bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114553; this version posted May 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The impact of genetic diversity on gene essentiality within the E. coli species François Rousset1,2, José Cabezas Caballero1, Florence Piastra-Facon1, Jesús Fernández-Rodríguez3, Olivier Clermont4, Erick Denamur4,5, Eduardo P.C. Rocha6 & David Bikard1,* 1- Synthetic Biology, Department of Microbiology, Institut Pasteur, Paris, France 2- Sorbonne Université, Collège Doctoral, F-75005Paris, France 3- Eligo Bioscience, Paris, France 4- Université de Paris, IAME, INSERM UMR1137, Paris, France 5- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France 6- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France. *To whom correspondence should be addressed:
[email protected] Abstract Bacteria from the same species can differ widely in their gene content. In E. coli, the set of genes shared by all strains, known as the core genome, represents about half the number of genes present in any strain. While recent advances in bacterial genomics have enabled to unravel genes required for fitness in various experimental conditions at the genome scale, most studies have focused on model strains. As a result, the impact of this genetic diversity on core processes of the bacterial cell largely remains to be investigated. Here, we developed a new CRISPR interference platform for high- throughput gene repression that is compatible with most E.