Mars 2020 Rover Mission (M2020)

Total Page:16

File Type:pdf, Size:1020Kb

Mars 2020 Rover Mission (M2020) ! !"#$%&'&'%()*+#%!,$$,)-%.!&'&'/% !"#$%&'()*+$('#&,()!-(,.#.,&$."+) !"#$%&'($)*+#,$-))!"#$%&')!()*+,-.*-(/0#1(),23)4+056+60$)*-,708#5$90 56+60:,-7;*+.0) .+//+0"-))))))))))))).1212)))))))))))))))))))))))))))))))))))))3'#$-)45,6)178)1219) .0:5,$)!3-)))))))))3;<<<=>) .0:5,$)*6?$)@ABC$%$"($)D",6)0%).!E/+0";/?$(+&+()+"&0)+"(,5:$:F-)).!E) A$&$%$"($).0:5,$)!3-))GHI))))))))))))))))))))))))))))))))))))))))3'#$-))GHI) 000000000000000000000000000000000000000000000000000!2<46+;,).0 !!!!"#$!"%&%'()*&+!,-%.%&)/0! !"#$%&'("$)*+$+),-#$(').!*,/) ,$0%10"2)312(%'0##(")!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""""""""""""""""""""""""""""""""""""""""""""""""! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,&4#-#$(')5(+6))))))))))))))))))))))))))))))))))))))))))))))))))))))))))*+$() !!!!$1*%&1%!2%1%*3*&+!,-%.%&)/0! 7,5)*(8&$-)9%:;(<$),<0("$0#$) =(")>0110?:%6!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""""""""""""""""""""""""""""""""""""""""""""""""! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!*(8&$-)9%:;(<$),<0("$0#$)))))))))))))))))))))))))))))))))))))))))))))))*+$(! "#$!2%1%*3*&+!,-%.%&)/0! 7@A@A)B*,),-#$(')C"20"((%) 7+D(%)E+""+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""""""""""""""""""""""""""""""""""""""""""""""""!!!!! ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))),-#$(')C"20"((%)))))))))))))))))))))))))))))))))))))))))))))))))))))))))*+$(! 7@A@A)B*,),-#$(')C"20"((%) B&-)9-%F+G!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""""""""""""""""""""""""""""""""""""""""""""""""!!!!! )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))),&4#-#$(')5(+6)))))))))))))))))))))))))))))))))))))))))))))))))))))))))*+$(! !!!!!!45&16''%&1%0! #$%$%!&'()*+,!-./01234.0!516.7689:!-.;4/06<90=1! *20>41!?44<:4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""""""""""""""""""""""""""""""""""""""""""""""""!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&'("$)5(+6)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))*+$() #$%$%!&'()*+,!-./01234.0!(.<6.441! @4;6.!'9.A!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""""""""""""""""""""""""""""""""""""""""""""""""!!!!!!! )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))!"#$%&'("$)C"20"((%))))))))))))))))))))))))))))))))))))))))))))))))))))*+$() !!!!!5B&!51=<193!#9.9<41!!! H0')7<I1+"+D+"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""""""""""""""""""""""""""""""""""""""""""""""""!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!7+"+2(%))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))*+$() 5B&!C4=/764.74/!D=A4!#9.9<41!!! )9E!F1;6A/=.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"""""""""""""""""""""""""""""""""""""""""""""""""""""""!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!7+"+2(%))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))*+$() !!!!!5B&!B6/768:6.4!D=A4!#9.9<41!!!!!!!!!!!!!!!!!!!!!!!! ))))))*6/9!C9AA6/!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!""""""""""""""""""""""""""""""""""""""""""""""""""""""") ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))7+"+2(%)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))*+$() ! ! ! ! "! "#$!%&'''()!!!!!!!"#"#$%&'()*+$%,-./012.1,3$'4($45/5$60178./2$%9%:$;-02<1=$>?##! !"#$%&'&'%()*+#%!,$$,)-%.#)/+01% !"#$%&'()*+$('#&,()!-(,.#.,&$."+)/!*!0) !"#$$%$&'(#)%*#)+,'-$.%/0$1,$*2'3%*4' 5#1#$'6'781%$,2",$",'90/':/&#$%"2'6' ;4,1%"#+2'<!(-57:;='!>,"*/02"0>?' -@>,/%1,$*'A#*#'5,"0/B'<-A5='' A#*#'C/0B8"*2' ! !"#$%&'()*++( ! ! ! ! ! ! ! ! ! ! ! ! !"#$%&'()#*+ !"#$%&'()&*+",,-(.,/%0/1+(20+"%3/44"1! ! =:%05>???@A0 45,6)178)1219) ! ! !"#$%&'()%' !"#$#%&"'()*+,-.*("/.01*1213",+"4356.,),78&"9,:3-.;3.1"0<,.0,-06*<"(5=.,>)3?73?&"463"-303(-56" #! >(0"5(--*3?",21"(1"163"@31"A-,<2)0*,."B(C,-(1,-8D"'()*+,-.*("/.01*1213",+"4356.,),78D"2.?3-"("5,.1-(51" >*16"163"E(1*,.()"F3-,.(21*50"(.?"G<(53"F?;*.*01-(1*,."HI$EJ$$%IK$$$LM! ! ! ! "#$!%&'''()!!!!!!!"#"#$%&'()*+$%,-./012.1,3$'4($45/5$60178./2$%9%:$;-02<1=$>?##! !"#$% &$'#()*&%'+"*,$!% -$"&)*%.)-% -$/(&()*% '+"*,$% *+,-&+,&+'! •! ./01234/!56/34/7! 89:4:32! ;/6<:=9!+>+! *+,'&+?&,*! •! @22!</54:=9<A!B:6<4!763B4! ! ;/6<:=9!+>,! *+,'&+)&+-! •! !@22!</54:=9<!C(>,! ! ;/6<:=9!+>*! *+,'&+'&+'! •! D:2/930/!7/B:9:4:=9<!C(>*! ! ;/6<:=9!+>?! *+,'&+'&*E! •! .:0/<4301!B:2/930/!B:/27<!F1734/! D=6034!5G39H/! ;/6<:=9!+>E! *+,'&,+&,+! •! @9=4G/6!4:0/<4301!B:2/930/!B:/27<!F1734/! I=6/!=14:=9<! ;/6<:=9!+>)! *+,'&,+&*E! •! @11/97:J!K! L/M:</7!8%#N! ;/6<:=9!+>(! O/PQ=67<! *+*+&+*&+*! •! L/M:<:=9!B=6!C(>E! C(>E! ;/6<:=9!+>-! *+*+&+?&,+! •! L/M:<:=9!B=6!C(>E>,R!B:2/930/!5G39H/! C(>E>,! ;/6<:=9!+>S! *+*+&+E&+,! •! L/M:<:=9!B=6!C(>)>+R!0/437343!5G39H/<! C(>)T>,UV! ;/6<:=9!+>S,! *+*+&+E&,?! •! L/M:<:=9!B=6!C(>)>+R!0/437343!397!B:2/930/!5G39H/<! C(>)! ;/6<:=9!+>'! *+*+&+)&,E! •! L/M:<:=9!B=6!C(>)R!.3W2/!B=6!#%XR!.YZ!F1734/! C(>)! ;/6<:=9!+>',! *+*+&+-&+(! •! L/M:<:=9!B=6!C(>(R![%L!4P1/<!397!\/PQ=67<! C(>(! ;/6<:=9!+>'*! *+*+&+S&+?! •! L/M:<:=9!B=6!C(>(R!\/PQ=67<!397!5=66/54:=9<! C(>(! ;/6<:=9!+>'?! *+*+&+S&+'! •! L/M:<:=9!B=6!C(>(R!\/PQ=67<!397![%L!4P1/<! C(>(! ;/6<:=9!+>'E! *+*+&+'&,+! •! L/M:<:=9!B=6!C(>(R!=M/6322!B=60344:9HR!322!</54:=9<! C(>(! ;/6<:=9!+>')! *+*+&+'&**! •! %=5F0/94!930/!6/1235/0/94R!G/37/6! C(>(! ;/6<:=9!+>'(! *+*+&+'&?+! •! @22!</54:=9<! ./30! ;/6<:=9!+>'-! 5=00/94<! *+*+&,+&+'! •! @22!</54:=9<! ./30! ;/6<:=9!+>'-! 5=00/94<! 6/M!,+&+S&*+! *+*+&,+&,-! •! @22!X/54:=9<! ./30! ;/6<:=9!+>'S! 5=00/94<! 6/M!,+&,-&*+! *+*+&,,&*! •! @22!</54:=9<! #%X!1//6! ;/6<:=9!+>'S! 6/M:/Q! 6/M!,,&*&*+! *+*+&,*&,)! •! @22!</54:=9<! #%X!1//6! ;/6<:=9!+>''! 6/M:/Q! 6/M!,*&,)&*+! *+*,&+,&,*! •! @22!</54:=9<! #%X!1//6! ;/6<:=9!+>''! 6/M:/Q! 6/M!+,&,*&*,! WP!X>! X23M9/P! *+*,&+,&*(! •! @22!</54:=9<! #%X!1//6! ZG39H/<! 6/M:/Q! W3</7!=9!X>! !"#$#%&"'()*+,-.*("/.01*1213",+"4356.,),78&"9,:3-.;3.1"0<,.0,-06*<"(5=.,>)3?73?&"463"-303(-56" $! >(0"5(--*3?",21"(1"163"@31"A-,<2)0*,."B(C,-(1,-8D"'()*+,-.*("/.01*1213",+"4356.,),78D"2.?3-"("5,.1-(51" >*16"163"E(1*,.()"F3-,.(21*50"(.?"G<(53"F?;*.*01-(1*,."HI$EJ$$%IK$$$LM! ! ! ! "#$!%&'''()!!!!!!!"#"#$%&'()*+$%,-./012.1,3$'4($45/5$60178./2$%9%:$;-02<1=$>?##! !"#$% &$'#()*&%'+"*,$!% -$"&)*%.)-% -$/(&()*% '+"*,$% X23M9/P! 5=00/94<! *+*,&+*&+*! •! @22!</54:=9<! #%X!1//6! ZG39H/<!B=6! 6/M:/Q!B=6! X>!X23M9/P! WF972/! *+*,&+)&,+! •! @22!</54:=9<! $:/9<!B6=0!#%X! ;/6<:=9!+>''! 6/M:/Q! 6/M+)&,+&*,! *+*,&+)&*)! •! X/54:=9!*!! D:HF6/!?!F1734/! M+>'']6/M+) &*)&*,! *+*,&+(&*,! •! @22!</54:=9<! D:932!#%X!:91F4! ;,>++! *+*,&+-&*,! •! @11/97:J! #%YC!43W2/! ;,>+! 6/B/6/95/! 6/M+-*-*,! <FW<4:4F4/7!B=6! @11/97:J! ! ! ! ! ! ! ! ! ! ! ! ! )*&$'+,,-&'+.&/,' -$/(&()*% )0$*%(&&1$% '2)&$!% M+>'-! @11/97:J!KR!0311:9H!=B!Y%$!23W/2!\/PQ=67<!4=!#%XE!23W/2!3446:WF4/<R!:<! ! :95=012/4/! ! ! !"#$#%&"'()*+,-.*("/.01*1213",+"4356.,),78&"9,:3-.;3.1"0<,.0,-06*<"(5=.,>)3?73?&"463"-303(-56" %! >(0"5(--*3?",21"(1"163"@31"A-,<2)0*,."B(C,-(1,-8D"'()*+,-.*("/.01*1213",+"4356.,),78D"2.?3-"("5,.1-(51" >*16"163"E(1*,.()"F3-,.(21*50"(.?"G<(53"F?;*.*01-(1*,."HI$EJ$$%IK$$$LM! ! ! ! "#$!%&'''()!!!!!!!"#"#$%&'()*+$%,-./012.1,3$'4($45/5$60178./2$%9%:$;-02<1=$>?##! B6CD)0-E0'-4+)4+.0 !"#$%&'($)#!#*$+)),-$%*.(),/$(#%.,(./0)$1/$%!2$"#)3'#')%$(.%3)4$3%5) 3'#')/%.36(#,!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!#! 2!,,!."+)))))))))))))27878)))))))))))))))))))))))))))))))))))))3'#$+)96*0)7:;)787<!""""""""""""""""""""""""""""""""""""""!#! !"#$%&'()*+$('#&,()!-(,*#*,&$*"+).!*!/!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!$! %&'(()(*!+',)-',./!/(0)12(3/(-%!4)-+!1'3'(!5!.63)(/%&/(&/!721!21*'()&%!5! &+/3)&'.%!8%+/1.2&9!%:/&-12%&2:;!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!$! /<:/1)3/(-!='-'!1/&21=!8/=19!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!$! ='-'!:12=6&-%!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!$! 0/1%)2(!#">>!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!$! &+'(*/!.2*!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!$! 2:/(!)%%6/!)-/3%!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!?! <! !"#%.36(#!."!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!#$! <=<! /!"#$%&'()*',+$#&!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!#$! <=7! ($),&),%!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!#$! <=>! ($)%,"(-),%'()*''##.-+(/.&'3$+!0&),%!"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!#@! ! 5(*FG-+D&'-5&!H-G'!6G'()!7DG()IF,(&!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!#$! 7! !",#%62$"#).?$%?!$@!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""!#A!
Recommended publications
  • Mars Reconnaissance Orbiter
    Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be­ used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations.
    [Show full text]
  • Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
    Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY ..........................................................................................................................
    [Show full text]
  • THE MARS 2020 ROVER ENGINEERING CAMERAS. J. N. Maki1, C
    51st Lunar and Planetary Science Conference (2020) 2663.pdf THE MARS 2020 ROVER ENGINEERING CAMERAS. J. N. Maki1, C. M. McKinney1, R. G. Willson1, R. G. Sellar1, D. S. Copley-Woods1, M. Valvo1, T. Goodsall1, J. McGuire1, K. Singh1, T. E. Litwin1, R. G. Deen1, A. Cul- ver1, N. Ruoff1, D. Petrizzo1, 1Jet Propulsion Laboratory, California Institute of Technology (4800 Oak Grove Drive, Pasadena, CA 91109, [email protected]). Introduction: The Mars 2020 Rover is equipped pairs (the Cachecam, a monoscopic camera, is an ex- with a neXt-generation engineering camera imaging ception). The Mars 2020 engineering cameras are system that represents a significant upgrade over the packaged into a single, compact camera head (see fig- previous Navcam/Hazcam cameras flown on MER and ure 1). MSL [1,2]. The Mars 2020 engineering cameras ac- quire color images with wider fields of view and high- er angular/spatial resolution than previous rover engi- neering cameras. Additionally, the Mars 2020 rover will carry a new camera type dedicated to sample op- erations: the Cachecam. History: The previous generation of Navcams and Hazcams, known collectively as the engineering cam- eras, were designed in the early 2000s as part of the Mars Exploration Rover (MER) program. A total of Figure 1. Flight Navcam (left), Flight Hazcam (middle), 36 individual MER-style cameras have flown to Mars and flight Cachecam (right). The Cachecam optical assem- on five separate NASA spacecraft (3 rovers and 2 bly includes an illuminator and fold mirror. landers) [1-6]. The MER/MSL cameras were built in two separate production runs: the original MER run Each of the Mars 2020 engineering cameras utilize a (2003) and a second, build-to-print run for the Mars 20 megapixel OnSemi (CMOSIS) CMOS sensor Science Laboratory (MSL) mission in 2008.
    [Show full text]
  • Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface
    Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface Justin N. Maki Jet Propulsion Laboratory California Institute of Technology Pasadena, CA USA [email protected] Todd Litwin, Mark Schwochert Jet Propulsion Laboratory California Institute of Technology Pasadena, CA USA Ken Herkenhoff United States Geological Survey Flagstaff, AZ USA Abstract - The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface Figure 1. The Mars Exploration Spirit Rover, as viewed by coverage, and image acquisition strategies. An overview the Navcam shortly after lander egress early in the mission. of the surface imaging activities is provided, along with a presents an overview of the operation and performance of summary of the image data acquired to date. the MER Imaging System. Keywords: Imaging system, cameras, rovers, Mars, 1.2 Imaging System Design operations. The MER cameras are classified into five types: Descent cameras, Navigation cameras (Navcam), Hazard Avoidance 1 Introduction cameras (Hazcam), Panoramic cameras (Pancam), and Microscopic Imager (MI) cameras.
    [Show full text]
  • SATELLITE DATA for Weather Forecasting
    VOL. 98 NO. 3 MAR 2017 Mars 2020 Mission Earth Science Jobs: Seven Projections Earth & Space Science News Landsat Archive of Greenland Glaciers SATELLITE DATA for Weather Forecasting Earth & Space Science News Contents MARCH 2017 VOLUME 98, ISSUE 3 PROJECT UPDATE 20 Using LANDSAT to Take the Long View on Greenland Glaciers A new web-based data portal gives scientists access to more than 40 years of satellite imagery, providing seasonal to long-term insights into outflows from Greenland’s ice sheet. PROJECT UPDATE 32 Seeking Signs of Life and More: NASA’s Mars 2020 Mission The next Mars rover will be able to land near rugged terrain, giving scientists access to diverse landscapes. It will also cache core samples, a first step in the quest 26 to return samples to Earth. COVER OPINION Transforming Satellite Data Seven Projections 14 for Earth and Space into Weather Forecasts Science Jobs What do recent political changes mean A NASA project spans the gap between research and operations, for the job market? In the short term, not introducing new composites of satellite imagery to weather much. But long term, expect privatization, forecasters. contract employment, and more. Earth & Space Science News Eos.org // 1 Contents DEPARTMENTS Editor in Chief Barbara T. Richman: AGU, Washington, D. C., USA; eos_ [email protected] Editors Christina M. S. Cohen Wendy S. Gordon Carol A. Stein California Institute Ecologia Consulting, Department of Earth and of Technology, Pasadena, Austin, Texas, USA; Environmental Sciences, Calif., USA; wendy@ecologiaconsulting University of Illinois at cohen@srl .caltech.edu .com Chicago, Chicago, Ill., José D.
    [Show full text]
  • Of Curiosity in Gale Crater, and Other Landed Mars Missions
    44th Lunar and Planetary Science Conference (2013) 2534.pdf LOCALIZATION AND ‘CONTEXTUALIZATION’ OF CURIOSITY IN GALE CRATER, AND OTHER LANDED MARS MISSIONS. T. J. Parker1, M. C. Malin2, F. J. Calef1, R. G. Deen1, H. E. Gengl1, M. P. Golombek1, J. R. Hall1, O. Pariser1, M. Powell1, R. S. Sletten3, and the MSL Science Team. 1Jet Propulsion Labora- tory, California Inst of Technology ([email protected]), 2Malin Space Science Systems, San Diego, CA ([email protected] ), 3University of Washington, Seattle. Introduction: Localization is a process by which tactical updates are made to a mobile lander’s position on a planetary surface, and is used to aid in traverse and science investigation planning and very high- resolution map compilation. “Contextualization” is hereby defined as placement of localization infor- mation into a local, regional, and global context, by accurately localizing a landed vehicle, then placing the data acquired by that lander into context with orbiter data so that its geologic context can be better charac- terized and understood. Curiosity Landing Site Localization: The Curi- osity landing was the first Mars mission to benefit from the selection of a science-driven descent camera (both MER rovers employed engineering descent im- agers). Initial data downlinked after the landing fo- Fig 1: Portion of mosaic of MARDI EDL images. cused on rover health and Entry-Descent-Landing MARDI imaged the landing site and science target (EDL) performance. Front and rear Hazcam images regions in color. were also downloaded, along with a number of When is localization done? MARDI thumbnail images. The Hazcam images were After each drive for which Navcam stereo da- used primarily to determine the rover’s orientation by ta has been acquired post-drive and terrain meshes triangulation to the horizon.
    [Show full text]
  • The Mars Science Laboratory Engineering Cameras
    Space Sci Rev DOI 10.1007/s11214-012-9882-4 The Mars Science Laboratory Engineering Cameras J. Maki · D. Thiessen · A. Pourangi · P. Kobzeff · T. Litwin · L. Scherr · S. Elliott · A. Dingizian · M. Maimone Received: 21 December 2011 / Accepted: 5 April 2012 © Springer Science+Business Media B.V. 2012 Abstract NASA’s Mars Science Laboratory (MSL) Rover is equipped with a set of 12 en- gineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover cameras described in Maki et al. (J. Geophys. Res. 108(E12): 8071, 2003). Images returned from the engineering cameras will be used to navigate the rover on the Martian surface, de- ploy the rover robotic arm, and ingest samples into the rover sample processing system. The Navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The Hazard Avoidance Cameras (Hazcams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras uti- lize a 1024 × 1024 pixel detector and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer “A” and the other set is connected to rover computer “B”. The Navcams and Front Hazcams each provide similar views from either computer. The Rear Hazcams provide different views from the two computers due to the different mounting locations of the “A” and “B” Rear Hazcams.
    [Show full text]
  • 37131054409156D.Pdf
    YEZAD A Romance of the Unknown By GEORGE BABCOCK PUBLISHED BY CO-OPERATIVE PUBLISHING CO., INC. BRIDGEPORT, CONN. NEW YORK, N. Y. Copyright, November, 1922, by GEORGE BABCOCK All rights reserved To MY S1sTER, EVA STANTON (BABCOCK) BROWNING., this story 1s affectionately inscribed. GEORGE BABCOCK. Brooklyn, N. Y. November, 19ff. CHARACTERS l JOHN BACON, Aviator. 2 JuLIA BACON, His Wife. 3 PAUL BACON, Son. 4 ELLEN BACON, Daughter. 5 AnoLPH VON PosEN, Inventor, in love. 6 SALLY T1MPOLE, the Cook, also in love. 7 JASPER PERKINS } 8 SILAS CUMMINGS The old quaint cronies. 9 NANCY PRINDLE 10 DOCTOR PETER KLOUSE. 11 HESTER DOUGLASS} 12 F IN LEY D OU GLASS Grandchildren of the Doctor. 13 SAM WILLIS, the dreadful liar. 14 WILLIAM THADDEUS TITUS, Champion of several trades. 15 WILLIAM GRENNELL, the Village Blacksmith. 16 MINNA BACON } 17 B RENDA B ACON Children of Paul and Hester. 18 RoBERT DouGLAss, Son of Finley and Ellen. 19 CHARLOTTE Dun LEY, a Maiden of Mars. 20 CHRISTOPHER SPENCER, Astronomer of Mars. 21 FELIX CLAUDIO, the Devil's Son. 22 DocToR NATHAN ELIZABRAT of Mars. 23 MARCOMET, a Guard of the Great White \Vay. 24 JOHN BACON'S DUALITY. Note:-A Glossary of coined and unusual words and their mean­ ing, used by the author in Yezad, will be found on pages 449 to 463. CONTENTS CHAPTER PAGE I THE PRICE OF PROGRESS 1 II THE GHOST • 20 III NEW NEIGHBORS 33 IV DOCTOR KLOUSE 45 V HEREDITY VS. KLOUSE PHILOSOPHY 52 VI A DREADFUL LIAR • 57 VII AMONG THE ABORIGINES 71 VIII AN ODD EXPERIMENT .
    [Show full text]
  • Simulations of Mars Rover Traverses
    Simulations of Mars Rover Traverses •••••••••••••••••••••••••••••••••••• Feng Zhou, Raymond E. Arvidson, and Keith Bennett Department of Earth and Planetary Sciences, Washington University in St Louis, St Louis, Missouri 63130 e-mail: [email protected], [email protected], [email protected] Brian Trease, Randel Lindemann, and Paolo Bellutta California Institute of Technology/Jet Propulsion Laboratory, Pasadena, California 91011 e-mail: [email protected], [email protected], [email protected] Karl Iagnemma and Carmine Senatore Robotic Mobility GroupMassachusetts Institute of Technology, Cambridge, Massachusetts 02139 e-mail: [email protected], [email protected] Received 7 December 2012; accepted 21 August 2013 Artemis (Adams-based Rover Terramechanics and Mobility Interaction Simulator) is a software tool developed to simulate rigid-wheel planetary rover traverses across natural terrain surfaces. It is based on mechanically realistic rover models and the use of classical terramechanics expressions to model spatially variable wheel-soil and wheel-bedrock properties. Artemis’s capabilities and limitations for the Mars Exploration Rovers (Spirit and Opportunity) were explored using single-wheel laboratory-based tests, rover field tests at the Jet Propulsion Laboratory Mars Yard, and tests on bedrock and dune sand surfaces in the Mojave Desert. Artemis was then used to provide physical insight into the high soil sinkage and slippage encountered by Opportunity while crossing an aeolian ripple on the Meridiani plains and high motor currents encountered while driving on a tilted bedrock surface at Cape York on the rim of Endeavour Crater. Artemis will continue to evolve and is intended to be used on a continuing basis as a tool to help evaluate mobility issues over candidate Opportunity and the Mars Science Laboratory Curiosity rover drive paths, in addition to retrieval of terrain properties by the iterative registration of model and actual drive results.
    [Show full text]
  • Moon-Miners-Manifesto-Mars.Pdf
    http://www.moonsociety.org/mars/ Let’s make the right choice - Mars and the Moon! Advantages of a low profile for shielding Mars looks like Arizona but feels like Antarctica Rover Opportunity at edge of Endeavor Crater Designing railroads and trains for Mars Designing planes that can fly in Mars’ thin air Breeding plants to be “Mars-hardy” Outposts between dunes, pulling sand over them These are just a few of the Mars-related topics covered in the past 25+ years. Read on for much more! Why Mars? The lunar and Martian frontiers will thrive much better as trading partners than either could on it own. Mars has little to trade to Earth, but a lot it can trade with the Moon. Both can/will thrive together! CHRONOLOGICAL INDEX MMM THEMES: MARS MMM #6 - "M" is for Missing Volatiles: Methane and 'Mmonia; Mars, PHOBOS, Deimos; Mars as I see it; MMM #16 Frontiers Have Rough Edges MMM #18 Importance of the M.U.S.-c.l.e.Plan for the Opening of Mars; Pavonis Mons MMM #19 Seizing the Reins of the Mars Bandwagon; Mars: Option to Stay; Mars Calendar MMM #30 NIMF: Nuclear rocket using Indigenous Martian Fuel; Wanted: Split personality types for Mars Expedition; Mars Calendar Postscript; Are there Meteor Showers on Mars? MMM #41 Imagineering Mars Rovers; Rethink Mars Sample Return; Lunar Development & Mars; Temptations to Eco-carelessness; The Romantic Touch of Old Barsoom MMM #42 Igloos: Atmosphere-derived shielding for lo-rem Martian Shelters MMM #54 Mars of Lore vs. Mars of Yore; vendors wanted for wheeled and walking Mars Rovers; Transforming Mars; Xities
    [Show full text]
  • Modeling Risk Perception for Mars Rover Supervisory Control: Before and After Wheel Damage Alex J
    Modeling Risk Perception for Mars Rover Supervisory Control: Before and After Wheel Damage Alex J. Stimpson Matthew B. Tucker Masahiro Ono Amanda Steffy Mary L. Cummings Humans and Humans and NASA Jet NASA Jet Humans and Autonomy Lab Autonomy Lab Propulsion Propulsion Autonomy Lab 144 Hudson Hall 144 Hudson Hall Laboratory, Laboratory, 144 Hudson Hall Durham NC 27708 Durham NC 27708 California Institute California Institute Durham NC 27708 (352) 256-7455 (919) 402-3853 of Technology of Technology (919) 660-5306 Alexander.Stimpson Matthew.b.tucker 4800 Oak Grove 4800 Oak Grove Mary.Cummings@d @duke.edu @duke.edu Drive Pasadena, CA Drive Pasadena, CA uke.edu 91109 91109 Masahiro.Ono Amanda.C.Steffy @jpl.nasa.gov @jpl.nasa.gov Abstract— The perception of risk can dramatically influence the was designed to help collect data that can be used to assess the human selection of semi-autonomous system control strategies, past or present capability to support microbial life. In short, particularly in safety-critical systems like unmanned vehicle Curiosity was sent to Mars in order to determine the planet’s operation. Thus, the ability to understand the components of risk habitability [1]. perception can be extremely valuable in developing either operational strategies or decision support technologies. To this The Curiosity rover left Earth on November 26th, 2011. end, this paper analyzes the differences in human supervisory Approximately nine months later, the MSL curiosity rover control of Mars Science Laboratory rover operation before and th after the discovery of wheel damage. This paper identifies four landed on Mars on August 6 , 2012.
    [Show full text]
  • MAHLI): Characterization and Calibration Status
    Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status Kenneth S. Edgett, Michael A. Caplinger, Justin N. Maki, Michael A. Ravine, F. Tony Ghaemi, Sean McNair, Kenneth E. Herkenhoff, Brian M. Duston, Reg G. Willson, R. Aileen Yingst, Megan R. Kennedy, Michelle E. Minitti, Aaron J. Sengstacken, Kimberley D. Supulver, Leslie J. Lipkaman, Gillian M. Krezoski, Marie J. McBride, Tessa L. Jones, Brian E. Nixon, Jason K. Van Beek, Daniel J. Krysak, and Randolph L. Kirk MSL MAHLI Technical Report 0001, version 2 version 1: 19 June 2015; version 2: 05 October 2015 Citation: Edgett, K. S., M. A. Caplinger, J. N. Maki, M. A. Ravine, F. T. Ghaemi, S. McNair, K. E. Herkenhoff, B. M. Duston, R. G. Willson, R. A. Yingst, M. R. Kennedy, M. E. Minitti, A. J. Sengstacken, K. D. Supulver, L. J. Lipkaman, G. M. Krezoski, M. J. McBride, T. L. Jones, B. E. Nixon, J. K. Van Beek, D. J. Krysak, and R. L. Kirk (2015) Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status, MSL MAHLI Technical Report 0001 (version 1: 19 June 2015; version 2: 05 October 2015). doi:10.13140/RG.2.1.3798.5447 – MSL MAHLI Tech. Rept. 0001 – Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) Technical Report 0001 Cover photo Mars Science Laboratory (MSL) rover Curiosity’s Mars Hand Lens Imager (MAHLI; center) and Dust Removal Tool (DRT; right), as observed by the Mastcam-34 camera on Sol 30 (06 September 2012) in northern Gale crater, Mars.
    [Show full text]