GWG Dec 2012 Nominee Bios2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mothers in Science
The aim of this book is to illustrate, graphically, that it is perfectly possible to combine a successful and fulfilling career in research science with motherhood, and that there are no rules about how to do this. On each page you will find a timeline showing on one side, the career path of a research group leader in academic science, and on the other side, important events in her family life. Each contributor has also provided a brief text about their research and about how they have combined their career and family commitments. This project was funded by a Rosalind Franklin Award from the Royal Society 1 Foreword It is well known that women are under-represented in careers in These rules are part of a much wider mythology among scientists of science. In academia, considerable attention has been focused on the both genders at the PhD and post-doctoral stages in their careers. paucity of women at lecturer level, and the even more lamentable The myths bubble up from the combination of two aspects of the state of affairs at more senior levels. The academic career path has academic science environment. First, a quick look at the numbers a long apprenticeship. Typically there is an undergraduate degree, immediately shows that there are far fewer lectureship positions followed by a PhD, then some post-doctoral research contracts and than qualified candidates to fill them. Second, the mentors of early research fellowships, and then finally a more stable lectureship or career researchers are academic scientists who have successfully permanent research leader position, with promotion on up the made the transition to lectureships and beyond. -
Whole-Genome Shotgun Assembly and Analysis of the Genome
R ESEARCH A RTICLE of the human genome, it contains a comparable complement of protein-coding genes, as in- Whole-Genome Shotgun ferred from random genomic sampling (3). Subsequently, more-targeted analyses (5–9) Assembly and Analysis of the showed that the Fugu genome has remarkable homologies to the human sequence. The intron- Genome of Fugu rubripes exon structure of most genes is preserved be- tween Fugu and human, in some cases with Samuel Aparicio,2,1* Jarrod Chapman,3 Elia Stupka,1* conserved alternative splicing (10). The relative Nik Putnam,3 Jer-ming Chia,1 Paramvir Dehal,3 compactness of the Fugu genome is accounted Alan Christoffels,1 Sam Rash,3 Shawn Hoon,1 Arian Smit,4 for by the proportional reduction in the size of introns and intergenic regions, in part owing to Maarten D. Sollewijn Gelpke,3 Jared Roach,4 Tania Oh,1 3 1 3 1 the relative scarcity of repeated sequences like Isaac Y. Ho, Marie Wong, Chris Detter, Frans Verhoef, those that litter the human genome. Conserva- 3 1 3 3 Paul Predki, Alice Tay, Susan Lucas, Paul Richardson, tion of synteny was discovered between hu- Sarah F. Smith,5 Melody S. Clark,5 Yvonne J. K. Edwards,5 mans and Fugu (5, 6), suggesting the possibil- Norman Doggett,6 Andrey Zharkikh,7 Sean V. Tavtigian,7 ity of identifying chromosomal elements from Dmitry Pruss,7 Mary Barnstead,8 Cheryl Evans,8 Holly Baden,8 the common ancestor. Noncoding sequence Justin Powell,9 Gustavo Glusman,4 Lee Rowen,4 Leroy Hood,4 comparisons detected core conserved regulato- ry elements in mice (11). -
28Th Course in Medical Genetics
European School of Genetic Medicine th 28 Course in Medical Genetics Bertinoro University Residential Centre Via Frangipane, 6 – Bertinoro Course Directors: H. Brunner (Nijmegen, The Netherlands), G.Romeo (Bologna, Italy), B.Wirth (Cologne, Germany) 1 28th Course in Medical Genetics CONTENTS PROGRAMME 3 ABSTRACTS OF LECTURES 7 ABSTRACTS OF STUDENTS POSTERS 37 STUDENTS WHO IS WHO 40 FACULTY WHO IS WHO 51 2 Arrival: Saturday May 16 Sunday, May 17 Morning Session: Introduction to Human Genome Analysis 8.30 – 9.00 Registration to the course 9.00 – 9.30 Introduction to the course G. Romeo 9.30 – 10.15 Medical Genetics Today D. Donnai 10.15 – 11.00 Genotypes & phenotypes H. Brunner 11.00 – 11.30 Coffee Break 11.30 – 12.15 Introduction in Next Generation Sequencing technologies and applications J. Veltman 12.15 – 13.00 How to deal with next generation sequencing output. C. Gilissen 13.10 – 14.00 Lunch Break Afternoon Session: 14.30 – 16.00 Concurrent Workshops 16.00-16.30 Coffee Break 16.30 – 18.00 Concurrent Workshops 3 Monday, May 18 Morning Session: Approaches to Clinical and Molecular Genetics 9.00 – 9.50 Linkage and association (in a conceptual and historic perspective) A. Read 9.50- 10.40 Arrays and CNVs E. Klopocki 10.40 – 11.10 Coffee Break 11.10 – 12.00 Molecular syndromology in the NGS-era: which phenotype, which family, which strategy? Applications to aging research B. Wollnik 12.00 – 12.50 Bottlenecks in understanding mitochondrial diseases P. Chinnery 13.10 – 14.00 Lunch Break Afternoon Session: 14.30 – 16.00 Concurrent Workshops – including Ethics by Andrew Read 16.00-16.30 Coffee Break 16.30 – 18.00 Concurrent Workshops 18.30 – 19.30 Poster Viewing Session 4 Tuesday, May 19 Morning Session: Gene regulation and complex genetic disorders 9.00 - 9.50 Preventing and treating mitochondrial diseases Patrick Chinnery 9.50 – 10.40 Epigenetics and disease K. -
ARTICLE Redefining “Virgin Birth” After Kaguya: Mammalian Parthenogenesis in Experimental Biology, 2004-2014
ARTICLE Redefining “Virgin Birth” After Kaguya: Mammalian Parthenogenesis in Experimental Biology, 2004-2014 Eva Mae Gillis-Buck University of California, San Francisco [email protected] Abstract Virgin birth is a common theme in religious myths, science fiction, lesbian and feminist imaginaries, and sensational news stories. Virgin birth enters a laboratory setting through biologists’ use of the term parthenogenesis (Greek for virgin birth) to describe various forms of development without sperm. Scientific consensus holds that viable mammalian parthenogenesis is impossible; that is, mammalian embryos require both a maternal and a paternal contribution to develop completely. This essay investigates the historical development of that consensus and the evolving scientific language of parthenogenesis after the birth of Kaguya, a mouse with two mothers and no father. I qualitatively analyze 202 peer-reviewed scientific publications that cite the Kaguya experiment, and find unconventional interpretations of sex and parenthood, even in publications that maintain the impossibility of mammalian parthenogenesis. Though many scientists insist that males are necessary, they also describe eggs as paternal, embryos as sperm-free, and bimaternal sexual reproduction as something distinct from parthenogenesis. I argue that the scientific language used to explain the Kaguya experiment both supports a heteronormative reproductive status quo and simultaneously challenges it, offering bimaternal sexual Gillis-Buck, E.M. (2016). Redefining “Virgin Birth” After Kaguya: Mammalian Parthenogenesis in Experimental Biology, 2004-2014. Catalyst: Feminism, Theory, Technoscience, 2 (1), 1-67 http://www.catalystjournal.org | ISSN: 2380-3312 © Eva Mae Gillis-Buck, 2016 | Licensed to the Catalyst Project under a Creative Commons Attribution Non-Commercial No Derivatives license Gillis-Buck Catalyst: Feminism, Theory, Technoscience 2(1) 2 reproduction as a feasible alternative. -
A Rare Variant in D-Amino Acid Oxidase Implicates NMDA Receptor Signaling and Cerebellar Gene Networks in Risk for Bipolar Disorder
medRxiv preprint doi: https://doi.org/10.1101/2021.06.02.21258261; this version posted June 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Submitted Manuscript: Confidential Template updated: February 2021 Title: A rare variant in D-amino acid oxidase implicates NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder Authors: Naushaba Hasin (1), Lace M. Riggs (2,3), Tatyana Shekhtman (4), Justin Ashworth (5), Robert Lease (1,6), Rediet T. Oshone (1), Elizabeth M. Humphries (1,7), Judith A. Badner (8), Pippa A. Thompson (9), David C. Glahn (10), David W. Craig (11), Howard J. Edenberg (12), Elliot S. Gershon (13), Francis J. McMahon (14), John I. Nurnberger (15), Peter P. Zandi (16), John R. Kelsoe (4), Jared C. Roach (5), Todd D. Gould (3,17,18), and Seth A. Ament* (1,3) Affiliations: 1. Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA 2. Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA 3. Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA 4. Department of Psychiatry, University of California San Diego, La Jolla, CA, USA 5. Institute for Systems Biology, Seattle, WA, USA 6. Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA 7. Program in Molecular Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA 8. -
Cancer Research UK Gurdon Institute Prospectus 2020/2021 25 YEARS
The Wellcome/ Cancer Research UK Gurdon Institute Prospectus 2020/2021 25 YEARS The Wellcome/ Cancer Research UK Gurdon Institute Studying Prospectus 2020/2021 E development to C U G E N D E R E R understand disease C HA R T The Gurdon Institute 3 Contents Welcome Welcome to our new Prospectus, where we highlight our Watermark, the first such award in the University. Special activities for - unusually - two years: 2019 and 2020. The thanks for this achievement go to Hélène Doerflinger, COVID-19 pandemic has made it an extraordinary time Phil Zegerman and Emma Rawlins. Director’s welcome 3 Emma Rawlins 38 for everyone. I want to express my pride and gratitude for the exceptional efforts of Institute members, After incubating Steve Jackson's company Adrestia in About the Institute 4 Daniel St Johnston 40 who have kept our building safe and our research the Institute for two years, we wished them well as they progressing; this applies especially to our core team, moved to the Babraham Research Campus. We also sent COVID stories 6 Ben Simons 42 whose dedication has been key to our best wishes to Meri Huch and our continued progress. As you will Rick Livesey and their labs, as they Highlights in 2019/2020 8 Azim Surani 44 see, there is much to be excited embarked on their new positions in about in our research and activities. Dresden and London, respectively. Focus on research Iva Tchasovnikarova 46 It was terrific to see Gurdon I'm delighted that Emma Rawlins Group leaders Fengzhu Xiong 48 members receive recognition for was promoted to Senior Group their achievements. -
Final Program
© Istock FINAL PROGRAM SUMMARY Organizing & Scientifc Committees 3 Final program 4 Life Achievement Award 4 Program at a glance 5 Wednesday, December 4 6 Thursday, December 5 8 Friday, December 6 12 Saturday, December 7 16 Posters presentation 19 Theme 1: Clinical trials: Methodology 20 Theme 2: Clinical trials: Results 23 Theme 3: Clinical trials: Imaging 24 Theme 4: Clinical trials: Biomarkers including plasma 26 Theme 5: Clinical trials: Cognitive and functional endpoints 29 Theme 6: Cognitive assessment and clinical trials 31 Theme 7: Behavioral disorders and clinical trials 33 Theme 8: Health economics and clinical trials 33 Theme 9: Epidemiology and clinical trials 33 Theme 10: Clinical Trials: Animals Models 34 Theme 11: New therapies and clinical trials 34 Privileged partners 37 CTAD 2019 General information 38 San Diego ©Terry Healy - Graphic designer: Kom Graphik ©Terry CTAD Organizing Committee Jacques Touchon MD, PhD University Hospital of Montpellier CTAD Scientific Committee France Susan ABUSHAKRA (San Francisco); Paul AISEN (San Diego); Kaj BLENNOW (Molndal); Merce BOADA Paul Aisen MD (Barcelona); Maria CARRILLO (Chicago); Mony John DE Alzheimer’s LEON (New York); Steven DEKOSKY (Gainesville); Rachelle Therapeutic Research Institute (ATRI) DOODY (Basel); Bruno DUBOIS (Paris); Howard FELDMAN University of Southern California (USC), (San Diego); Nick FOX (London); Giovanni B. FRISONI San Diego, USA (Brescia, Geneva); Lutz FROELICH (Mannheim); Serge GAUTHIER (Montreal); Ezio GIACOBINI (Geneva); Michael GRUNDMANN (San Diego); Harald HAMPEL (Woodcliff Bruno Vellas MD, PhD Lake); Takeshi IWATSUBO (Tokyo); Ara KHACHATURIAN University (Washington DC); Zaven KHACHATURIAN (Washington Hospital of Toulouse DC); Virginia LEE (Philadelphia); Constantine G. France LYKETSOS (Baltimore); José Luis MOLINUEVO (Barcelona); Jean-Marc ORGOGOZO (Bordeaux); Ronald PETERSEN Mike Weiner MD (Rochester); Craig W. -
Whole-Genome Shotgun Assembly and Analysis of the Genome Of
R ESEARCH A RTICLE of the human genome, it contains a comparable complement of protein-coding genes, as in- Whole-Genome Shotgun ferred from random genomic sampling (3). Subsequently, more-targeted analyses (5–9) Assembly and Analysis of the showed that the Fugu genome has remarkable homologies to the human sequence. The intron- Genome of Fugu rubripes exon structure of most genes is preserved be- tween Fugu and human, in some cases with Samuel Aparicio,2,1* Jarrod Chapman,3 Elia Stupka,1* conserved alternative splicing (10). The relative Nik Putnam,3 Jer-ming Chia,1 Paramvir Dehal,3 compactness of the Fugu genome is accounted Alan Christoffels,1 Sam Rash,3 Shawn Hoon,1 Arian Smit,4 for by the proportional reduction in the size of introns and intergenic regions, in part owing to Maarten D. Sollewijn Gelpke,3 Jared Roach,4 Tania Oh,1 3 1 3 1 the relative scarcity of repeated sequences like Isaac Y. Ho, Marie Wong, Chris Detter, Frans Verhoef, those that litter the human genome. Conserva- 3 1 3 3 Paul Predki, Alice Tay, Susan Lucas, Paul Richardson, tion of synteny was discovered between hu- Sarah F. Smith,5 Melody S. Clark,5 Yvonne J. K. Edwards,5 mans and Fugu (5, 6), suggesting the possibil- Norman Doggett,6 Andrey Zharkikh,7 Sean V. Tavtigian,7 ity of identifying chromosomal elements from Dmitry Pruss,7 Mary Barnstead,8 Cheryl Evans,8 Holly Baden,8 the common ancestor. Noncoding sequence 9 4 4 4 comparisons detected core conserved regulato- Justin Powell, Gustavo Glusman, Lee Rowen, Leroy Hood, Downloaded from ry elements in mice (11). -
Annual Report 2009-2010
ISAAC NEWTON TRUST ANNUAL REPORT TO THE COUNCIL OF TRINITY COLLEGE COVERING THE PERIOD 4 MARCH 2008 – 12 MARCH 2009 VOLUME XIX Annual Report INT 2008-2009 CONTENTS page Patron, Trustees and Officers 2 Introduction 3 Aims and objectives of the Trust 3 Financial summary 4 Research grants approved 2008–2009 Policy 9 Grants Awarded 10 Leverhulme Trust Early Career Fellowships 15 Recurrent Trust scheme grants: Cambridge Bursary Scheme for UK undergraduates 16 Grants for Community-Related Vacation Projects 24 Cambridge Home and European Scholarships Scheme 24 College Teaching Officer Scheme 25 Time-Limited Teaching Fellowships Scheme 27 Camtrust Donation 29 Appendix 1: Audited accounts for year ended 31.1.09 Appendix 2: Consolidated list of grants 1999-2009 Research grants awarded (by Department) – Yellow Table Index to Yellow Table 1 Annual Report INT 2008-2009 PATRON H.R.H. the Prince of Wales TRUSTEES Professor Nigel Weiss (Chairman) Professor D T Fearon Professor S Franklin Professor M S Neuberger (until November 2008) Professor S C Ogilvie Professor M R E Proctor Professor A F Richard Professor Lord Rees Professor Q R D Skinner (until March 2009) Professor G Winter (from January 2009) OFFICERS Professor J M Rallison (Director until October 2008) Dr J P Parry (Director from October 2008) Dr C T Morley (Treasurer) Trinity College, Cambridge CB2 1TQ Tel (01223) 339933 Fax (01223) 367944 www.newtontrust.cam.ac.uk 2 Annual Report INT 2008-2009 INTRODUCTION This report to the Council covers the period from 4 March 2008 up to, and including, the Trustees’ meeting on 12 March 2009. -
Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease
This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=13284 Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease ISBN Committee on a Framework for Development a New Taxonomy of Disease; 978-0-309-22219-8 National Research Council 120 pages 8 1/2 x 11 PAPERBACK (2011) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease Committee on A Framework for Developing a New Taxonomy of Disease Board on Life Sciences Division on Earth and Life Studies THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPY Copyright © National Academy of Sciences. All rights reserved. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease PREPUBLICATION COPY Copyright © National Academy of Sciences. All rights reserved. -
The Myth of Junk DNA
The Myth of Junk DNA JoATN h A N W ells s eattle Discovery Institute Press 2011 Description According to a number of leading proponents of Darwin’s theory, “junk DNA”—the non-protein coding portion of DNA—provides decisive evidence for Darwinian evolution and against intelligent design, since an intelligent designer would presumably not have filled our genome with so much garbage. But in this provocative book, biologist Jonathan Wells exposes the claim that most of the genome is little more than junk as an anti-scientific myth that ignores the evidence, impedes research, and is based more on theological speculation than good science. Copyright Notice Copyright © 2011 by Jonathan Wells. All Rights Reserved. Publisher’s Note This book is part of a series published by the Center for Science & Culture at Discovery Institute in Seattle. Previous books include The Deniable Darwin by David Berlinski, In the Beginning and Other Essays on Intelligent Design by Granville Sewell, God and Evolution: Protestants, Catholics, and Jews Explore Darwin’s Challenge to Faith, edited by Jay Richards, and Darwin’s Conservatives: The Misguided Questby John G. West. Library Cataloging Data The Myth of Junk DNA by Jonathan Wells (1942– ) Illustrations by Ray Braun 174 pages, 6 x 9 x 0.4 inches & 0.6 lb, 229 x 152 x 10 mm. & 0.26 kg Library of Congress Control Number: 2011925471 BISAC: SCI029000 SCIENCE / Life Sciences / Genetics & Genomics BISAC: SCI027000 SCIENCE / Life Sciences / Evolution ISBN-13: 978-1-9365990-0-4 (paperback) Publisher Information Discovery Institute Press, 208 Columbia Street, Seattle, WA 98104 Internet: http://www.discoveryinstitutepress.com/ Published in the United States of America on acid-free paper. -
Epigenetic Inheritance Symposium 2019
www.epigenetic-inheritance-zurich.ethz.ch EPIGENETIC INHERITANCE SYMPOSIUM 2019 Impact for Biology and Society 26-28 August 2019 ETH Zurich, Switzerland 1 Connect with#eisz19 participants on Twitter Important information WIFI: public / public-5 Username: Symposium2019 Password: EIS2019wlan Emergency: 144 Summary of the previous symposium Police: 117 Zurich Public Transport: www.zvv.ch Transgenerational epigenetic inheri- Zurich Public Bikes: www.publibike.ch tance: from biology to society — Taxi: +41 44 777 77 77 Summary Latsis Symposium Aug 28–30, 2017, Zürich, Switzerland Johannes Bohacek, Olivia Engmann, Pierre-Luc Venue Germain, Silvia Schelbert, Isabelle M Mansuy Auditorium Maximum (HG F 30) Environmental Epigenetics ETH Zurich Main Building Volume 4, Issue 2, April 2018 Rämistrasse 101 DOI: 10.1093/eep/dvy012 8092 Zurich www.ethz.ch 2 WELCOME Dear colleague, student and friend, It is a great pleasure to welcome you to the 2019 leaders in the field, short and flash talks, post- Epigenetic Inheritance Zurich symposium, as er sessions with an award to the best poster, a a follow-up of the Latsis symposium that we workshop “Meet the Experts”, and a guided tour organized in August 2017. This year again, the to the Functional Genomics Center Zurich. symposium will feature major aspects of epi- genetic inheritance across different disciplines, I hope that you’ll enjoy the symposium, from genetics/epigenetics to metabolism, be- and find it inspiring for your research and havioral science, bioinformatics and social sci- your thinking about the biology of heredi- ence, in humans and various animal models. It ty. I wish you a great and productive time in will discuss new findings and discoveries, high- Zurich and warmly thank you for participat- light challenges of the discipline and reflect on ing.