Cancer Research UK Gurdon Institute Prospectus 2020/2021 25 YEARS

Total Page:16

File Type:pdf, Size:1020Kb

Cancer Research UK Gurdon Institute Prospectus 2020/2021 25 YEARS The Wellcome/ Cancer Research UK Gurdon Institute Prospectus 2020/2021 25 YEARS The Wellcome/ Cancer Research UK Gurdon Institute Studying Prospectus 2020/2021 E development to C U G E N D E R E R understand disease C HA R T The Gurdon Institute 3 Contents Welcome Welcome to our new Prospectus, where we highlight our Watermark, the first such award in the University. Special activities for - unusually - two years: 2019 and 2020. The thanks for this achievement go to Hélène Doerflinger, COVID-19 pandemic has made it an extraordinary time Phil Zegerman and Emma Rawlins. Director’s welcome 3 Emma Rawlins 38 for everyone. I want to express my pride and gratitude for the exceptional efforts of Institute members, After incubating Steve Jackson's company Adrestia in About the Institute 4 Daniel St Johnston 40 who have kept our building safe and our research the Institute for two years, we wished them well as they progressing; this applies especially to our core team, moved to the Babraham Research Campus. We also sent COVID stories 6 Ben Simons 42 whose dedication has been key to our best wishes to Meri Huch and our continued progress. As you will Rick Livesey and their labs, as they Highlights in 2019/2020 8 Azim Surani 44 see, there is much to be excited embarked on their new positions in about in our research and activities. Dresden and London, respectively. Focus on research Iva Tchasovnikarova 46 It was terrific to see Gurdon I'm delighted that Emma Rawlins Group leaders Fengzhu Xiong 48 members receive recognition for was promoted to Senior Group their achievements. Steve Jackson Leader and that two new Group Julie Ahringer 20 Philip Zegerman 50 received the Leopold Griffuel Leaders joined us in Autumn Award in Translational and Clinical 2020. Iva Tchasovnikarova studies Andrea Brand 22 Associate group leaders Research, and the Royal Society epigenetic pathway mechanisms Mullard Award. Hansong Ma was and how they are disrupted in David Fernandez-Antoran 24 Martin Howard 52 awarded a Philip Leverhulme disease, while David Fernandez- Jenny Gallop 26 John Perry 54 Prize and selected as an EMBO Antoran's research is focused on Young Investigator, I received the cell competition and the impact of John Gurdon 28 Facilities 56 Genetics Society of America's ionising radiation on selection. George W. Beadle Award, and Office Manager Lynda Steve Jackson 30 Support staff 58 Lockey was named the Unsung Heroine of Professional Finally, I'm pleased to welcome two new Associate Group Services. We are also excited that a major component of Leaders. John Perry (MRC Epidemiology Unit) uses Tony Kouzarides 32 Seminars, events and the Wellcome-funded Human Developmental Biology human genetics to understand disease mechanisms, and publications in 2019/2020 60 Initiative is based in the Institute, led by Emma Rawlins, Martin Howard (John Innes Centre) builds mathematical Hansong Ma 34 Ben Simons and Azim Surani. models of biological processes. We look forward to Acknowledgements 77 exciting and productive interactions with them. Eric Miska 36 I'm especially proud that our exceptional Public Engagement was recognised by a Silver Engage Director February 2021 4 About the Institute About the Institute The Wellcome/ Cancer Research UK Gurdon Institute is a world-leading centre for research at the interface between developmental biology and cancer biology. Our research is focussed in four overlapping areas: our focus Cell division, Function and regulation Mechanisms of cell Cell biological proliferation and of the genome and fate determination, processes underlying genome maintenance epigenome multipotency and organ development plasticity and function and interactions across Cambridge’s • A wealth of stimulating Join us vibrant research environment, seminars and masterclasses, We have a thriving community of including through department an annual Institute retreat, graduate students and postdocs affiliations and teaching. and Institute postdoc and PhD who contribute to and benefit from student groups (pp. 62–65) our exciting research environment. We investigate these areas in both findings have been successfully sources including national and We benefit from: • Award-winning public We welcome enquiries from those normal development and cancer translated to drug discovery international governmental and • Core facilities with state-of- engagement between our interested in joining us, which can using multiple model systems, from through spinout companies. charitable grants. Scientific progress the-art equipment and support scientists and the wider public be done by writing to the relevant yeast to human organoids (pp. and future plans are assessed at including super-resolution (pp. 16–17). group leader. 20–50). The Gurdon Institute’s principal regular intervals by our International microscopy, next-generation • An on-site canteen, social sponsors are Wellcome and Cancer Scientific Advisory Board (p. 77) . sequencing and bioinformatics events and sports groups, which Find out about the latest Since our formation in 1991, our Research UK, who support our (pp. 56–57) enhance our welcoming and opportunities on our website. research has led to major insights excellent infrastructure through core The Institute is embedded within • Central services providing inclusive environment. into the molecular and cellular grants, and our research through the University of Cambridge, administration, computing and • An Athena SWAN Bronze Award defects that give rise to cancer direct grants to group leaders. Our providing unparalleled IT, stores, media preparation for promoting equality and and other diseases of ageing, and research is also funded by other opportunities for collaborations and glass-washing. diversity across our workforce. 6 COVID stories The Gurdon Institute 7 quickly increased, with home tests “Then, of course, there was the arriving from all over the country, wider shortage across the country, we were pushed to the limit and at so Charles and I looked at what we COVID stories one point caused a bottleneck of could do.” the whole pipeline. The solidarity Once our building opened again and sense of responsibility of on 15th June under University everyone in the team meant that we What did we do during the coronavirus pandemic in 2020? guidance, the two set up a no-touch would ensure all the samples were log-in log-out system allowing the processed each day, and Along with institutions and Some of our scientists paediatrician at Addenbrooke’s The roles taken by Weronika Fic, we know Institute to track numbers of people businesses across England, the re-focussed their research Hospital from March to September. Dmitry Nashchekin, Helen Zenner we played an important part in on site in real time, ensuring we Institute shut its doors at 5pm on Omer Ziv with Miska lab colleagues It was actually quite nice to have and Mihoko Tame (St Johnston lab) helping contain the first COVID-19 stuck to the strict rules on numbers .” 20th March for Lockdown 1.0. Only and collaborators at Justus Liebig something to do during that first and Paolo Amaral (Kouzarides lab) wave in different lab spaces. minimal maintenance and technical University worked to produce a lockdown, although being coughed were in sample preparation, RT-PCR staff remained, regularly checking map and database of the short on by feverish children all day wasn’t tests and data analysis, the full team the building and the fly stocks, and long-range interactions of ideal!” eventually processing over 8000 while researchers could no longer the SARS-CoV-2 RNA genome nasopharyngeal swab samples daily. access their benches and had to (details in ‘Research highlights call a sudden halt to hundreds of 2020’). Ben Simons was involved in experiments. Administrative staff epidemiological modelling. took computers and files home. And that’s how it remained until 15th June when we re-opened at one quarter occupancy, slowly moving up to 50% occupancy by September. Many different staff, and especially researchers, were delighted to return once more to the building. Lockdown 2.0 in Core staff made Personal November sent some more staff Protective Equipment: Alex back home again. Sossick and Charles Bradshaw of the Imaging and Bioinformatics Family members sewed face The core staff have done an teams each took home a 3D printer. coverings: The mother of a staff incredible job to keep as much of The machines were set up to run member sent about 600 of her the Institute open and functioning 24-hours a day, making in total hand-sewn, eco-friendly and as possible (and legal) at all times, Five researchers worked shifts 500 visor headbands, which were washable face coverings all the way in terms of maintenance and safety distributed locally to key workers from her village in Italy, enough for in the building, supplying media, as volunteers at the Cambridge that ran seven days in GP surgeries, hospitals and care everyone to have two each. and enabling computing services for Others intermitted from research Testing Centre Ben a week from 6am to midnight to homes. “The Institute had given a remote working. Meanwhile, other and returned to the clinic: Paolo recalls: “Volunteering at the Fisher (Miska lab) says “I returned support the national effort to boost lot of our own PPE, especially visors, Institute members have contributed centre felt like a call of duty. As the to full-time clinical work as a COVID-19 testing capacity. to Addenbrookes,” says Alex. directly to fighting the pandemic: number of samples to be processed 8 About the Institute The Gurdon Institute 9 Highlights in 2019/2020 10 Awards The Gurdon Institute 11 Awards Feb '19: Steve Jackson receives Three of the Institute’s labs are November and Steve Jackson is cancer research prize among more than a dozen across among them, awarded funding the UK working together to for a project on the DNA damage The 47th ARC Foundation generate data, develop new tools response in collaboration with Léopold Griffuel Award in and build a ‘family tree’ of cell partners in Switzerland and Austria.
Recommended publications
  • Distinctive Regulatory Architectures of Germline-Active and Somatic Genes in C
    Downloaded from genome.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press Research Distinctive regulatory architectures of germline-active and somatic genes in C. elegans Jacques Serizay, Yan Dong, Jürgen Jänes, Michael Chesney, Chiara Cerrato, and Julie Ahringer The Gurdon Institute and Department of Genetics, University of Cambridge, CB2 1QN Cambridge, United Kingdom RNA profiling has provided increasingly detailed knowledge of gene expression patterns, yet the different regulatory ar- chitectures that drive them are not well understood. To address this, we profiled and compared transcriptional and regu- latory element activities across five tissues of Caenorhabditis elegans, covering ∼90% of cells. We find that the majority of promoters and enhancers have tissue-specific accessibility, and we discover regulatory grammars associated with ubiquitous, germline, and somatic tissue–specific gene expression patterns. In addition, we find that germline-active and soma-specific promoters have distinct features. Germline-active promoters have well-positioned +1 and −1 nucleosomes associated with a periodic 10-bp WW signal (W = A/T). Somatic tissue–specific promoters lack positioned nucleosomes and this signal, have wide nucleosome-depleted regions, and are more enriched for core promoter elements, which largely differ between tissues. We observe the 10-bp periodic WW signal at ubiquitous promoters in other animals, suggesting it is an ancient conserved signal. Our results show fundamental differences in regulatory architectures of germline and somatic tissue–specific genes, uncover regulatory rules for generating diverse gene expression patterns, and provide a tissue-specific resource for future studies. [Supplemental material is available for this article.] Cell type–specific transcription regulation underlies production tissues are achieved and whether expression is governed by dis- of the myriad of different cells generated during development.
    [Show full text]
  • Mothers in Science
    The aim of this book is to illustrate, graphically, that it is perfectly possible to combine a successful and fulfilling career in research science with motherhood, and that there are no rules about how to do this. On each page you will find a timeline showing on one side, the career path of a research group leader in academic science, and on the other side, important events in her family life. Each contributor has also provided a brief text about their research and about how they have combined their career and family commitments. This project was funded by a Rosalind Franklin Award from the Royal Society 1 Foreword It is well known that women are under-represented in careers in These rules are part of a much wider mythology among scientists of science. In academia, considerable attention has been focused on the both genders at the PhD and post-doctoral stages in their careers. paucity of women at lecturer level, and the even more lamentable The myths bubble up from the combination of two aspects of the state of affairs at more senior levels. The academic career path has academic science environment. First, a quick look at the numbers a long apprenticeship. Typically there is an undergraduate degree, immediately shows that there are far fewer lectureship positions followed by a PhD, then some post-doctoral research contracts and than qualified candidates to fill them. Second, the mentors of early research fellowships, and then finally a more stable lectureship or career researchers are academic scientists who have successfully permanent research leader position, with promotion on up the made the transition to lectureships and beyond.
    [Show full text]
  • An Interview with John Gurdon Aidan Maartens*,‡
    © 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 1581-1583 doi:10.1242/dev.152058 SPOTLIGHT An interview with John Gurdon Aidan Maartens*,‡ John Gurdon is a Distinguished Group Leader in the Wellcome Trust/ Cancer Research UK Gurdon Institute and Professor Emeritus in the Department of Zoology at the University of Cambridge. In 2012, he was awarded the Nobel Prize in Physiology or Medicine jointly with Shinya Yamanaka for work on the reprogramming of mature cells to pluripotency, and his lab continues to investigate the molecular mechanisms of nuclear reprogramming by oocytes and eggs. We met John in his Cambridge office to discuss his career and hear his thoughts on the past, present and future of reprogramming. Your first paper was published in 1954 and concerned not embryology but entomology. How did that come about? Well, that early paper was published in the Entomologist’s Monthly Magazine. Throughout my early life, I really was interested in insects, and used to collect butterflies and moths. When I was an undergraduate I liked to take time off and go out to Wytham Woods near Oxford to see what I could find. So I went out one cold spring day and there were no butterflies about, nor any moths, but, out of nowhere, there was a fly – I caught it, put it in my bottle, and had a look at it. The first thing that was obvious was that it wasn’t a fly, it was a hymenopteran, but when I tried to identify it I simply could cells in the body have the same genes.
    [Show full text]
  • Gurdon Institute 20122011 PROSPECTUS / ANNUAL REPORT 20112010
    The Wellcome Trust/Cancer Research UK Gurdon Institute 20122011 PROSPECTUS / ANNUAL REPORT 20112010 Gurdon I N S T I T U T E PROSPECTUS 2012 ANNUAL REPORT 2011 http://www.gurdon.cam.ac.uk CONTENTS THE INSTITUTE IN 2011 INTRODUCTION........................................................................................................................................3 HISTORICAL BACKGROUND..........................................................................................................4 CENTRAL SUPPORT SERVICES....................................................................................................5 FUNDING.........................................................................................................................................................5 RETREAT............................................................................................................................................................5 RESEARCH GROUPS.........................................................................................................6 MEMBERS OF THE INSTITUTE................................................................................44 CATEGORIES OF APPOINTMENT..............................................................................44 POSTGRADUATE OPPORTUNITIES..........................................................................44 SENIOR GROUP LEADERS.............................................................................................44 GROUP LEADERS.......................................................................................................................48
    [Show full text]
  • Transcriptomic Description of an Endogenous Female State in C
    bioRxiv preprint first posted online Oct. 27, 2016; doi: http://dx.doi.org/10.1101/083113. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Transcriptomic Description of an Endogenous Female State in C. elegans David Angeles-Albores1,y Daniel H.W. Leighton2,y Tiffany Tsou1 Tiffany H. Khaw1 Igor Antoshechkin3 Paul W. Sternberg1,* October 29, 2016 y These authors contributed equally to this work 1 Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, CA, 91125, USA 2 Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Insti- tute, University of California, Los Angeles, Los Angeles, CA 90095, USA 3 Department of Biology and Biological Engineering, Caltech, Pasadena, CA, 91125, USA * Corresponding author. Contact:[email protected] Abstract Understanding genome and gene function in a whole organism requires us to fully compre- hend the life cycle and the physiology of the organism in question. Although C. elegans is traditionally though of as a hermaphrodite, XX animals exhaust their sperm and become (en- dogenous) females after 3 days of egg-laying. The molecular physiology of this state has not been studied as intensely as other parts of the life cycle, in spite of documented changes in behavior and metabolism that occur at this stage. To study the female state of C. elegans, we designed an experiment to measure the transcriptomes of 1st day adult females; endoge- nous, 6th day adult females; and at the same time points, mutant feminized worms.
    [Show full text]
  • Fall 2016 Is Available in the Laboratory of Dr
    RNA Society Newsletter Aug 2016 From the Desk of the President, Sarah Woodson Greetings to all! I always enjoy attending the annual meetings of the RNA Society, but this year’s meeting in Kyoto was a standout in my opinion. This marked the second time that the RNA meeting has been held in Kyoto as a joint meeting with the RNA Society of Japan. (The first time was in 2011). Particular thanks go to the local organizers Mikiko Siomi and Tom Suzuki who took care of many logistical details, and to all of the organizers, Mikiko, Tom, Utz Fischer, Wendy Gilbert, David Lilley and Erik Sontheimer, for putting together a truly exciting and stimulating scientific program. Of course, the real excitement in the annual RNA meetings comes from all of you who give the talks and present the posters. I always enjoy meeting old friends and colleagues, but the many new participants in this year’s meeting particularly encouraged me. (Continued on p2) In this issue : Desk of the President, Sarah Woodson 1 Highlights of RNA 2016 : Kyoto Japan 4 Annual Society Award Winners 4 Jr Scientist activities 9 Mentor Mentee Lunch 10 New initiatives 12 Desk of our CEO, James McSwiggen 15 New Volunteer Opportunities 16 Chair, Meetings Committee, Benoit Chabot 17 Desk of the Membership Chair, Kristian Baker 18 Thank you Volunteers! 20 Meeting Reports: RNA Sponsored Meetings 22 Upcoming Meetings of Interest 27 Employment 31 1 Although the graceful city of Kyoto and its cultural months. First, in May 2016, the RNA journal treasures beckoned from just beyond the convention instituted a uniform price for manuscript publication hall, the meeting itself held more than enough (see p 12) that simplifies the calculation of author excitement to keep ones attention! Both the quality fees and facilitates the use of color figures to and the “polish” of the scientific presentations were convey scientific information.
    [Show full text]
  • 2019 Annual Report
    BECKMAN CENTER 279 Campus Drive West Stanford, CA 94305 650.723.8423 Stanford University | Beckman Center 2019 Annual Report Annual 2019 | Beckman Center University Stanford beckman.stanford.edu 2019 ANNUAL REPORT ARNOLD AND MABEL BECKMAN CENTER FOR MOLECULAR AND GENETIC MEDICINE 30 Years of Innovation, Discovery, and Leadership in the Life Sciences CREDITS: Cover Design: Neil Murphy, Ghostdog Design Graphic Design: Jack Lem, AlphaGraphics Mountain View Photography: Justin Lewis Beckman Center Director Photo: Christine Baker, Lotus Pod Designs MESSAGE FROM THE DIRECTOR Dear Friends and Trustees, It has been 30 years since the Beckman Center for Molecular and Genetic Medicine at Stanford University School of Medicine opened its doors in 1989. The number of translational scientific discoveries and technological innovations derived from the center’s research labs over the course of the past three decades has been remarkable. Equally remarkable have been the number of scientific awards and honors, including Nobel prizes, received by Beckman faculty and the number of young scientists mentored by Beckman faculty who have gone on to prominent positions in academia, bio-technology and related fields. This year we include several featured articles on these accomplishments. In the field of translational medicine, these discoveries range from the causes of skin, bladder and other cancers, to the identification of human stem cells, from the design of new antifungals and antibiotics to the molecular underpinnings of autism, and from opioids for pain
    [Show full text]
  • UKI NETS 11Th National Conference 25 November 2013 the Royal College of Physicians London, UK
    UKI NETS 11th National Conference 25 November 2013 The Royal College of Physicians London, UK Abstract Marking Panel Alan Anthoney (Leeds, UK) Simon Aylwin (London, UK) Dr Tu Vinh Luong (London, UK) Prakesh Manoharan (Manchester, UK) Nick Reed (Glasgow, UK) UKI NETS would like to thank their sponsors for their kind generosity: Educational Sponsors: Meeting Sponsor: UKI NETS Euro House 22 Apex Court Tel: +44-(0)1454 642277 Woodlands Fax: +44-(0)1454 642222 Bradley Stoke Email: [email protected] Bristol, BS32 4JT, UK Website: www.ukinets.org 2 Contents Pages Programme 4 – 6 Speaker Biographies 7 - 10 Abstracts 12 – 67 3 Programme CPD UKI NETS 11TH NATIONAL CONFERENCE has been approved by the Federation of the Royal Colleges of Physicians of the United Kingdom for 6 category 1 (external) CPD credits. 08:30 Registration, Coffee and Poster viewing 09:25 Welcome and opening remarks Nick Reed (Glasgow, UK) 09:30 – 11:00 Session 1 – Pancreatic NETS –who when and how to intervene? Chair: Graeme Poston 09:30 Imaging assessment of the incidental pancreatic mass Dylan Lewis (London, UK) 09:50 Management of pancreatic primary in presence of metastatic disease Massimo Falconi (Torrette-Ancona, Italy) 10:10 Localisation of insulinoma Karim Meeran (London, UK) 10:30 Surgical approach to the pancreas and parathyroid in patients with MEN1/VHL Barney Harrison (Sheffield, UK) 10:50 Open Floor Q&A 11:00 Coffee, poster viewing and exhibition 11:30 - 12:15 Session 2a – Management dilemmas - Debate – Chemotherapy is first line treatment for pancreatic metastatic
    [Show full text]
  • Profile of John Gurdon and Shinya Yamanaka, 2012 Nobel Laureates in Medicine Or Physiology
    PROFILE PROFILE Profile of John Gurdon and Shinya Yamanaka, 2012 Nobel Laureates in Medicine or Physiology Alan Colman1 Executive Director, Singapore Stem Cell Consortium, A*STAR Institute of Medical Biology We celebrate the 2012 Nobel Prize for genes and it was selective gene expression Medicine awarded to Sir John Gurdon and that accounted for cell fate choices. Al- Shinya Yamanaka for their groundbreaking though the initial “cloning” experiments contributions to the field of cell reprogram- generated swimming tadpoles, it wasn’t un- ming. In 1962, in a series of experiments til Gurdon showed that these tadpoles could inspired by Briggs and King (1), Gurdon mature into fertile adults (4) that it became demonstrated that the nucleus of a frog clear that the frog somatic cell nucleus con- somatic cell could be reprogrammed to be- tained all of the genes needed for full de- Sir John B. Gurdon (Left) and Shinya Yamanaka have like the nucleus of a fertilized frog egg velopment. The technical inefficiencies of (Right) during an interview with Nobelprize.org (2). By inserting the nuclei of intestinal ep- his experiments begged the question of ithelial cells into enucleated eggs, Gurdon whether the frogs created by Gurdon using on December 6, 2012. Image Copyright Nobel was able to create healthy swimming tad- SCNT in fact arose from unspecialized cell Media AB 2012/Niklas Elmehed. poles. These experiments were the first suc- donors present in the epithelial population. cessful instances of somatic cell nuclear Such doubts were dispelled when skin nu- The series of reprogramming successes transfer (SCNT) using genetically normal clei that were demonstrably specialized were that Gurdon’s work inspired involved radical cells.
    [Show full text]
  • Trustees' Annual Report and Financial Statements 31 March 2016
    THE FRANCIS CRICK INSTITUTE LIMITED A COMPANY LIMITED BY SHARES TRUSTEES’ ANNUAL REPORT AND FINANCIAL STATEMENTS 31 MARCH 2016 Charity registration number: 1140062 Company registration number: 6885462 The Francis Crick Institute Accounts 2016 CONTENTS INSIDE THIS REPORT Trustees’ report (incorporating the Strategic report and Directors’ report) 1 Independent auditor’s report 12 Consolidated statement of financial activities 13 Balance sheets 14 Cash flow statements 15 Notes to the financial statements 16 1 TRUSTEES’ REPORT (INCORPORATING THE STRATEGIC REPORT AND DIRECTORS’ REPORT) The trustees present their annual directors’ report together with the consolidated financial statements for the charity and its subsidiary (together, ‘the Group’) for the year ended 31 March 2016, which are prepared to meet the requirements for a directors’ report and financial statements for Companies Act purposes. The financial statements comply with the Charities Act 2011, the Companies Act 2006, and the Statement of Recommended Practice applicable to charities preparing their accounts in accordance with the Financial Reporting Standard applicable in the UK (FRS102) effective 1 January 2015 (Charity SORP). The trustees’ report includes the additional content required of larger charities. REFERENCE AND ADMINISTRATIVE DETAILS The Francis Crick Institute Limited (‘the charity’, ‘the Institute’ or ‘the Crick) is registered with the Charity Commission, charity number 1140062. The charity has operated and continues to operate under the name of the Francis Crick
    [Show full text]
  • Paterson Institute for Cancer Research Scientific Report 2008 Contents
    paterson institute for cancer research scientific report 2008 cover images: Main image supplied by Karim Labib and Alberto sanchez-Diaz (cell cycle Group). Budding yeast cells lacking the inn1 protein are unable to complete cytokinesis. these cells express a fusion of a green fluorescent protein to a marker of the plasma membrane, and have red fluorescent proteins attached to components of the spindle poles and actomyosin ring (sanchez-Diaz et al., nature cell Biology 2008; 10: 395). Additional images: front cover image supplied by Helen rushton, simon Woodcock and Angeliki Malliri (cell signalling Group). the image is of a mitotic spindle in fixed MDcK (Madin-Darby canine kidney) epithelial cells, which have been stained with an anti-beta tubulin antibody (green), DApi (blue) and an anti-centromere antibody (crest, red) which recognises the kinetochores of the chromosomes. the image was taken on the spinning disk confocal microscope using a 150 x lens. rear cover image supplied by Andrei ivanov and tim illidge (targeted therapy Group). Visualisation of tubulin (green) and quadripolar mitosis (DnA stained with DApi), Burkitt’s lymphoma namalwa cell after 10 Gy irradiation. issn 1740-4525 copyright 2008 © cancer research UK Paterson Institute for Cancer Research Scientific Report 2008 Contents 4 Director’s Introduction Researchers’ pages – Paterson Institute for Cancer Research 8 Crispin Miller Applied Computational Biology and Bioinformatics 10 Geoff Margison Carcinogenesis 12 Karim Labib Cell Cycle 14 Iain Hagan Cell Division 16 Nic Jones
    [Show full text]
  • ARTICLE Redefining “Virgin Birth” After Kaguya: Mammalian Parthenogenesis in Experimental Biology, 2004-2014
    ARTICLE Redefining “Virgin Birth” After Kaguya: Mammalian Parthenogenesis in Experimental Biology, 2004-2014 Eva Mae Gillis-Buck University of California, San Francisco [email protected] Abstract Virgin birth is a common theme in religious myths, science fiction, lesbian and feminist imaginaries, and sensational news stories. Virgin birth enters a laboratory setting through biologists’ use of the term parthenogenesis (Greek for virgin birth) to describe various forms of development without sperm. Scientific consensus holds that viable mammalian parthenogenesis is impossible; that is, mammalian embryos require both a maternal and a paternal contribution to develop completely. This essay investigates the historical development of that consensus and the evolving scientific language of parthenogenesis after the birth of Kaguya, a mouse with two mothers and no father. I qualitatively analyze 202 peer-reviewed scientific publications that cite the Kaguya experiment, and find unconventional interpretations of sex and parenthood, even in publications that maintain the impossibility of mammalian parthenogenesis. Though many scientists insist that males are necessary, they also describe eggs as paternal, embryos as sperm-free, and bimaternal sexual reproduction as something distinct from parthenogenesis. I argue that the scientific language used to explain the Kaguya experiment both supports a heteronormative reproductive status quo and simultaneously challenges it, offering bimaternal sexual Gillis-Buck, E.M. (2016). Redefining “Virgin Birth” After Kaguya: Mammalian Parthenogenesis in Experimental Biology, 2004-2014. Catalyst: Feminism, Theory, Technoscience, 2 (1), 1-67 http://www.catalystjournal.org | ISSN: 2380-3312 © Eva Mae Gillis-Buck, 2016 | Licensed to the Catalyst Project under a Creative Commons Attribution Non-Commercial No Derivatives license Gillis-Buck Catalyst: Feminism, Theory, Technoscience 2(1) 2 reproduction as a feasible alternative.
    [Show full text]