ARTICLE Redefining “Virgin Birth” After Kaguya: Mammalian Parthenogenesis in Experimental Biology, 2004-2014

Total Page:16

File Type:pdf, Size:1020Kb

ARTICLE Redefining “Virgin Birth” After Kaguya: Mammalian Parthenogenesis in Experimental Biology, 2004-2014 ARTICLE Redefining “Virgin Birth” After Kaguya: Mammalian Parthenogenesis in Experimental Biology, 2004-2014 Eva Mae Gillis-Buck University of California, San Francisco [email protected] Abstract Virgin birth is a common theme in religious myths, science fiction, lesbian and feminist imaginaries, and sensational news stories. Virgin birth enters a laboratory setting through biologists’ use of the term parthenogenesis (Greek for virgin birth) to describe various forms of development without sperm. Scientific consensus holds that viable mammalian parthenogenesis is impossible; that is, mammalian embryos require both a maternal and a paternal contribution to develop completely. This essay investigates the historical development of that consensus and the evolving scientific language of parthenogenesis after the birth of Kaguya, a mouse with two mothers and no father. I qualitatively analyze 202 peer-reviewed scientific publications that cite the Kaguya experiment, and find unconventional interpretations of sex and parenthood, even in publications that maintain the impossibility of mammalian parthenogenesis. Though many scientists insist that males are necessary, they also describe eggs as paternal, embryos as sperm-free, and bimaternal sexual reproduction as something distinct from parthenogenesis. I argue that the scientific language used to explain the Kaguya experiment both supports a heteronormative reproductive status quo and simultaneously challenges it, offering bimaternal sexual Gillis-Buck, E.M. (2016). Redefining “Virgin Birth” After Kaguya: Mammalian Parthenogenesis in Experimental Biology, 2004-2014. Catalyst: Feminism, Theory, Technoscience, 2 (1), 1-67 http://www.catalystjournal.org | ISSN: 2380-3312 © Eva Mae Gillis-Buck, 2016 | Licensed to the Catalyst Project under a Creative Commons Attribution Non-Commercial No Derivatives license Gillis-Buck Catalyst: Feminism, Theory, Technoscience 2(1) 2 reproduction as a feasible alternative. Introduction In 2004, a group of Korean and Japanese scientists reported the birth of a healthy mouse with two mothers and no father. The scientists named the mouse Kaguya, after a Japanese folktale princess born from a bamboo stump, and published a Nature paper entitled “Birth of parthenogenetic mice that can develop to adulthood” (Kono et al., 2004). The word parthenogenesis, from the Greek for virgin birth, is a term scientists use to describe various forms of reproduction and development without sperm. Media headlines, such as “The End of Males?” and “Two Mums Make Baby,” fueled public interest in what Kaguya’s birth might mean for human reproduction (Fisher, 2004; Trivedi, 2004). But Tomohiro Kono, one of the leading scientists behind the Kaguya experiment, told reporters that the idea of human parthenogenesis was “senseless” (Ritter, 2004). Kono and colleagues argued that Kaguya’s birth actually demonstrated how and why males are required for mammalian reproduction. The Kaguya experiment, they explained, was simply an effort to better understand an epigenetic process called genomic imprinting and why the maternal and the paternal genome are both necessary for complete mammalian development. The idea that a mouse without a father could demonstrate the necessity of males seems contradictory, and ironic given the history of feminist and lesbian engagement with parthenogenesis. All-female reproduction has been a theme of feminist science fiction throughout the twentieth century (Ingram-Waters, 2006, 2008; Squier, 1994), and lesbian separatist groups in the 1970s and 1980s followed parthenogenesis research closely, optimistic for its potential as a new reproductive technology (Kelly, 1977; Rensenbrink, 2010). Scholars have noted that the actualization of a queer imaginary – parthenogenesis – has ironically been used as scientific support for the biological necessity of males, upholding a heteronormative one-father plus one-mother reproductive scheme (Ingram-Waters, 2006, 2008; Lafuente Funes, 2012; Rensenbrink, Gillis-Buck Catalyst: Feminism, Theory, Technoscience 2(1) 3 2010). However, in this paper, I show that unconventional interpretations of sex and parenthood can be found even in scientific research that claims mammalian parthenogenesis is impossible. Many scientists insist that males are necessary, but they also describe eggs as paternal, embryos as sperm-free, and bimaternal sexual reproduction as something distinct from parthenogenesis. Given the etymology of parthenogenesis, and the tendency of some scientists and media outlets to use parthenogenesis and virgin birth interchangeably, the language used to explain the Kaguya experiment contributes to scientific and cultural understandings of sex, gender, reproduction, and family. I argue that language of the Kaguya experiment both supports a reproductive status quo and simultaneously challenges it. To better understand how this scientific language has evolved, I first contextualize the Kaguya experiment within the history of parthenogenesis research, which is caught up in what I call a discourse of impossibility. I use this phrase to describe conversations among scientists, taking place in academic journals in the twentieth and twenty-first century, that conclude in a consensus: viable parthenogenesis in mammals is impossible, even though it is a common form of reproduction in many insect, reptile, and bird species. So-called parthenotes—eggs that begin dividing and developing without the contribution of sperm—were made into a routine laboratory technology, and the understanding that parthenotes could never develop to term made them the “right tools for the job” in many ways (Clarke & Fujimura, 1992). The inviability of mammalian parthenotes was useful to developmental biologists, who compared parthenotes with fertilized embryos to discover the necessary components of sperm in early development. Geneticists found parthenogenesis useful, given parthenotes’ haploid or homozygous diploid genome, which could reveal recessive mutations. Parthenotes were also key to the conceptualization of genomic imprinting in the 1980s. Then, in the early twenty-first century, parthenotes became a source of stem cells. At a time when American scientists could not use federal funding for the creation of human Gillis-Buck Catalyst: Feminism, Theory, Technoscience 2(1) 4 embryonic stem cell lines, human parthenogenetic stem cells served as an ethical alternative. Destroying a parthenote for stem cell derivation was not viewed as destroying a potential human life. This line of reasoning was largely dependent on the idea that mammalian parthenogenesis could never result in a live birth. Thus a productive experimental paradigm and strong political forces helped solidify the discourse of impossibility into a consensus: viable mammalian parthenogenesis does not and cannot happen. The rest of this paper examines how the birth of Kaguya—a healthy mammalian parthenote—affected the discourse of impossibility and the language used to describe gametes and reproduction. Using a data set of 202 peer-reviewed publications that cite the Kaguya experiment, I investigate how scientists interpreted the birth of a mouse with no father and used the words parthenogenesis, maternal, paternal, and bimaternal in their published articles. My focus on language continues a feminist tradition of paying close attention to word choice and metaphor in scientific descriptions of sperm and egg, nucleus and cytoplasm, gene and environment (Butler, 1990; Fausto-Sterling, 1989; Keller, 1995; Martin, 1991; Moore, 2007). The case of mammalian parthenogenesis is particularly well-suited for this type of analysis, given the loaded term virgin birth. Virgin birth is a common theme in religious myths, science fiction, lesbian and feminist imaginaries, and sensational news stories. Virgin birth enters a laboratory setting through biologists’ use of the term parthenogenesis, sometimes used interchangeably with virgin birth (Miyoshi et al., 2006; Wilmut, Campbell, & Tudge, 2000). For example, a 2002 Nature article on genomic imprinting and entitled “Immaculate Misconception” stated, “Sex is necessary and ‘virgin’ births are impossible in humans” (Surani, 2002, p. 491). By investigating scientists’ word choice when describing development without sperm, this essay contributes to discussions of how scientific narratives influence and are influenced by gender norms and cultural understandings of reproduction, sexuality, and family. Gillis-Buck Catalyst: Feminism, Theory, Technoscience 2(1) 5 PART 1: Establishing the impossibility of mammalian parthenogenesis In the twentieth and twenty-first centuries, biologists compared parthenotes with fertilized embryos to investigate the role of sperm in early development. By examining the historical use of parthenotes in experimental biology, we can better understand how the discourse of impossibility was built up over time and how Kaguya’s birth was interpreted within that discourse. 1.1 Artificial mammalian parthenogenesis. In the 1890s, German-American biologist Jacques Loeb developed a technique he called artificial parthenogenesis: inducing division and development in unfertilized sea urchin eggs by altering the salt concentration of seawater.1 American biologist Gregory Pincus—well known for his later work on oral contraceptives—claimed that “Loeb stopped too soon,” and Pincus hoped to bring about artificial parthenogenesis in mammals (quoted in Pauly, 1987, p. 187). In the 1930s and 1940s, Pincus experimented with Loeb’s methods and found
Recommended publications
  • Mothers in Science
    The aim of this book is to illustrate, graphically, that it is perfectly possible to combine a successful and fulfilling career in research science with motherhood, and that there are no rules about how to do this. On each page you will find a timeline showing on one side, the career path of a research group leader in academic science, and on the other side, important events in her family life. Each contributor has also provided a brief text about their research and about how they have combined their career and family commitments. This project was funded by a Rosalind Franklin Award from the Royal Society 1 Foreword It is well known that women are under-represented in careers in These rules are part of a much wider mythology among scientists of science. In academia, considerable attention has been focused on the both genders at the PhD and post-doctoral stages in their careers. paucity of women at lecturer level, and the even more lamentable The myths bubble up from the combination of two aspects of the state of affairs at more senior levels. The academic career path has academic science environment. First, a quick look at the numbers a long apprenticeship. Typically there is an undergraduate degree, immediately shows that there are far fewer lectureship positions followed by a PhD, then some post-doctoral research contracts and than qualified candidates to fill them. Second, the mentors of early research fellowships, and then finally a more stable lectureship or career researchers are academic scientists who have successfully permanent research leader position, with promotion on up the made the transition to lectureships and beyond.
    [Show full text]
  • Physiological Substrates of Mammalian Monogamy: the Prairie Vole Model
    Neuroscienceand BiobchavioralReviews, Vol. 19, No. 2, pp. 303-314, 1995 Copyright© 1995 ElsevierScience Lid Pergamon Printed in the USA. All rightsreserved 0149-7634/95 $9.50 + .00 0149-7634(94)00070-0 Physiological Substrates of Mammalian Monogamy: The Prairie Vole Model C. SUE CARTER, .1 A. COURTNEY DEVRIES,* AND LOWELL L. GETZt *DeFartment of Zoology, University of Maryland, College Park, MD 20742, and tDepartment of Ecology, Ethology, and Evolution, University of Illinois, Urbana, IL 61801 CARTER, C. S., A. C. DEVRIES AND L. L. GETZ. Physiological substrates of mammalian monogamy: The prairie vole model. NEUROSCI BIOBEHAV REV 19(2) 303-314, 1995.-Prairie voles (Microtus ochrogaster) are described here as a model system in which it is possible to examine, within the context of natural history, the proximate processes regulating the social and reproductive behaviors that characterize a monogamous social system. Neuropeptides, including oxytocin and vasopressin, and tihe adrenal glucocorticoid, corticosterone, have been implicated in the neural regulation of partner prefer- ences, and in the male, vasopressin has been implicated in the induction of selective aggression toward strangers. We hypothesize here that interactions among oxytocin, vasopressin and glucocorticoids could provide substrates for dynamic changes in social and agonistic behaviors, including those required in the development and expression of monogamy. Results from research with voles suggest that the behaviors characteristics of monogamy, including social attachments and biparental care, may be modified by hormones during development and may be regulated by different mechanisms in males and females. Prairie voles Social behavior Attachment Monogamy Oxytocin Vasopressin Adrenal steroids Corticosterone Sex differences MONOGAMY IN MAMMALS viduals within a family group (that remain with the family as "helpers").
    [Show full text]
  • Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal
    Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal intimately part of the endocrine responsibility of the ovary. Introduction If there are no gametes, then hormone production is drastically curtailed. Depletion of oocytes implies depletion of the major Oogenesis is an area that has long been of interest in medicine, hormones of the ovary. In the male this is not the case. as well as biology, economics, sociology, and public policy. Androgen production will proceed normally without a single Almost four centuries ago, the English physician William spermatozoa in the testes. Harvey (1578–1657) wrote ex ovo omnia —“all that is alive This chapter presents basic aspects of human ovarian comes from the egg.” follicle growth, oogenesis, and some of the regulatory mech- During a women’s reproductive life span only 300–400 of anisms involved [ 1 ] , as well as some of the basic structural the nearly 1–2 million oocytes present in her ovaries at birth morphology of the testes and the process of development to are ovulated. The process of oogenesis begins with migra- obtain mature spermatozoa. tory primordial germ cells (PGCs). It results in the produc- tion of meiotically competent oocytes containing the correct genetic material, proteins, mRNA transcripts, and organ- Structure of the Ovary elles that are necessary to create a viable embryo. This is a tightly controlled process involving not only ovarian para- The ovary, which contains the germ cells, is the main repro- crine factors but also signaling from gonadotropins secreted ductive organ in the female.
    [Show full text]
  • 13. Van Dyke, J.U. 2014. Cues for Reproduction In
    Cues for Reproduction in Squamate Reptiles 109 CHAPTER 5 Cues for Reproduction in Squamate Reptiles James U. Van Dyke 5.1 INTRODUCTION To maximize fitness, animals should initiate reproduction based on information from suites of cues that communicate three variables critical to reproductive success: 1) environmental conduciveness for successful reproduction, and survival of offspring and (usually) parents; 2) physiological capability of parents to reproduce; and 3) likelihood of successful mating. Squamates vary widely in reproductive mode (egg-laying, or oviparity vs. live birth, or viviparity), reproductive frequency (including reproducing only once, i.e., semelparity), and output (Tinkle et al. 1970; Dunham et al. 1988), all of which may alter the phenology of gametogenesis and embryonic development relative to season, physiological state (i.e., body condition), courtship, and mating. These phenomenological differences necessitate divergent reproductive decision-making approaches that may be informed by different suites of cues. In addition, specifi c components of reproduction, including gametogenesis and mating behavior, may not be stimulated by the same environmental or physiological cues. The purpose of this review is to discuss the current state of knowledge of the mechanisms squamates use as cues for the decision to reproduce. Here, the decision to reproduce is defi ned as analogous to a life-history allocation decision (e.g., Dunham et al. 1989), rather than as a result of conscious thought processes. The endocrine connections of the School of Biological Sciences, Heydon-Laurence Bldg A08, University of Sydney, New South Wales, 2006, Australia. 110 Reproductive Biology and Phylogeny of Lizards and Tuatara hypothalamic-pituitary-gonadal axis are briefl y reviewed because they are critical to communicating information from reproductive cues to the brain, gonads, and accessory reproductive organs.
    [Show full text]
  • Correlates of Reproductive Success in a Population of Nine-Banded Armadillos
    Color profile: Disabled Composite Default screen 1815 Correlates of reproductive success in a population of nine-banded armadillos W.J. Loughry, Paulo A. Prodöhl, Colleen M. McDonough, W.S. Nelson, and John C. Avise Abstract: We used microsatellite DNA markers to identify the putative parents of 69 litters of nine-banded armadillos (Dasypus novemcinctus) over 4 years. Male and female parents did not differ in any measure of body size in comparisons with nonparents. However, males observed paired with a female were significantly larger than unpaired males, although paired females were the same size as unpaired females. Females categorized as possibly lactating were significantly larger than females that were either definitely lactating or definitely not lactating. There was no evidence of assortative mating: body-size measurements of mothers were not significantly correlated with those of fathers. Nine- banded armadillos give birth to litters of genetically identical quadruplets. Mothers (but not fathers) of female litters were significantly larger than mothers of male litters, and maternal (but not paternal) body size was positively correlated with the number of surviving young within years, but not cumulatively. There were no differences in dates of birth between male and female litters, nor were there any significant relationships between birth date and maternal body size. Body size of either parent was not correlated with the body sizes of their offspring. Cumulative and yearly reproductive success did not differ between reproductively successful males and females. Average reproductive success (which included apparently unsuccessful individuals) also did not differ between males and females. The majority of adults in the population apparently failed to produce any surviving offspring, and even those that did usually did so in only 1 of the 4 years.
    [Show full text]
  • Modzelewski Et Al (2015)
    © 2015. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Dgcr8 and Dicer are essential for sex chromosome integrity in male meiosis Andrew J. Modzelewski1¶, Stephanie Hilz2¶, Elizabeth A. Crate1, Caterina T. H. Schweidenback2, Elizabeth A. Fogarty2, Jennifer K. Grenier1, 2, Raimundo Freire3, Paula E. Cohen1* and Andrew Grimson2* Departments of 1Biomedical Sciences and 2Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 3Unidad de Investigacion, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, La Laguna Tenerife 38320, Spain ¶These authors contributed equally to this manuscript *Corresponding Authors: [email protected]; [email protected] Journal of Cell Science Accepted manuscript JCS Advance Online Article. Posted on 1 May 2015 ABSTRACT Small RNAs play crucial roles in regulating gene expression during mammalian meiosis. To investigate the function of microRNAs and small-interfering RNAs in male meiosis, we generated germ cell-specific conditional deletions of Dgcr8 and Dicer in mice. Analysis of spermatocytes from both conditional knockout lines reveals frequent chromosomal fusions during meiosis, always involving one or both sex chromosomes. RNA sequencing indicates upregulation of Atm in spermatocytes from microRNA-deficient mice, and immunofluorescence imaging demonstrates an increased abundance of activated ATM kinase and mislocalization of phosphoMDC1, an ATM phosphorylation substrate. The Atm 3′UTR contains many potential microRNA target sites; notably, target sites for several miRNAs depleted in both conditional knockout mice are highly effective at promoting repression.
    [Show full text]
  • (RODENTIA: CRICETIDAE) in COLOMBIA Mastozoología Neotropical, Vol
    Mastozoología Neotropical ISSN: 0327-9383 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Villamizar-Ramírez, Ángela M.; Serrano-Cardozo, Víctor H.; Ramírez-Pinilla, Martha P. REPRODUCTIVE ACTIVITY OF A POPULATION OF Nephelomys meridensis (RODENTIA: CRICETIDAE) IN COLOMBIA Mastozoología Neotropical, vol. 24, núm. 1, julio, 2017, pp. 177-189 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Available in: http://www.redalyc.org/articulo.oa?id=45753369015 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Mastozoología Neotropical, 24(1):177-189, Mendoza, 2017 Copyright ©SAREM, 2017 http://www.sarem.org.ar Versión impresa ISSN 0327-9383 http://www.sbmz.com.br Versión on-line ISSN 1666-0536 Artículo REPRODUCTIVE ACTIVITY OF A POPULATION OF Nephelomys meridensis (RODENTIA: CRICETIDAE) IN COLOMBIA Ángela M. Villamizar-Ramírez1, Víctor H. Serrano-Cardozo1, 3, and Martha P. Ramírez-Pinilla2, 3 1 Laboratorio de Ecología, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia. [Correspondence: Víctor H. Serrano-Cardozo <[email protected]>] 2 Laboratorio de Biología Reproductiva de Vertebrados, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia. 3 Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia. ABSTRACT. We studied the annual reproductive activity of a population of Nephelomys meridensis in an Andean oak forest in the Cordillera Oriental of Colombia. Monthly during a year, Sherman live traps were established in 5 fixed stations (20 traps per station) during 4 nights per month, along an altitudinal range of 2530-2657 m.
    [Show full text]
  • Gene Control Mammalian Reproduction
    652 NATURE. VOL. 223, AUGUST 9, 1969 gives useful sets of worked examples. These examples are have special appeal to research workers and advanced perhaps the most valuable part of the book. They are students, who will find an invaluable guide to important clearly and logically set out and will certainly prove a experiments in the field and will appreciate 650 references useful guide to those wishing to have a cookbook outline extending to the beginning of 1968. Among the special of statistical methods. It would be wise, however, to merits of the work are the inclusion of frequent summaries take care in using the sections described as "instant" at the ends of sections and a full appreciation of the earlier and "short and dirty". work which has laid the foundation of embryology and The book outlines practical calculations of standard much of which is so easily overlooked with the advent of deviation, variance ratio, t-tests, correlation, factorial new methods of analysis. J. B. GURDON designs, analysis of variance and data transformations. Chapter six, on experimental design, is particularly clear and interesting. There is a glossary of statistical terms and abridged statistical tables are included. L. SAUNDERS MAMMALIAN REPRODUCTION Traite de Zoologie Anatomic, Systematique, Biologic. Publie suus la direction de Pierre-P. Grasse. Tome XVI: Mammiferes. GENE CONTROL Fasc. VI: Mamollcs, Appareil Genital, Gametogenese, Gene Activity in Early Development Fecundation, Gestation. Pp. 1028 + 1 plato. (Masson By Eric H. Davidson. Pp. xi+ 375. (Academic Press: et Cie: Paris, 1969.) 280 francs. New York and London, February 1969.) 116s 8d.
    [Show full text]
  • GWG Dec 2012 Nominee Bios2
    Agenda Item #12 ICOC Meeting December 12, 2012 CIRM Scientific and Medical Research Funding Working Group Biographical information of candidates nominated to serve as Scientific Members of the Working Group Stephen Friend, MD, PhD Dr. Friend is the President of Sage Bionetworks. He received his BA in philosophy, his PhD in biochemistry, and his MD from Indiana University. He is an authority in the field of cancer biology and a leader in efforts to make large scale, data-intensive biology broadly accessible to the entire research community. Dr. Friend has been a senior advisor to the National Cancer Institute (NCI), several biotech companies, a Trustee of the American Association for Cancer Research (AACR), and is an American Association for the Advancement of Science (AAAS) and Ashoka Fellow as well as an editorial board member of Open Network Biology. Dr. Friend was previously Senior Vice President and Franchise Head for Oncology Research at Merck & Co., Inc. where he led Merck’s Basic Cancer Research efforts. Prior to joining Merck, Dr. Friend was recruited by Dr. Leland Hartwell to join the Fred Hutchinson Cancer Research Center’s Seattle Project, an advanced institute for drug discovery. While there Drs. Friend and Hartwell developed a method for examining large patterns of genes that led them to co-found Rosetta Inpharmatics in 2001. Dr. Friend has also held faculty positions at Harvard Medical School from 1987 to 1995 and at Massachusetts General Hospital from 1990 to 1995. Christie Gunter, PhD Dr. Gunter is the HudsonAlpha director of research affairs. She earned her BS degree in both genetics and biochemistry from the University of Georgia in 1992, and a PhD in genetics from Emory University in 1998.
    [Show full text]
  • Mammalian Reproductive Strategies: Genes, Photoperiod and Latitude
    Mammalian reproductive strategies : genes, photoperiod and latitude F. H. Bronson To cite this version: F. H. Bronson. Mammalian reproductive strategies : genes, photoperiod and latitude. Reproduction Nutrition Développement, 1988, 28 (2B), pp.335-347. hal-00898794 HAL Id: hal-00898794 https://hal.archives-ouvertes.fr/hal-00898794 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mammalian reproductive strategies : genes, photoperiod and latitude F. H. BRONSON Institute of Reproductive Bio%gy Zoo%gy Department, University of Texas, Austin, Texas 78712 USA. Summary. This paper considers how and why natural selection might promote or block the photoperiodic regulation of a mammal’s reproduction. The factors most important in making this decision would seem to be the following : life expectancy, length of the female’s cycle, feeding strategy, the presence or absence of survival mechanisms like hibernation, and the nature of the seasonal challenges offered by the mammal’s habitat. A speculative scheme is offered for the potential utility of this type of regulation dependent upon life expectancy and latitude of residence. Introduction. Mammals often show seasonal variation in their reproduction. Sometimes this variation is dramatic, with both sexes limiting their reproductive capabilities to a restricted part of the year.
    [Show full text]
  • Cancer Research UK Gurdon Institute Prospectus 2020/2021 25 YEARS
    The Wellcome/ Cancer Research UK Gurdon Institute Prospectus 2020/2021 25 YEARS The Wellcome/ Cancer Research UK Gurdon Institute Studying Prospectus 2020/2021 E development to C U G E N D E R E R understand disease C HA R T The Gurdon Institute 3 Contents Welcome Welcome to our new Prospectus, where we highlight our Watermark, the first such award in the University. Special activities for - unusually - two years: 2019 and 2020. The thanks for this achievement go to Hélène Doerflinger, COVID-19 pandemic has made it an extraordinary time Phil Zegerman and Emma Rawlins. Director’s welcome 3 Emma Rawlins 38 for everyone. I want to express my pride and gratitude for the exceptional efforts of Institute members, After incubating Steve Jackson's company Adrestia in About the Institute 4 Daniel St Johnston 40 who have kept our building safe and our research the Institute for two years, we wished them well as they progressing; this applies especially to our core team, moved to the Babraham Research Campus. We also sent COVID stories 6 Ben Simons 42 whose dedication has been key to our best wishes to Meri Huch and our continued progress. As you will Rick Livesey and their labs, as they Highlights in 2019/2020 8 Azim Surani 44 see, there is much to be excited embarked on their new positions in about in our research and activities. Dresden and London, respectively. Focus on research Iva Tchasovnikarova 46 It was terrific to see Gurdon I'm delighted that Emma Rawlins Group leaders Fengzhu Xiong 48 members receive recognition for was promoted to Senior Group their achievements.
    [Show full text]
  • Female Reproductive Senescence Across
    Female reproductive senescence across mammals: A high diversity of patterns modulated by life history and mating traits Jean-François Lemaître, Victor Ronget, Jean-Michel Gaillard To cite this version: Jean-François Lemaître, Victor Ronget, Jean-Michel Gaillard. Female reproductive senescence across mammals: A high diversity of patterns modulated by life history and mating traits. Mechanisms of Ageing and Development, Elsevier, 2020, 192, pp.111377. 10.1016/j.mad.2020.111377. hal-03060282 HAL Id: hal-03060282 https://hal.archives-ouvertes.fr/hal-03060282 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Female reproductive senescence 2 across mammals: a high diversity of 3 patterns modulated by life history 4 and mating traits 5 6 Jean-François Lemaître1, Victor Ronget2 & Jean-Michel Gaillard1 7 8 9 1 Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622, 10 Villeurbanne, France. 11 2 Unité Eco-anthropologie (EA), Muséum National d’Histoire Naturelle, CNRS, Université Paris Diderot, F- 12 75016 Paris, France. 13 14 15 16 Article for the special issue “Understanding the biology of aging to better intervene” 17 18 19 20 1 21 ABSTRACT 22 23 Senescence patterns are highly variable across the animal kingdom.
    [Show full text]