SCIENTIFIC REALISM in the AGE of STRING THEORY Richard Dawid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inside the Epistemological Cave All Bets Are
Inside the epistemological cave all bets are off Colin Wight Department of Politics, School of Humanities and Social Sciences, The University of Exeter, The Queen’s Drive, Exeter, Devon EX4 4QJ, UK. E-mail: [email protected] In this short rejoinder to Friedrich Kratochwil’s plea for a ‘pragmatic approach to theory building’, I argue that, despite his claims to the contrary, his position essentially rests on a curious form of foundationalism and relativism. The problem, as I identify it, is that Kratochwil’s attempt to move contemporary debate forward fails because he treats the issue only in epistemological terms. Kratochwil is deeply suspicious of the very idea of the ‘real world’and reduces it to an infinitely malleable construct of our ways of thinking and talking about it. This means that he remains trapped in the epistemological cave and is condemned to an endless quest to solve problems that have no solution. But the real world is not simply something that we think and talk about but, rather, we engage with it in practice and as such it offers resistance to our attempts to grasp it. Hence, it is not a subject without a voice in the global conversation. This is an important theoretical limit, particularly in relation to contemporary issues surrounding global environmental problems. Journal of International Relations and Development (2007) 10, 40–56. doi:10.1057/palgrave.jird.1800109 Keywords: dogmatism epistemology; foundationalism; reality; relativism; theoretical pluralism; truth Introduction When, in Plato’s Allegory of the Cave, the prisoner released from his chains returns to inform his fellow inmates that he has discovered that their world is an illusion, he could be forgiven for being surprised by their response. -
A Humean Analysis of Scientific Realism 1
Published in Ensaios sobre Hume, Lívia Guimarães (org.), Belo Horizonte (Brazil), Segrac Editora, 2005b. Pp. 89-108. ____________________________________________________________________ A Humean analysis of scientific realism 1 SILVIO SENO CHIBENI Departamento de Filosofia, IFCH Universidade Estadual de Campinas Caixa Postal 6110 – 13083050, Campinas, SP, Brazil web-site: www.unicamp.br/~chibeni – e-mail: [email protected] Abstract: In their criticism of scientific realism, contemporary philosophers of science often assume that this position is incompatible with empiricism, the epistemological thesis according to which all factual knowledge is grounded on experience. Little attention is paid, however, to the roots of empiricism in modern philosophy. The present article aims to contribute to filling this gap, by examining the implications of Hume’s version of empiricism to the issue of scientific realism. It is shown, first, how scientific realism is negatively affected by Hume’s theories of ideas and causality. Secondly, the prospects of overcoming these difficulties by appealing to the method of hypotheses are examined, first through a survey of Hume’s own stand concerning hypotheses, and then by direct philosophical analysis. 1. Introduction In contemporary philosophy of science, scientific realism is commonly thought of as being challenged either by “constructivism” or by “empiricism” (see e.g. Boyd 1984). However, the use of the word ‘empiricism’ in this context is somewhat misleading. The term has originally been coined to designate an epistemological thesis concerning the problem of the sources of knowledge, paradigmatically defended by philosophers such as Locke and Hume. In this 1 Parts of this work were first presented in a conference given in the 3rd Encontro de Filosofia Analítica, held in Florianópolis, Brazil, in October 1997. -
Quantum Logical Causality, Category Theory, and the Metaphysics of Alfred North Whitehead
Quantum Logical Causality, Category Theory, and the Metaphysics of Alfred North Whitehead Connecting Zafiris’ Category Theoretic Models of Quantum Spacetime and the Logical-Causal Formalism of Quantum Relational Realism Workshop Venue: Swiss Federal Institute of Technology (ETH) Chair for Philosophy (building RAC) Raemistrasse 36, 8001 Zurich Switzerland January 29 – 30, 2010 I. Aims and Motivation Recent work in the natural sciences—most notably in the areas of theoretical physics and evolutionary biology—has demonstrated that the lines separating philosophy and science have all but vanished with respect to current explorations of ‘fundamental’ questions (e.g., string theory, multiverse cosmologies, complexity-emergence theories, the nature of mind, etc.). The centuries-old breakdown of ‘natural philosophy’ into the divorced partners ‘philosophy’ and ‘science,’ therefore, must be rigorously re- examined. To that end, much of today’s most groundbreaking scholarship in the natural sciences has begun to include explicit appeals to interdisciplinary collaboration among the fields of applied natural sciences, mathematics and philosophy. This workshop will be dedicated to the question of how a philosophical-metaphysical theory can be fruitfully applied to basic conceptualizations in the natural sciences. More narrowly, we will explore the process oriented metaphysical scheme developed by philosopher and mathematician Alfred North Whitehead (1861-1947) and Michael Epperson’s application of this scheme to recent work in quantum mechanics, and the relation of these to Elias Zafiris’s category theoretic model of quantum event structures. Our aim is to give participants from various fields of expertise (see list below) the opportunity to exchange their specialized knowledge in the context of a collaborative exploration of the fundamental questions raised by recent scholarship in physics and mathematics. -
Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public. -
UC San Diego Electronic Theses and Dissertations
UC San Diego UC San Diego Electronic Theses and Dissertations Title Pluralism and Realism Permalink https://escholarship.org/uc/item/2n611357 Author Evpak, Matthew Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SAN DIEGO Pluralism and Realism A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Philosophy by Matthew Evpak Committee in charge: Professor Gila Sher, Chair Professor Samuel Buss Professor Andrew Kehler Professor Donald Rutherford Professor Clinton Tolley 2018 The Dissertation of Matthew Evpak is approved, and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ Chair University of California San Diego 2018 iii TABLE OF CONTENTS Signature Page ............................................................................................................................................................................................................ iii Table of Contents .................................................................................................................................................................................................... -
Contemporary Issues Concerning Scientific Realism
The Future of the Scientific Realism Debate: Contemporary Issues Concerning Scientific Realism Author(s): Curtis Forbes Source: Spontaneous Generations: A Journal for the History and Philosophy of Science, Vol. 9, No. 1 (2018) 1-11. Published by: The University of Toronto DOI: 10.4245/sponge.v9i1. EDITORIALOFFICES Institute for the History and Philosophy of Science and Technology Room 316 Victoria College, 91 Charles Street West Toronto, Ontario, Canada M5S 1K7 [email protected] Published online at jps.library.utoronto.ca/index.php/SpontaneousGenerations ISSN 1913 0465 Founded in 2006, Spontaneous Generations is an online academic journal published by graduate students at the Institute for the History and Philosophy of Science and Technology, University of Toronto. There is no subscription or membership fee. Spontaneous Generations provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. The Future of the Scientific Realism Debate: Contemporary Issues Concerning Scientific Realism Curtis Forbes* I. Introduction “Philosophy,” Plato’s Socrates said, “begins in wonder” (Theaetetus, 155d). Two and a half millennia later, Alfred North Whitehead saw fit to add: “And, at the end, when philosophical thought has done its best, the wonder remains” (1938, 168). Nevertheless, we tend to no longer wonder about many questions that would have stumped (if not vexed) the ancients: “Why does water expand when it freezes?” “How can one substance change into another?” “What allows the sun to continue to shine so brightly, day after day, while all other sources of light and warmth exhaust their fuel sources at a rate in proportion to their brilliance?” Whitehead’s addendum to Plato was not wrong, however, in the sense that we derive our answers to such questions from the theories, models, and methods of modern science, not the systems, speculations, and arguments of modern philosophy. -
Scientific Realism and Epistemology
SCIENTIFIC REALISM AND EPISTEMOLOGY 1 Introduction Here are some theses frequently endorsed by scientific realists: R1 The theories of mature sciences are very frequently highly success- ful (where the success of a theory may be articulated in various ways, e.g. the theory passes severe tests, or it makes novel pre- dictions that are confirmed by observation, or it provides a unified explanation of disparate phenomena, etc.). R2 The theories of mature sciences are very frequently true or close to the truth. And so, frequently, the entities, often unobservable, posited by the theories of mature sciences exist. R3 This success is not accidental. Our belief in theories (or in their ap- proximate truth) is frequently justified and amounts to knowledge. R4 The reasoning process by which we come to believe the theories of mature sciences very often is an inference to the best explanation. R5 The reason why we should believe R2 is R1. That is the best ex- planation for the success of the theories of mature sciences is that those theories are very frequently true or nearly true. Here are two theses endorsed by many anti-realists: A1 The apparently well-confirmed theories of mature sciences are very frequently found, in the long run, to be false. A2 We should expect current theories to be falsified in due course (by induction on A1). And here are theses endorsed by some anti-realists: A3 We cannot know that a theory involving commitment to unobserv- able entities is true or close to the truth. A4 Inference to the best explanation is not a reliable means of infer- ring that a theory is true (or approximately true), at least if it in- volves commitment to unobservable entities. -
What Scientific Theories Could Not Be Author(S): Hans Halvorson Reviewed Work(S): Source: Philosophy of Science, Vol
What Scientific Theories Could Not Be Author(s): Hans Halvorson Reviewed work(s): Source: Philosophy of Science, Vol. 79, No. 2 (April 2012), pp. 183-206 Published by: The University of Chicago Press on behalf of the Philosophy of Science Association Stable URL: http://www.jstor.org/stable/10.1086/664745 . Accessed: 03/12/2012 10:32 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Philosophy of Science Association are collaborating with JSTOR to digitize, preserve and extend access to Philosophy of Science. http://www.jstor.org This content downloaded by the authorized user from 192.168.52.67 on Mon, 3 Dec 2012 10:32:52 AM All use subject to JSTOR Terms and Conditions What Scientific Theories Could Not Be* Hans Halvorson†‡ According to the semantic view of scientific theories, theories are classes of models. I show that this view—if taken literally—leads to absurdities. In particular, this view equates theories that are distinct, and it distinguishes theories that are equivalent. Furthermore, the semantic view lacks the resources to explicate interesting theoretical relations, such as embeddability of one theory into another. -
Causes As Explanations: a Critique*
JAEGWON KIM CAUSES AS EXPLANATIONS: A CRITIQUE* Causes certainly are connected with effects; but this is because our theories connect them, not because the world is held together by cosmic glue. 1 Norwood Russell Hanson ABSTRACT. This paper offers a critique of the view that causation can be analyzed in terms of explanation. In particular, the following points are argued: (1) a genuine explanatory analysis of causation must make use of a fully epistemological-psychological notion of explanation; (2) it is unlikely that the relatively clear-cut structure of the causal relation can be captured by the relatively unstructured relation of explanation; (3) the explanatory relation does not always parallel the direction of causation; (4) certain difficulties arise for any attempt to construct a nonrelativistic relation of caus- ation from the essentially relativistic relation of explanation; and (5) to analyze causation as explanation is to embrace a form of "causal idealism", the view that causal connec- tions are not among the objective features of the world. The paper closes with a brief discussion of the contrast between the two fundamentally opposed viewpoints about causality, namely causal idealism and causal realism. It is little more than a truism to say that causes explain their effects, or that to ask for the cause of an event is to ask for an explanation of why or how the event occurred. This close association between causation and explanation is amply mirrored in language: we answer 'why'-questions with 'becuase'- statements, and surely there is more than an orthographic resemblance between 'cause' and 'because'. The association is also ancient: it goes back to Aristotle, who characterized true, scientific knowledge as knowledge of the 'why' of things, that is, knowledge of the cause that makes a thing what it is and not something else. -
LD5655.V855 1993.C655.Pdf (11.60Mb)
SCIENTIFIC DISCOURSE, SOCIOLOGICALT HEORY, AND THE STRUCTURE OF RHETORIC by James H. Collier Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Science and Technology Studies APPROVED: Y— Joseph C. Pitt, Chair Aone ble EtaaT hone, Steve Fuller Elisworth Fuhrman April, 1993 Blacksburg, VA LD S635 VE5S , DaQa cose} aM’~ Scientific Discourse, Sociological Theory, and the Structure of Rhetoric James H. Collier Graduate Program in Science and Technology Studies Chair: Joseph C. Pitt (ABSTRACT) This thesis examines the rhetorical, analytical and critical efficacy of reflexivity and sociological theory as means for reconciling the normative and descriptive functions of the rhetoric of science. In attempting to define a separate research domain within Science Studies, rhetoric of science has borrowed Strong Program and constructivist principles and descriptions of scientific practice from the Sociology of Scientific Knowledge (SSK) as a basis for analyzing scientific discourse. While epistemological claims in the social sciences have been considered inherently self-referential and subject to reflexive analysis and critique, rhetoricians have generally taken these claims on face value and applied them to a treatment of scientific practice. Accordingly, rhetoricians have maintained a natural ontological attitude to sociological theories and descriptions supporting an understanding of scientific discourse as implicitly rhetorical. Recently, however, the concept of "rhetoric" in rhetoric of science has come under scrutiny. This thesis will connect arguments involving the relation of the "irreducibly social" nature of science, to a concept of scientific discourse as rhetorical "without remainder,” to the philosophical commitments of reflexive analysis. -
REALISM and ITS IMPLICATIONS: Real/Reality/Realism: the Beginning Student Will Do Well to Get Clearly in Mind the Meaning of Such Terms As Real, Reality, and Realism
REALISM AND ITS IMPLICATIONS: Real/Reality/Realism: The beginning student will do well to get clearly in mind the meaning of such terms as real, reality, and realism. The real is the actual, or the existing. The term refers to things or events belonging to the order of nature or existing in their own right, as opposed to the imaginary, the artificial, the fictitious. Real refers to "what is." Reality is the state or quality of being real or actually existent, in contrast to what is mere appearance. In a popular sense, realism may mean devotion to fact and details as opposed to the imaginary. In philosophy, however, the word is used in a more technical sense. WHAT IS REALISM? Realism, in a philosophical sense, is the doctrine that the objects of our senses are real in their own right in that they exist independent of their being known or related to mind. Realism ' is the disposition to think and to act in the light of things as they ' are; it is a preoccupation with fact or reality; it emphasizes the objective and the scientific as opposed to the subjective and the speculative. For the realist the universe is so inexorably "out there" that the only thing we can do is to make the best terms possible with it. The realist attempts to come to terms with the universe, not to interpret the world in terms of his experience or in spiritual terms. A contemporary British realist, Professor John MacMurray, says: "We cannot get away from the primary fact that there is a distinction between things and ideas. -
Notes: Scientific Method and Scientific Notation Prof
Notes: Scientific Method and Scientific Notation Prof. Fiore, [email protected] Scientific Method The scientific method is a means of uncovering and explaining physical phenomena. It relies on observation and logical reasoning to achieve insight into the actions and relations of the phenomena, and a means of relating it to similar items. The method starts with observations and measurements. Based on these and background knowledge such as mathematics, physics, the behavior of similar phenomena, and so on, a tentative explanation, or hypothesis, is derived. The hypothesis is then tested using experimental or field data. The precise nature of the tests depend on the area of study, but the idea will always be the same: namely to see if the predictions of the hypothesis are borne out under alternate applicable conditions or data sets. A proper hypothesis must be testable and falsifiable. That is, the hypothesis must be able to be proven wrong by subsequent observation. If it is not, then the hypothesis is better classified as philosophy. For example, Newtonian gravitation could be proven false by letting go of a suspended hammer and watching it remain motionless or fall upwards, rather than fall down toward the Earth. Similarly, Evolution could be proven false by the discovery of “fossil rabbits in the Precambrian”, to quote famous biologist J. B. S. Haldane (Haldane was being somewhat snippy, but in general, he meant anything that would be clearly out of the expected time-line, in this case a small mammal predating even the most simple creatures with backbones). A hypothesis is tested by repeated cycles of prediction, observation and measurement, and also subject to peer review, that is, the critique of others in the field of study who may point out inconsistencies in the explanations or logic, errors in experimental design, and so on.