymatic Bioconversion Olive Milling Wastewater by Enzymatic Bioconversion Manel Hamza and Sami Sayadi Manel Hamza and Sami Sayadi Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/64774 Abstract This chapter discusses an innovative approach to obtain liquid fractions from olive mill wastewater (OMW) rich in hydroxytyrosol. The method is based on bioconversion combined with membrane separation techniques. An enzymatic bioconversion of three types of OMW was tested. TheS total volumes of OMW are 15 and 40 L. The reaction was monitored in mechanically stirred systems for 2 h at 50°C. Maximum hydroxytyr‐ osol concentrations of about 1.53, 0.83 and 0.46 g/L in the presence of 5 IU Aspergillus niger β‐glucosidase per milliliter from North OMW and South OMW were procured by two different olive millings, which are milling super press (MSP) and milling continuous chain (MCC), respectively. Enzymatic pretreatment was followed by two tangential flow membrane separation stages, microfiltration (MF) and ultrafiltration (UF). The ultrafiltration permeate was concentrated by evaporation at 45°C for 2 h. The latter exhibited a chemical oxygen demand (COD) level of 48.44 g/L. The UF permeate dehydration increased the hydroxytyrosol concentration to 7.2 g/L. A new natural product that contains some minerals beneficial to health and devoid of heavy metals or chemicals was obtained by this innovative work which describes an environmentally friendly process at pilot‐scale.
    [Show full text]
  • Multiplicity of Carotene Patterns Derives from Competition Between
    www.nature.com/scientificreports OPEN Multiplicity of carotene patterns derives from competition between phytoene desaturase diversifcation and biological environments Mathieu Fournié1,2,3 & Gilles Truan1* Phytoene desaturases catalyse from two to six desaturation reactions on phytoene, generating a large diversity of molecules that can then be cyclised and produce, depending on the organism, many diferent carotenoids. We constructed a phylogenetic tree of a subset of phytoene desaturases from the CrtI family for which functional data was available. We expressed in a bacterial system eight codon optimized CrtI enzymes from diferent clades. Analysis of the phytoene desaturation reactions on crude extracts showed that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Kinetic data generated using a subset of fve purifed enzymes demonstrate the existence of characteristic patterns of desaturated molecules associated with various CrtI clades. The kinetic data was also analysed using a classical Michaelis–Menten kinetic model, showing that variations in the reaction rates and binding constants could explain the various carotene patterns observed. Competition between lycopene cyclase and the phytoene desaturases modifed the distribution between carotene intermediates when expressed in yeast in the context of the full β-carotene production pathway. Our results demonstrate that the desaturation patterns of carotene molecules in various biological environments cannot be fully inferred from phytoene desaturases classifcation but is governed both by evolutionary-linked variations in the desaturation rates and competition between desaturation and cyclisation steps. Carotenoids are organic pigments produced by plants, algae, fungi, and bacteria and can be subdivided into two families of molecules, carotenes and their oxidised counterparts, xanthophylls 1.
    [Show full text]