Distilling Equipment

Total Page:16

File Type:pdf, Size:1020Kb

Distilling Equipment DISTILLING EQUIPMENT Universal Still MinneMod MinneMod Figgins Reciprocator Pilot Still Low Profile 500 200 Electric EQUIPMENT SPECIFICATIONS Still Pot with CIP Spray Ball Full Copper, 500L Pot Full Copper, 200L Pot Identical twin pots Stainless Steel Still Pot 3’ - 4' shorter than our Steam jacket or electric Bain Steam jacket or electric Single pass vodka purity with fewer Alembic Condenser / comparable 16-plate vodka Marie heat Bain Marie heat bubble plates Spout Electric Heating column system Optional mixing motor Optional mixing motor Increased copper contact Element Various Helmet Options Copper or stainless walled, Optional glass, copper or Faster heat up time Basic System Control Available 8” bubble plate columns can stainless walled, 6” Shorter footprint and height required Panel Full Copper Alembic Arm be assembled on top of pot, bubble plate columns with fewer columns and bubble plates Modular Design allows Gin Basket or as a side column Stainless dephlegmator Either simple pot or hybrid column for scalable bubble plate Dual 10x Bubble Plate sections within the Stainless dephlegmator Columns with 10x CIP Spray Interchangeable helmet operation possible column Balls, Dephlegmator and Spirit Interchangeable helmet and and column options, Hard piped CIP manifold Bubble Plate Sections Locker Bases column options, including including botanical Storage tanks in column base can be Stainless, Stainless Condenser, Parrot botanical infusion chamber infusion chamber Copper or Clear Glass Spout, Base All column components All column components Optional Gin Basket clamp together with 8” TC clamp together with 6” Full Copper Option Sizes range from 50L— flanges for ease of cleaning TC flanges for ease of 200L and configuration flexibility cleaning and 8” diameter condenser configuration flexibility Integrated spirit lockers 3” diameter condenser under bubble plate and Parrot spout condenser columns 2018 Parrot spout WWW.MTKA-BEC.COM MINNETONKA BREWING & EQUIPMENT COMPANY ● 6022 CULLIGAN WAY, MINNETONKA, MN 55345 ● [email protected] ● P: 855-773-2337 ● F:877-580-2337 System Application Notes The universal still is our most The MinneMod 500 offers maximum The MinneMod 200 can produce a The Figgins Reciprocating still uses Perfect for recipe complete still setup. It includes a Gin versatility with interchangeable full range of spirits with a very two identical pots simultaneously, development or low cost Basket, dual 10 Plate reflux columns, components (bubble plates, packed compact footprint of only 3’x4’, and resulting in two opposing vapor entry into small scale capable of producing vodka strength column, whiskey helmet, gin basket) features unsurpassed fabrication streams that rapidly alternate in production, for any spirit to produce any type of spirit with quality in copper and stainless entering the reflux column or made from a low solids distillate in a single pass. Each bubble the highest quality and precision. components. Whiskey, brandy and condenser. The slight pressure wash. Multiple distillations plate or column can be individually With a production yield of about 10 rum can all be produced easily and increase produced by this creates through bubble plates can activated or bypassed as desired. This -12 cs of liquor per pot charge, this controllably with a single distillation, additional reflux, increasing the be used to achieve vodka is a very versatile system, fully capable system is large enough to establish and vodka, gin, bitters or other efficiency of separation enough that strength. Barrel strength, of producing any spirit of any desired distribution with very efficient use of flavor infused products can be made vodka purity can be achieved with a for aged spirits, can be purity. Steam jacketed, with 6” ANSI space and ease of installation and to the highest quality with multiple single pass through an 8-plate reached with a single pass flange for mounting mixing motor and operation. This still only occupies distillations. This system is perfect column and dephlegmator. The through bubble plates or paddle. about a 5’ x 12’ footprint, and is for making small amounts of a wide faster heat up time achieved with two passes with a simple Various helmet style options about 11’ tall. 6” ANSI flange for spectrum of products with a minimal the greater heating surface area of column. Water flow mounting mixing motor and paddle. requirement for space and utilities. two pots significantly shortens the through the dephlegmator 250L—2000L Pot Sizes Each fresh pot charge will yield cycle time for multiple distillations in can be used to control 500L Steam Jacketed $35,000 250L Steam $70,950 approximately 4 cs of finished liquor a day. This is a powerfully efficient reflux rate, and bubble at 80 proof, ideal for making and versatile still design. 6” ANSI plate sections can be 500L Steam $74,800 500L Electric Bain Marie $34,000 signature, premium liquors for sale flange for mixing motors and assembled as necessary, 1000L Steam $94,050 Pricing does not include heating or consumption on site. 4” tri-clamp paddles. to achieve the desired adapter for mixing motor. degree of separation. 1500L Steam $158,400 Elements and controls. 250L Pots Steam Jacketed $53,350 200L Steam Jacketed $19,900 50L SS Column $1650 2000L Steam $181,500 200L Electric Bain Marie $18,900 50L Copper Col. $1775 Pricing does not include heating 100L SS Column $1800 elements and controls. 100L Copper Col. $1950 In Stock 200L Copper Col. $2350 Special order Special Order Copper Helmet $600 In Stock **Note about spirits styles: whiskey, brandy, rum and mezcal are normally distilled to 60-70% alcohol, possibly aged in wood at that strength, and then diluted to bottle strength for packaging. There are specific minimum aging requirements for certain labeling designations for whiskeys and brandies. Vodka and gin must by law be distilled to 95% alcohol, then diluted to bottle strength, and normally have no aging. Typically, gin is distilled to 95% first (making vodka as an inter- mediate step), then diluted and redistilled through a mix of botanicals (juniper berries and other flavoring components). As long as the 95% threshold is reached at some stage in the process, there is no alcohol strength requirement for the final distillation through the botanicals, but distillate around 70% alcohol for this step is common. WWW.MTKA-BEC.COM MINNETONKA BREWING & EQUIPMENT COMPANY ● 6022 CULLIGAN WAY, MINNETONKA, MN 55345 ● [email protected] ● P: 855-773-2337 ● F:877-580-2337 DISTILLING EQUIPMENT Pot Still Hybrid Pot Still Whiskey Still Universal Still Double Retort Double Pot Still Rum Still EQUIPMENT SPECIFICATIONS Still Pot Stainless Still Pot Stainless Still Pot Stainless Steel Still Pot Stainless Steel Still Pot Stainless Steel Dual Still Pots with Steel with CIP Spray Steel with CIP with CIP Spray Ball with CIP Spray Ball with CIP Spray Ball CIP Spray Balls, (in Ball Spray Ball tandem) Various Helmet Options Various Helmet Options Dual Copper Retort Pots, Various Helmet 4x Bubble Plate Available Available Various Helmet Options Available Column with 4x CIP with CIP Spray Balls Options Available Full Copper Alembic Full Copper Alembic Spray Balls and Stainless Shelf/Base Full Copper Alembic Arm Arm Full Copper Alembic Arm Dephlegmator, Arms 4x Bubble Plate Gin Basket with Base Stainless Condenser, Stainless Condenser, Mounted on Still Column with 4x CIP 4x Bubble Plate 4x Bubble Plate Column Parrot Spout and Spirit Pot Spray Balls and Column with 4x CIP Parrot Spout and with 4x CIP Spray Balls Locker. Stainless Dephlegmator Spray Balls and Base and Dephlegmator Condenser, and Stainless Condenser, Dephlegmator 16x Bubble Plate Parrot Spout, Parrot Spout, Base Stainless Condensor, Column with 16x CIP Gin Basket Optional Spray Balls and Parrot Spout, Base Gin Basket Dephlegmator Spirit Locker / Storage Optional Stainless Condenser, Base Option Parrot Spout, Base Gin Basket Optional 2018 WWW.MTKA-BEC.COM MINNETONKA BREWING & EQUIPMENT COMPANY ● 6022 CULLIGAN WAY, MINNETONKA, MN 55345 ● [email protected] ● P: 855-773-2337 ● F:877-580-2337 System Application Notes The basic pot still , with Our Hybrid Still has the same The basic pot still, with The universal still is our most The double retort ‘rum still’ The double pot still traditional alembic setup is capabilities as our ’whiskey traditional alembic setup, and complete still setup. It has a basic still pot with the provides the flexibility to good for producing whiskey, still’, with the 4 plate column an added 4 plate reflux includes a Gin Basket, a 4 addition of dual retort pots. run the pots brandy and other barrel aged integrated into the pot vapor column, makes this an ideal plate “whiskey” column and a Each pot has independent simultaneously spirits. This system can be outlet stack, to reduce the system for producing whiskey, 16 Plate “vodka’ column, heat sources. Each retort (reciprocating style) or used in larger sizes as a overall footprint. As with our brandy and other barrel aged capable of producing vodka can be activated or alternated sequentially for stripping still, or with multiple whiskey still, this system spirits. Each bubble plate or strength distillate in a single bypassed, as desired. The semi-continuous passes, it will achieve higher would be very effective for the entire column can be pass. Each bubble plate or distillate can be redirected operation. Columns of any strength output. Steam making whiskey and brandy activated or bypassed as column can be individually to fill either the retort or a configuration, as well as a jacketed, with a 6” ANSI with a single distillation. desired. This system can be activated or bypassed as collection tank. The main gin basket may be added flange for mixing motor and Steam jacketed, with a 6” used in larger sizes as a desired. This is a very still pot is steam jacketed, as needed. Both still pots paddle. ANSI flange for mixing motor stripping still, or with multiple versatile system, fully capable with a 6” ANSI flange for will be steam jacketed and and paddle.
Recommended publications
  • Innovation in Continuous Rectification for Tequila Production
    processes Communication Innovation in Continuous Rectification for Tequila Production Estarrón-Espinosa Mirna, Ruperto-Pérez Mariela, Padilla-de la Rosa José Daniel * and Prado-Ramírez Rogelio * Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas No. 800, C.P. 44720 Guadalajara, Jalisco, Mexico; [email protected] (E.-E.M.); [email protected] (R.-P.M.) * Correspondence: [email protected] (P.-d.l.R.J.D.); [email protected] (P.-R.R.); Tel.: +33-33455200 (P.-d.l.R.J.D.) Received: 23 March 2019; Accepted: 6 May 2019; Published: 14 May 2019 Abstract: In this study, a new process of continuous horizontal distillation at a pilot level is presented. It was applied for the first time to the rectification of an ordinario fraction obtained industrially. Continuous horizontal distillation is a new process whose design combines the benefits of both distillation columns, in terms of productivity and energy savings (50%), and distillation stills in batch, in terms of the aromatic complexity of the distillate obtained. The horizontal process of continuous distillation was carried out at the pilot level in a manual mode, obtaining five accumulated fractions of distillate that were characterized by gas chromatography (GC-FID). The tequila obtained from the rectification process in this new continuous horizontal distillation process complies with the content of methanol and higher alcohols regulated by the Official Mexican Standard (NOM-006-SCFI-2012). Continuous horizontal distillation of tequila has potential energy savings of 50% compared to the traditional process, besides allowing products with major volatile profiles within the maximum limits established by the regulation for this beverage to be obtained.
    [Show full text]
  • Page2 Sidebar 1.Pdf
    Headquarters & Forge Americas Office [email protected] [email protected] +49 (0) 7161 / 97830 215.242.6806 +49 (0) 7161 / 978321 fax fax 215.701.9725 artisan distilling systems 600 liter whiskey still the fine art of distillery technology Germany’s oldest distillery fabricator, since 1869, combining traditional family craftsmanship with leading eau-de-vie distillery innovations and technologies. Meticulously custom-crafted artisan copper pot still systems for all the great distilling traditions, and efficient continuous plants, grappa distillery in copper and stainless steel, for all capacities and applications: 450 liter artisan pot stills – brandy & vodka vodka, whiskey, eaux-de-vie, brandy, rum, gin, grappa, tequila, aguardientes… 1000 liter artisan vodka system 650 liter system with CADi automation continuous mash stripping column C. CARL Ziegelstraße 21 Americas Office Brewing & Distilling Ing. GmbH D-73033 Göppingen PO Box 4388 Technologies Corp. www.christiancarl.com Germany Philadelphia, PA 19118-8388 www.brewing-distilling.com CARL artisan distillery systems the fine art of distillery technology CARL custom-builds each distillery to order in our family shop near Stuttgart in Swabia, with the attention and care of crafting a finely- tuned instrument. All-the-while, we stay focused on the continued development of our distillery technology. There are always new ideas and realizations, such our the in-house developed CARL CADi distillery automation or our patented aroma bubble plate technologies, Our innovations have fostered CARL’s nearly 140 years of family tradition and experience as Germany’s oldest and most respected distillery fabricator, with thousands of successful commissions worldwide. form and function Our diverse customers, from small farmers to winemakers to brewers to large spirits houses, show great enthusiasm and appreciation for the aesthetics and functionality of a CARL distillery: its design, its form, classic and intuitively easy to understand, clear in conception.
    [Show full text]
  • Alchemist's Handbook-First Edition 1960 from One to Ten
    BY THE SAME AUTHOR wqt Drei NoveIlen (German) 1932 The Alchemist's Handbook-First Edition 1960 From One to Ten . .. .. 1966 Alrqtuttaf!i Praxis Spagyrica Philosophica 1966 The Seven Rays of the Q.B.L.-First Edition 1968 Praetische Alchemie irn Zwanzigsten Jahrundert 1970 ~aubhnnk (Practical Alchemy in the 20th Century-German) Der Mensch und die kosmischen Zyklen (German) 1971 (Manual for Practical Laboratory Alchemy) Men and the Cycles of the Universe 1971 Von Eins bis Zehn (From One to Ten-German) 1972 El Hombre y los Ciclos del Universo (Spanish) 1972 by Die Sieben Strahlen der Q.B.L. 1973 (The Seven Rays of the Q.B.L.-German) FRATER ALBERTUS SAMUEL WEISER New York CONTENTS Foreword 6 Preface to the First Edition 10 Preface to the Second Revised Edition 13 Chapter I Introduction to Alchemy 14 Samuel Weiser, Inc. Chapter 11 740 Broadway The Lesser Circulation 24 New York, N.Y. 10003 Chapter III First Published 1960 The Herbal Elixir Revised Edition 1974 Chapter IV Third Printing 1978 Medicinal Uses 43 Chapter V © 1974 Paracelsus Research Society Herbs and Stars 47 Salt Lake City, Utah, U.S.A. Chapter VI Symbols in Alchemy 56 ISBN 0 87728 181 5 Chapter VII Wisdom of the Sages 65 Conclusion 100 Alchemical Manifesto 120 ILLUSTRATIONS On the Way to the Temple 5 Soxhlet Extractor 34 Basement Laboratory 41 Essential Equipment 42 Printed in U.S.A. by Qabalistic Tree of Life 57 NOBLE OFFSET PRINTERS, INC. NEW YORK, N.Y. 10003 Alchemical Signs 58 ORIGINAL OIL PAINTING AT PARACELSUS RESEARCH SOCIETY ..
    [Show full text]
  • Alembic Pot Still
    ALEMBIC POT STILL INSTRUCTION MANUAL CAN BE USED WITH THE GRAINFATHER OR T500 BOILER SAFETY Warning: This system produces a highly flammable liquid. PRECAUTION: • Always use the Alembic Pot Still System in a room with adequate ventilation. • Never leave the Alembic Pot Still system unattended when operating. • Keep the Alembic Pot Still system away from all sources of ignition, including smoking, sparks, heat, and open flames. • Ensure all other equipment near to the Alembic Pot Still system or the alcohol is earthed. • A fire extinguishing media suitable for alcohol should be kept nearby. This can be water fog, fine water spray, foam, dry powder, carbon dioxide, sand or dolomite. • Do not boil dry. In the event the still is boiled dry, reset the cutout button under the base of the still. In the very unlikely event this cutout fails, a fusible link gives an added protection. IN CASE OF SPILLAGE: • Shut off all possible sources of ignition. • Clean up spills immediately using cloth, paper towels or other absorbent materials such as soil, sand or other inert material. • Collect, seal and dispose accordingly • Mop area with excess water. CONTENTS Important points before getting started ............................................................................... 3 Preparing the Alembic Pot Still ................................................................................................. 5 Distilling a Whiskey, Rum or Brandy .......................................................................................7 Distilling neutral
    [Show full text]
  • Minimum Reflux in Liquid–Liquid Extraction
    17th European Symposium on Computer Aided Process Engineering – ESCAPE17 V. Plesu and P.S. Agachi (Editors) © 2007 Elsevier B.V. All rights reserved. 1 Minimum Reflux in Liquid–Liquid Extraction Santanu Bandyopadhyaya and Calin-Cristian Cormosb aEnergy Systems Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India, E-mail: [email protected] bDepartment of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, University "Babeş-Bolyai", Arany Janos 11, Cluj-Napoca 400028, Romania, E-mail: [email protected] Abstract In a simple countercurrent arrangement of different stages of liquid–liquid extraction operation, the richest extract leaving the operation is in equilibrium with the feed. However, by using reflux it is possible to enrich the extract further. A simple counter current liquid–liquid extraction operation with reflux is analogous in its essentials to distillation. In this paper, the method based on Invariant Rectifying-Stripping (IRS) curves, originally proposed to calculate minimum reflux and minimum energy requirement in distillation, has been extended to liquid–liquid extraction. The equivalent IRS curves for a ternary liquid–liquid extraction predicts the feed location in the counter current process. It also predicts the minimum reflux requirement for a given separation and minimum amount of solvent required. Keywords: liquid extraction, IRS curves, feed location, minimum solvent. 1. Introduction Liquid–liquid extraction is a separation process that takes advantage of the distribution of a substance between two insoluble liquids phases [1]. Feed to be separated is mixed with extracting solvent to produce a solvent-rich phase, called extract, and a solvent-lean phase, called raffinate.
    [Show full text]
  • Reflux Condensation in Narrow Rectangular Channels with Perforated Fins Nadia Souidi, André Bontemps
    Reflux condensation in narrow rectangular channels with perforated fins Nadia Souidi, André Bontemps To cite this version: Nadia Souidi, André Bontemps. Reflux condensation in narrow rectangular channels with perforated fins. Applied Thermal Engineering, Elsevier, 2003, 23, pp.871-891. 10.1016/S1359-4311(03)00021-8. hal-00184135 HAL Id: hal-00184135 https://hal.archives-ouvertes.fr/hal-00184135 Submitted on 19 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reflux condensation in narrow rectangular channels with perforated fins N. Souidi a, A. Bontemps b,* a GRETh-CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France b LEGI-GRETh, Universitee Joseph Fourier, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France Reflux condensation is an industrial process that aims to reduce the content of the less volatile com- ponent or to eliminate the non-condensable phase of a vapour mixture, by the means of separation. Separation consists in condensing the less volatile phase and to recover the condensate while simulta- neously, the non-condensable species are recuperated at the top of the system. Compact plate-fin heat exchangers can be used in gas separation processes.
    [Show full text]
  • 2019 Scotch Whisky
    ©2019 scotch whisky association DISCOVER THE WORLD OF SCOTCH WHISKY Many countries produce whisky, but Scotch Whisky can only be made in Scotland and by definition must be distilled and matured in Scotland for a minimum of 3 years. Scotch Whisky has been made for more than 500 years and uses just a few natural raw materials - water, cereals and yeast. Scotland is home to over 130 malt and grain distilleries, making it the greatest MAP OF concentration of whisky producers in the world. Many of the Scotch Whisky distilleries featured on this map bottle some of their production for sale as Single Malt (i.e. the product of one distillery) or Single Grain Whisky. HIGHLAND MALT The Highland region is geographically the largest Scotch Whisky SCOTCH producing region. The rugged landscape, changeable climate and, in The majority of Scotch Whisky is consumed as Blended Scotch Whisky. This means as some cases, coastal locations are reflected in the character of its many as 60 of the different Single Malt and Single Grain Whiskies are blended whiskies, which embrace wide variations. As a group, Highland whiskies are rounded, robust and dry in character together, ensuring that the individual Scotch Whiskies harmonise with one another with a hint of smokiness/peatiness. Those near the sea carry a salty WHISKY and the quality and flavour of each individual blend remains consistent down the tang; in the far north the whiskies are notably heathery and slightly spicy in character; while in the more sheltered east and middle of the DISTILLERIES years. region, the whiskies have a more fruity character.
    [Show full text]
  • United States Patent (10) Patent No.: US 9,586,922 B2 Wood Et Al
    USOO9586922B2 (12) United States Patent (10) Patent No.: US 9,586,922 B2 Wood et al. (45) Date of Patent: Mar. 7, 2017 (54) METHODS FOR PURIFYING 9,388,150 B2 * 7/2016 Kim ..................... CO7D 307/48 5-(HALOMETHYL)FURFURAL 9,388,151 B2 7/2016 Browning et al. 2007/O161795 A1 7/2007 Cvak et al. 2009, 0234142 A1 9, 2009 Mascal (71) Applicant: MICROMIDAS, INC., West 2010, 0083565 A1 4, 2010 Gruter Sacramento, CA (US) 2010/0210745 A1 8/2010 McDaniel et al. 2011 O144359 A1 6, 2011 Heide et al. (72) Inventors: Alex B. Wood, Sacramento, CA (US); 2014/01 00378 A1 4/2014 Masuno et al. Shawn M. Browning, Sacramento, CA 2014/O1878O2 A1 7/2014 Mikochik et al. (US);US): Makoto N. Masuno,M. s Elk Grove, s 2015/02668432015,0203462 A1 9/20157/2015 CahanaBrowning et etal. al. CA (US); Ryan L. Smith, Sacramento, 2016/0002190 A1 1/2016 Browning et al. CA (US); John Bissell, II, Sacramento, 2016,01681 07 A1 6/2016 Masuno et al. CA (US) 2016/02O7897 A1 7, 2016 Wood et al. (73) Assignee: MICROMIDAS, INC., West FOREIGN PATENT DOCUMENTS Sacramento, CA (US) CN 101475544. A T 2009 (*) Notice: Subject to any disclaimer, the term of this N 1939: A 658 patent is extended or adjusted under 35 DE 635,783 C 9, 1936 U.S.C. 154(b) by 0 days. EP 291494 A2 11, 1988 EP 1049657 B1 3, 2003 (21) Appl. No.: 14/852,306 GB 1220851 A 1, 1971 GB 1448489 A 9, 1976 RU 2429234 C2 9, 2011 (22) Filed: Sep.
    [Show full text]
  • Hydro-Distillation and Steam Distillation from Aromatic Plants
    Hydro-distillation and steam distillation from aromatic plants Sudeep Tandon Scientist Chemical Engineering Division CIMAP, Lucknow HISTORY Written records of herbal distillation are found as early as the first century A.D., and around 1000 A.D., the noted Arab physician and naturalist Ibn Sina also known as Avicenna described the distillation of rose oil from rose petals The ancient Arabian people began to study the chemical properties of essential oils & developed and refined the distillation process Europeans began producing essential oils in the 12th century 1 DISTILLATION ? A process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application and removal of heat. In simple terms distillation of aromatic herbs implies vaporizing or liberating the oils from the trichomes / plant cell membranes of the herb in presence of high temperature and moisture and then cooling the vapour mixture to separate out the oil from water. It is the most popular widely used and cost effective method in use today for producing majority of the essential oils throughout the world Distillation is an art and not just a “Chemical" process that is reliant upon many factors for successful quality oil production. BASIC SCIENTIFIC PRINCIPLES INVOLVED IN THE PROCESS To convert any liquid into a vapour we have to apply energy in form of heat called as latent heat of vaporization A liquid always boils at the temperature at which its vapour pressure equals the atmospheric / surrounding pressure For two immiscible liquids the total vapour pressure of the mixture is always equal to the sum of their partial pressures The composition of the mixture will be determined by the concentration of the individual components into its partial pressure As known the boiling point of most essential oil components exceeds that of water and generally lies between 150 – 300oC 2 If a sample of an essential oil having a component ‘A’ having boiling point for example 190oC and the boiling point of the water is 100oC.
    [Show full text]
  • Building a Home Distillation Apparatus
    BUILDING A HOME DISTILLATION APPARATUS A Step by Step Guide Building a Home Distillation Apparatus i BUILDING A HOME DISTILLATION APPARATUS Foreword The pages that follow contain a step-by-step guide to building a relatively sophisticated distillation apparatus from commonly available materials, using simple tools, and at a cost of under $100 USD. The information contained on this site is directed at anyone who may want to know more about the subject: students, hobbyists, tinkers, pure water enthusiasts, survivors, the curious, and perhaps even amateur wine and beer makers. Designing and building this apparatus is the only subject of this manual. You will find that it confines itself solely to those areas. It does not enter into the domains of fermentation, recipes for making mash, beer, wine or any other spirits. These areas are covered in detail in other readily available books and numerous web sites. The site contains two separate design plans for the stills. And while both can be used for a number of distillation tasks, it should be recognized that their designs have been optimized for the task of separating ethyl alcohol from a water-based mixture. Having said that, remember that the real purpose of this site is to educate and inform those of you who are interested in this subject. It is not to be construed in any fashion as an encouragement to break the law. If you believe the law is incorrect, please take the time to contact your representatives in government, cast your vote at the polls, write newsletters to the media, and in general, try to make the changes in a legal and democratic manner.
    [Show full text]
  • Batch Distillation of Spirits: Experimental Study and Simulation
    Research article Received: 5 April 2018 Revised: 11 January 2019 Accepted: 15 January 2019 Published online in Wiley Online Library (wileyonlinelibrary.com) DOI 10.1002/jib.560 Batch distillation of spirits: experimental study and simulation of the behaviour of volatile aroma compounds Adrien Douady,1 Cristian Puentes,1 Pierre Awad1,2 and Martine Esteban-Decloux1* This paper focuses on the behaviour of volatile compounds during batch distillation of wine or low wine, in traditional Charentais copper stills, heated with a direct open flame at laboratory (600 L) and industrial (2500 L) scale. Sixty-nine volatile compounds plus ethanol were analysed during the low wine distillation in the 600 L alembic still. Forty-four were quantified and classified according to their concentration profile in the distillate over time and compared with previous studies. Based on the online re- cording of volume flow, density and temperature of the distillate with a Coriolis flowmeter, distillation was simulated with ProSim® BatchColumn software. Twenty-six volatile compounds were taken into account, using the coefficients of the ‘Non- Random Two Liquids’ model. The concentration profiles of 18 compounds were accurately represented, with slight differences in the maximum concentration for seven species together with a single compound that was poorly represented. The distribution of the volatile compounds in the four distillate fractions (heads, heart, seconds and tails) was well estimated by simulation. Fi- nally, data from wine and low wine distillations in the large-scale alembic still (2500 L) were correctly simulated, suggesting that it was possible to adjust the simulation parameters with the Coriolis flowmeter recording and represent the concentration pro- files of most of the quantifiable volatile compounds.
    [Show full text]
  • Distillation of Essential Oils1
    WEC310 Distillation of Essential Oils1 Elise V. Pearlstine 2 A short history of essential oils many industries and in new applications as awareness of the benefit of naturally derived products grows. Essential oils are volatile, aromatic oils obtained from plants and used for fragrance, flavoring, and health and beauty applications. Historically, aromatic plants provided important ingredients for perfumes, incense, and cosmetics. They have also been used for ritual purposes and in cooking and medicine. Egyptians used aromatic plant materials to preserve mummies, the Ayurvedic literature of India includes many references to scented substances, ancient Chinese herbalists valued them for their curative properties, and royalty used rare aromatics to perfume themselves and their surroundings. Distillation became an important An eighteenth century still from an old method of obtaining the healing and fragrant Figure 1. monograph by Gildemeister. components of various plants and was well-studied beginning in the 18th and continuing in the 19th Plant anatomy and structure as they centuries (Figure 1). In the 1900s, during the time of relate to essential oil production the industrial revolution, component parts of many essential oils were identified. These components An essential oil is the volatile material derived could then be synthesized for use in perfume and from plant material by a physical process. The plant flavor industries. The art of using essential oils material is usually aromatic and of a single botanical declined during this time but experienced a re-birth in species and form; some essential oil plants have a Europe with aromatherapy later in the century. In different chemical makeup depending on the variety recent years, the use of essential oils has increased in of plant, and the essential oils are correspondingly unique.
    [Show full text]