Safrole, Isosafrole, Dihydrosafrole

Total Page:16

File Type:pdf, Size:1020Kb

Safrole, Isosafrole, Dihydrosafrole th Amendment IFRA STANDARD Safrole, Isosafrole, Dihydrosafrole CAS-No.: 94-59-7 Empirical formula: Not applicable. Structure: Synonyms: History: Initial reviews: October 1976, July 1987 Current revision date: Not applicable Implementation dates: For new submissions*: Not applicable For existing fragrance Not applicable compounds*: Next review date Not applicable * This date applies to the supply of fragrance compounds (formulas) only, not to the finished products in the marketplace RECOMMENDATION: PROHIBITED / RESTRICTED RESTRICTIONS: Limits in the finished product: Skin contact products: Leave on products: 0.01% Rinse-off products:: 0.01% Including household cleaning products Non skin contact 0.01% products: Note box: Fragrance material specifications: Safrole as such should not be used as a fragrance ingredient; essential oils containing safrole should not be used at a level such that the total concentration of safrole exceeds 0.01% in consumer products. Examples of essential oils with a high safrole content are Sassafras oil (Sassafras officinale Nees& Eberm.), Ocotea Cymbarum oil (Ocotea pretiosa Metz) and certain qualities of Camphor oils. The total concentration of safrole, isosafrole IFRA Standard – Safrole, Isosafrole, Dihydrosafrole 14-10-2009 1/2 th Amendment IFRA STANDARD Safrole, Isosafrole, Dihydrosafrole and dihydrosafrole should not exceed 0.01% in consumer products. CONTRIBUTION FROM OTHER SOURCES: N/A CRITICAL EFFECT: REXPAN RATIONALE/CONCLUSION REFERENCES: These recommendations are based on the conclusions of the Scientific Committee on Cosmetology of the EEC on safrole and on the similarity of the biological activity of these substances (Scientific Committee of Cosmetology of the EEC, opinion reached on September 2, 1980; Communication to the EEC Commission ENV/521/79 and IARC Monograph Vol. 10, 1976, 231-244). IFRA Standard – Safrole, Isosafrole, Dihydrosafrole 14-10-2009 2/2.
Recommended publications
  • Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole Kate Cummings Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 5-2012 Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole Kate Cummings Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Forest Sciences Commons Recommended Citation Cummings, Kate, "Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole" (2012). All Theses. 1345. https://tigerprints.clemson.edu/all_theses/1345 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SASSAFRAS TEA: USING A TRADITIONAL METHOD OF PREPARATION TO REDUCE THE CARCINOGENIC COMPOUND SAFROLE A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Forest Resources by Kate Cummings May 2012 Accepted by: Patricia Layton, Ph.D., Committee Chair Karen C. Hall, Ph.D Feng Chen, Ph. D. Christina Wells, Ph. D. ABSTRACT The purpose of this research is to quantify the carcinogenic compound safrole in the traditional preparation method of making sassafras tea from the root of Sassafras albidum. The traditional method investigated was typical of preparation by members of the Eastern Band of Cherokee Indians and other Appalachian peoples. Sassafras is a tree common to the eastern coast of the United States, especially in the mountainous regions. Historically and continuing until today, roots of the tree are used to prepare fragrant teas and syrups.
    [Show full text]
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • Biodiversity Surveys in the Forest Reserves of the Uluguru Mountains
    Biodiversity surveys in the Forest Reserves of the Uluguru Mountains Part II: Descriptions of the biodiversity of individual Forest Reserves Nike Doggart Jon Lovett, Boniface Mhoro, Jacob Kiure and Neil Burgess Biodiversity surveys in the Forest Reserves of the Uluguru Mountains Part II: Descriptions of the biodiversity of individual Forest Reserves Nike Doggart Jon Lovett, Boniface Mhoro, Jacob Kiure and Neil Burgess Dar es Salaam 2004 A Report for: The Wildlife Conservation Society of Tanzania (WCST) The Uluguru Mountains Biodiversity Conservation Project in collaboration with the Uluguru Mountains Agricultural Development Project The Regional Natural Resources Office, and the Regional Catchment Forest Project With support from the Tanzania Forest Conservation Group TABLE OF CONTENTS PART II 1) Introduction to Part II ............................................................................................................... 4 2) Forest Reserve descriptions ..................................................................................................... 7 2.1 Bunduki I and III Catchment Forest Reserves .................................................................... 7 2.2 Kasanga Local Authority Forest Reserve ......................................................................... 14 2.3 Kimboza Catchment Forest Reserve ................................................................................ 23 2.4 Konga Local Authority Forest Reserve ............................................................................
    [Show full text]
  • OIK-02296 Ferger, SW, Dulle, HI, Schleuning, M
    Oikos OIK-02296 Ferger, S. W., Dulle, H. I., Schleuning, M. and Böhning- Gaese, K: 2015. Frugivore diversity increases frugivory rates along a large elevational gradient. – Oikos doi: 10.1111/oik.02296 Appendix 1. Map of Mt Kilimanjaro showing the location of the 64 study plots in 13 different habitat types. Appendix 2. List of all 187 bird species that were observed, their average body mass and their feeding guild. Appendix 3. Effect of bird abundance/richness and fruit color on the proportion of pecked vs. unpecked artificial fruits without controlling for vertical vegetation heterogeneity and natural fruit abundance. Appendix 4. Effect of vertical vegetation heterogeneity, natural fruit abundance and fruit color on the proportion of pecked versus unpecked artificial fruits. 1 Appendix 1 Map of Mount Kilimanjaro showing the location of the 64 study plots in 13 different habitat types. The near-natural habitat types are savannah (sav), lower montane forest (flm), Ocotea forest (foc), Podocarpus forest (fpo), Erica forest (fer) and Helichrysum scrub (hel). The disturbed habitat types are maize field (mai), Chagga homegarden (hom), shaded coffee plantation (cof), unshaded coffee plantation (sun), grassland (gra), disturbed Ocotea forest (fod) and disturbed Podocarpus forest (fpd). Each habitat type is represented by five replicate plots, except for the unshaded coffee plantation, which is covered by four replicate plots. One of these five (respectively four) plots per habitat type is used as ‘focal plot’ (yellow squares) for especially labor-intensive studies like the artificial fruits experiment presented in this study. As background map, we used the National Geographic World Map developed by National Geographic and Esri (<http://goto.arcgisonline.com/maps/NatGeo_World_Map>).
    [Show full text]
  • Reproductive Ecology of Ocotea Catharinensis, an Endangered Tree Species T
    Plant Biology ISSN 1435-8603 RESEARCH PAPER Reproductive ecology of Ocotea catharinensis, an endangered tree species T. Montagna1 , J. Z. Silva1, T. G. Pikart2 & M. S. Reis1 1Nucleo de Pesquisas em Florestas Tropicais, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil 2 Laboratorio de Entomologia, Centro de Ciencias^ Biologicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil Keywords ABSTRACT Conservation; floral biology; mating system; phenology; pollination; seed dispersal. • Ocotea catharinensis (Lauraceae) is an endangered tree species from the Brazilian Correspondence Atlantic Rainforest. Currently, little is known about the reproductive ecology of this T. Montagna, Rodovia Admar Gonzaga, 1346. species. Aiming to propose conservation measures, we described aspects related to Florianopolis, Santa Catarina, Brazil. phenology, floral biology, pollination, seed dispersal and mating system of O. cathari- E-mail: [email protected] nensis. • We conducted phenological observations in 62 individuals for 2 years. In one repro- Editor ductive event, we evaluated nectar production, stigmatic receptivity and pollen viabil- Z.-X. Ren ity. Floral visitors were observed, identified and classified on a scale of pollination effectiveness. Seed dispersers were observed and identified using camera traps. Finally, Received: 19 March 2018; Accepted: 16 May the mating system was evaluated through pollen/ovule ratios, experimental pollination 2018 treatments and genetic analysis with molecular markers. • Ocotea catharinensis presented a supra-annual fruiting pattern with a substantial doi:10.1111/plb.12847 reduction of reproducing individuals from bud phase to ripe fruit phase. Several mechanisms prompting cross-fertilisation were identified, such as attractive, herkoga- mic and protogynic flowers. The main floral visitors and pollinators were from the Diptera order, and all seed dispersers were birds.
    [Show full text]
  • Methyleugenol (4-Allyl-1,2-Dimethoxybenzene)
    EUROPEAN COMMISSION HEALTH & CONSUMER PROTECTION DIRECTORATE-GENERAL Directorate C - Scientific Opinions C2 - Management of scientific committees II; scientific co-operation and networks Scientific Committee on Food SCF/CS/FLAV/FLAVOUR/4 ADD1 FINAL 26 September 2001 Opinion of the Scientific Committee on Food on Methyleugenol (4-Allyl-1,2-dimethoxybenzene) (adopted on 26 September 2001) Rue de la Loi 200, B-1049 Bruxelles/Wetstraat 200, B-1049 Brussel - Belgium - Office: F101 - 6/172 Telephone: direct line (+32-2) 295.4861, switchboard 299.11.11. Fax: (+32-2) 299.4891 Telex: COMEU B 21877. Telegraphic address: COMEUR Brussels http://europa.eu.int/comm/food/fs/sc/scf/index_en.html SCF/CS/FLAV/FLAVOUR/4 ADD1 FINAL Opinion of the Scientific Committee on Food on Methyleugenol (4-Allyl-1,2-dimethoxybenzene) (adopted on 26 September 2001) Terms of reference The Committee is asked to advise the Commission on substances used as flavouring substances or present in flavourings or present in other food ingredients with flavouring properties for which existing toxicological data indicate that restrictions of use or presence might be necessary to ensure safety for human health. In particular, the Committee is asked to advise the Commission on the implications for human health of methyleugenol (4-allyl-1,2-dimethoxybenzene) in the diet. Introduction In 1999 methyleugenol was evaluated by the Committee of Experts on Flavouring Substances of the Council of Europe. The conclusions of this Committee were: "Available data show that methyleugenol is a naturally-occurring genotoxic carcinogen compound with a DNA-binding potency similar to that of safrole. Human exposure to methyleugenol may occur through the consumption of foodstuffs flavoured with aromatic plants and/or their essential oil fractions which contain methyleugenol.
    [Show full text]
  • Safrole and the Versatility of a Natural Biophore Lima, L
    Artigo Safrole and the Versatility of a Natural Biophore Lima, L. M.* Rev. Virtual Quim., 2015, 7 (2), 495-538. Data de publicação na Web: 31 de dezembro de 2014 http://www.uff.br/rvq Safrol e a Versatilidade de um Biofóro Natural Resumo: Safrol (1) obtido de óleos essenciais de diferentes espécies vegetais tem ampla aplicação na indústria química como precursor sintético do butóxido de piperonila, piperonal e de fármacos como a tadalafila, cinoxacina e levodopa. Do ponto vista toxicológico, é considerado uma hepatotoxina por mecanismo de bioativação metabólica conduzindo a formação de intermediários eletrofílicos, e tem sido descrito como inibidor de diferentes isoenzimas da família CYP450. A versatilidade de sua estrutura, permitindo várias transformações químicas, e a natureza biofórica de sua unidade benzodioxola ou metilenodioxifenila conferem-lhe características singulares, que o tornam atrativo material de partida para a síntese de compostos com distintas atividades farmacológicas. Exemplos selecionados de compostos bioativos, naturais e sintéticos, contendo o sistema benzodioxola serão comentados, incluindo aqueles provenientes de contribuição específica do LASSBio®. Palavras-chave: Safrol; benzodioxola; metilenodioxi; CYP450; bióforo; compostos bioativos. Abstract Safrole (1), obtained from essential oils from different plant species, has wide application in the chemical industry as a synthetic precursor of piperonyl butoxide, piperonal and drugs such as tadalafil, cinoxacin and levodopa. From the toxicological point of view, it is considered a hepatotoxin through metabolic bioactivation, leading to the formation of electrophilic metabolites, and has been described as an inhibitor of different CYP450 isoenzymes. The versatility of its structure, allowing various chemical transformations, and the biophoric nature of its benzodioxole or methylenedioxy subunit, give it unique features and make it an attractive starting material for the synthesis of compounds with different pharmacological activities.
    [Show full text]
  • Extraction of Safrole from Essential Oils with Ionic Liquids
    João Miguel Pinheiro Pinto Burguete Cardoso Bachelor degree in Chemical and Biochemical Engineering Extraction of safrole from essential oils with ionic liquids Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical and Biochemical Engineering Adviser: Ewa Bogel-Łukasik, Auxiliary Researcher, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-adviser: Urszula Domanska-´ Zelazna,˙ Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology Examination Committee Chairperson: Mário Fernando José Eusébio Members: Luís Alexandre Almeida Fernandes Cobra Branco Ewa Bogel-Łukasik March, 2017 Extraction of safrole from essential oils with ionic liquids Copyright © João Miguel Pinheiro Pinto Burguete Cardoso, Faculty of Sciences and Tech- nology, NOVA University of Lisbon. The Faculty of Sciences and Technology and the NOVA University of Lisbon have the right, perpetual and without geographical boundaries, to file and publish this disserta- tion through printed copies reproduced on paper or on digital form, or by any other means known or that may be invented, and to disseminate through scientific reposito- ries and admit its copying and distribution for non-commercial, educational or research purposes, as long as credit is given to the author and editor. This document was created using the (pdf)LATEX processor, based in the “unlthesis” template[1], developed at the Dep. Informática of FCT-NOVA [2]. [1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt Acknowledgements I am grateful to FCT/UNL and the Physical Chemistry department at Warsaw University of Technology for providing me the opportunity to study abroad as well as their staff for its continuous collaboration on this research work.
    [Show full text]
  • Gas Chromatographic and Mass Spectrometric Analysis of N-Methyl-1-Aryl-2-Propanamines Synthesized from the Substituted Allylbenzenes Present in Sassafras Oil
    Journal of Chromatographic Science, Vol. 29, June 1991 Gas Chromatographic and Mass Spectrometric Analysis of N-Methyl-1-aryl-2-propanamines Synthesized from the Substituted Allylbenzenes Present in Sassafras Oil F.T. Noggle, Jr. Alabama Department of Forensic Sciences, Wire Road, Auburn, Alabama 36830 C. Randall Clark and Jack DeRuiter Department of Pharmacal Sciences, School of Pharmacy, Auburn University, Auburn, Alabama 36849 A variety of methods have been reported for the synthesis of I Abstract I MDA, MDMA, and related compounds (5,6). The most direct One method used for the synthesis of the illicit drug N-methyl- approach involves treatment of the commercially available 1-(3,4-methylenedioxyphenyl)-2-propanami ne (methylene- ketone 1-(3,4-methylenedioxyphenyl)-2-propanone (3,4- dioxymethamphetamine, MDMA) involves the treatment of methylenedioxyphenylacetone) with ammonia or methylamine safrole with HBr to form the intermediate 2-bromosafrole, under reducing conditions as shown in Scheme 1. Based on this followed by bromide displacement with methylamine. The synthetic strategy, the availability of the ketone was controlled by starting material required for this synthesis, safrole, may be the Drug Enforcement Administration under the Chemical Di- obtained from sassafras oil which is isolated from the roots of version and Trafficking Act in March of 1989. The restricted the sassafras plant. In addition to safrole, sassafras oil availability of the key ketone precursor has forced clandestine contains other allyl benzenes such as eugenol and 4-allyl-1 ,2- laboratory operators to seek alternative approaches for the syn- dimethoxybenzene. Gas chromatography-mass spectrometric thesis of MDA and MDMA. One such alternate method em- (GC-MS) studies show that these allyl benzenes may also be ploys the natural product safrole, which is commercially avail- brominated and undergo amine displacement to yield the able or can be obtained by extraction or distillation of the corresponding N-methyl-1-aryl-2-propanamines.
    [Show full text]
  • Phylogeny and Historical Biogeography of Lauraceae
    PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group
    [Show full text]
  • HM-08-026 Appendix B
    Appendix B to HM-08-026 UNIVERSITY OF TOLEDO LABORATORY SAFETY AND HEALTH MANUAL AND INSTITUTIONAL CHEMICAL HYGIENE PLAN Environmental Health and Radiation Safety Department Effective Date: 07/01/1995 Revised: 12/20/05 2/23/09 2/1/10 6/28/10 2/1/11 2/1/12 4/10/12 2/1/2013 2/1/2014 1/30/15 1/29/16 1/27/17 1/25/18 1/22/19 1/20/20 1/20/21 EMERGENCY PHONE NUMBERS: Fire Pull Station / 911 Hazardous Matrerials Spills 419-530-2600 (MC) or 419-383-2600 (HSC) Environmental Health and Radiation Safety Department 419-530-3600 Radiation Safety Office 419-383-4301 TABLE OF CONTENTS SECTION I - FORWARD .................................................................................................................................................................. 3 SECTION II - PUBLIC EMPLOYEES RISK REDUCTION PROGRAM (PERRP) OSHA ................................................................. 4 SECTION III - LAB EQUIPMENT ..................................................................................................................................................... 5 SECTION IV - GENERAL SAFETY GUIDELINES…………………………………………………………………………………………..11 A. GENERAL PROCEDURES AND PRECAUTIONS FOR WORKING WITH SUBSTANCES OF MODERATE CHRONIC OR ACUTE HIGH TOXICITY* ....................................................................................................... 10 B. GENERAL PROCEDURES AND PRECAUSTIONS FOR WORKING WITH ALLERGENS AND EMBRYOTOXINS ..........................................................................................................................................
    [Show full text]
  • John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit
    John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit JOHN DAY FOSSIL BEDS Geology and Paleoenvironments of the Clarno Unit John Day Fossil Beds National Monument, Oregon GEOLOGY AND PALEOENVIRONMENTS OF THE CLARNO UNIT John Day Fossil Beds National Monument, Oregon By Erick A. Bestland, PhD Erick Bestland and Associates, 1010 Monroe St., Eugene, OR 97402 Gregory J. Retallack, PhD Department of Geological Sciences University of Oregon Eugene, OR 7403-1272 June 28, 1994 Final Report NPS Contract CX-9000-1-10009 TABLE OF CONTENTS joda/bestland-retallack1/index.htm Last Updated: 21-Aug-2007 http://www.nps.gov/history/history/online_books/joda/bestland-retallack1/index.htm[4/18/2014 12:20:25 PM] John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit (Table of Contents) JOHN DAY FOSSIL BEDS Geology and Paleoenvironments of the Clarno Unit John Day Fossil Beds National Monument, Oregon TABLE OF CONTENTS COVER ABSTRACT ACKNOWLEDGEMENTS CHAPTER I: INTRODUCTION AND REGIONAL GEOLOGY INTRODUCTION PREVIOUS WORK AND REGIONAL GEOLOGY Basement rocks Clarno Formation John Day Formation CHAPTER II: GEOLOGIC FRAMEWORK INTRODUCTION Stratigraphic nomenclature Radiometric age determinations CLARNO FORMATION LITHOSTRATIGRAPHIC UNITS Lower Clarno Formation units Main section JOHN DAY FORMATION LITHOSTRATIGRAPHIC UNITS Lower Big Basin Member Middle and upper Big Basin Member Turtle Cove Member GEOCHEMISTRY OF LAVA FLOW AND TUFF UNITS Basaltic lava flows Geochemistry of andesitic units Geochemistry of tuffs STRUCTURE OF CLARNO
    [Show full text]