PFFW in Maine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kennebec Estuary Focus Areas of Statewide Ecological Significance Kennebec Estuary
Focus Areas of Statewide Ecological Significance: Kennebec Estuary Focus Areas of Statewide Ecological Significance Kennebec Estuary WHY IS THIS AREA SIGNIFICANT? The Kennebec Estuary Focus Area contains more than 20 percent of Maine’s tidal marshes, a significant percentage of Maine’s sandy beach and associated dune Biophysical Region habitats, and globally rare pitch pine • Central Maine Embayment woodland communities. More than two • Cacso Bay Coast dozen rare plant species inhabit the area’s diverse natural communities. Numerous imperiled species of animals have been documented in the Focus Area, and it contains some of the state’s best habitat for bald eagles. OPPORTUNITIES FOR CONSERVATION » Work with willing landowners to permanently protect remaining undeveloped areas. » Encourage town planners to improve approaches to development that may impact Focus Area functions. » Educate recreational users about the ecological and economic benefits provided by the Focus Area. » Monitor invasive plants to detect problems early. » Find ways to mitigate past and future contamination of the watershed. For more conservation opportunities, visit the Beginning with Habitat Online Toolbox: www.beginningwithhabitat.org/ toolbox/about_toolbox.html. Rare Animals Rare Plants Natural Communities Bald Eagle Lilaeopsis Estuary Bur-marigold Coastal Dune-marsh Ecosystem Spotted Turtle Mudwort Long-leaved Bluet Maritime Spruce–Fir Forest Harlequin Duck Dwarf Bulrush Estuary Monkeyflower Pitch Pine Dune Woodland Tidewater Mucket Marsh Bulrush Smooth Sandwort -
Phippsburg/FOMB Appeal of August Dredging 5-16-11
STATE OF MAINE BOARD OF ENVIRONMENTAL PROTECTION U.S. ARMY CORPS OF ENGINEERS ) NATURAL RESOURCES PROTECTION ACT Bath and Phippsburg, Sagadahoc County ) COASTAL WETLAND ALTERATION MAINTENANCE DREDGING ) WATER QUALITY CERTIFICATION L-16281-4E-E-N ) APPEAL OF THE DECISION OF THE COMMISSIONER APPROVING THE U.S. ARMY CORPS OF ENGINEERS KENNEBEC RIVER DREDGING PROJCT NOW COME the Town of Phippsburg, the Phippsburg Shellfish Conservation Commission, the Phippsburg Land Trust, the Kennebec Estuary Land Trust, the Friends of Merrymeeting Bay, Bob Cummings, Lawrence Pye, Dean Doyle, Dot Kelly, Captain Ethan DeBery, and Laura Sewall (together as “Appellants”) to appeal the decision of the Commissioner of the Maine Department of Environmental Protection (“Department” or “DEP”) on April 14, 2011 (“Order”), granting to the U.S. Army Corps of Engineers (“Corps”) a water quality certification pursuant to section 401 of the federal Clean Water Act (“401 Certification”) and a permit under the Natural Resources Protection Act (“NRPA”). The Order authorizes the Corps to conduct out-of-season maintenance and advanced maintenance dredging in August of two locations in the Kennebec River in Bath and Phippsburg, Maine, and to dump approximately 70,000 cubic yards of dredge spoils at two locations in the Kennebec River and near-shore environments in Phippsburg. For the reasons below, Appellants request that the Board of Environmental Protection (“Board”) modify the Order to allow only the minimum out-of-season August dredging necessary, if any, to allow the U.S.S. Spruance to safely transit the Kennebec River in September, and to require that disposal of dredge spoils, if any, occur at upland and/or offshore locations where it will not cause unreasonable impacts to the environment or to Appellants. -
Seawall and Popham Beach Dynamics, Phippsburg
Seawall and Popham Beach Dynamics Maine Geological Survey Maine Geologic Facts and Localities November, 2008 Seawall and Popham Beach Dynamics Phippsburg, Maine 43° 43‘ 56.57“ N, 69° 48‘ 37.22“ W Text by Stephen M. Dickson Maine Geological Survey, Department of Agriculture, Conservation & Forestry 1 Seawall and Popham Beach Dynamics Maine Geological Survey Introduction Beach dynamics and sand movement along the shoreline at Popham Beach State Park and Seawall Beach is a continuing saga of extreme shoreline change and dune erosion. Here we look at Seawall Beach, the Morse River, and the large sand spit (bar) connected to Seawall Beach that extends seaward of Popham Beach. In fall 2008 an enormous beach spit was connected to Seawall Beach reflecting several years of growth and easterly extension. It currently blocks the Morse River from flowing directly south to the sea and has led to severe dune erosion and loss of mature pitch pine trees in the back dune maritime forest at Popham Beach State Park. For more on the historical location of the Morse River and erosion at the park see the previous MGS web page, Tombolo Breach at Popham Beach State Park, Phippsburg, Maine. Maine Geological Survey, Department of Agriculture, Conservation & Forestry 2 Seawall and Popham Beach Dynamics Maine Geological Survey Hiking to Seawall Beach to Visit the Morse River Access to the mouth of the Morse River can be from the east via Popham Beach State Park or from the west via Seawall Beach. In order to see the new beach spit first-hand or to walk out on it when the tide is low, a hike from Route 216 will lead to the beach and the spit (Figure 1). -
Ecological Effects of Ditching and Ditch-Plugging in New England Salt Marshes
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2012 Ecological effects of ditching and ditch-plugging in New England salt marshes Robert E. Vincent University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Vincent, Robert E., "Ecological effects of ditching and ditch-plugging in New England salt marshes" (2012). Doctoral Dissertations. 661. https://scholars.unh.edu/dissertation/661 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. ECOLOGICAL EFFECTS OF DITCHING AND DITCH-PLUGGING IN NEW ENGLAND SALT MARSHES BY ROBERT E. VINCENT B.A. University of Rhode Island, 1987 M.S. Antioch University, 1996 DISSERTATIOiN Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy In Earth and Environmental Science May, 2012 UMI Number: 3525069 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ttswWioft FtoMsh«i UMI 3525069 Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. -
IMPORTANT BIRD AREAS of MAINE an Analysis Of
IMPORTANT BIRD AREAS OF MAINE An Analysis of Avian Diversity and Abundance Compiled by: Susan Gallo, Thomas P. Hodgman, and Judy Camuso A Project Supported by the Maine Outdoor Heritage Fund IMPORTANT BIRD AREAS OF MAINE An Analysis of Avian Diversity and Abundance February 7, 2008 Compiled by: Susan Gallo, Maine Audubon, 20 Gilsland Farm Rd., Falmouth, ME 04105 Thomas P. Hodgman, Maine Department of Inland Fisheries and Wildlife, 650 State St., Bangor, ME 04401 Judy Camuso, Maine Audubon, 20 Gilsland Farm Rd., Falmouth, ME 04105 (Present Address: Maine Department of Inland Fisheries and Wildlife, 358 Shaker Road, Gray, ME 04039) Recommended citation: Gallo, S., T. P. Hodgman, and J. Camuso, Compilers. 2008. Important Bird Areas Of Maine: an analysis of avian diversity and abundance. Maine Audubon, Falmouth, Maine. 94pp. Cover Photo: Scarborough Marsh at sunrise, by W. G. Shriver ii Table of Contents History ..........................................................................................................................................1 What is an Important Bird Area?.......................................................................................1 Qualifying Criteria...................................................................................................................1 Data Use and Applicability Disclaimer .............................................................................2 Acknowledgements...................................................................................................................3 -
3. the Presence of Freshwater Cord Grass ~S Artina ~Sctinata!
Summary of Significant Features A, Geological 1. Fringing pocket beach with two central beach strea~ outlets non-tidal!. 2. Low sand budget with dramatic summer buildup resulting in a wide berm. 3. Stable shoreline position. 4. The southwestern end is the long-term downdrift end. This is indicated by the width of the back dune, but the beach has finer sand toward the north- east, suggesting short-term downdrift toward the northeast. 5. Good illustration of seasonal accretionary profile. 6. Height of the frontal dune ridge is a function of width of the berm more than a function of the direction it faces. 7. There are no parabolic dunes, but there are good dry dune flats with asso- ciated dune plant species in the back dune. B, Botanical I, The northern coastal range limit of Wormwood Artemisia caudata!. 2. Good Beach Heather Hudsonia tomentosa! patches and associated plants, 3. The presence of Freshwater Cord Grass ~Sartina ~sctinata!. 4. No pitch pines or semi-open community. Not a positive feature.! 5. Good vegetation cover, no foot traffic damage, well managed. C. Size Crescent Beach State Park covers an area of 31 hectares and has a length of 1524 m. Bailey Beach Phi sbur , Sagadahoc Count Description of Geological Features Bailey Beach Figure 27! is a small fringing pocket beach .4 hectares! with a relatively wide back dune area for such a short beach. A large volume of sand has been blown onshore to cover low-lying bedrock upland. Exposure of a coarse cobble/ boulder lag surface at the western end of the beach and the rapid grading to coarse sand beneath the lower beachface suggests that the shoreline has probably never been much further back than today, The sand appears to be locally derived and is not spillover from the Popham-Seawall system. -
Inventory of Habitat Modifications to Tidal Inlets in the US Atlantic Coast Breeding Range of the Piping Plover
Inventory of Habitat Modifications to Tidal Inlets in the U.S. Atlantic Coast Breeding Range of the Piping Plover (Charadrius melodus) prior to Hurricane Sandy: Maine to the North Shore of Long Island1 Tracy Monegan Rice Terwilliger Consulting, Inc. May 2015 (revised July 2016) Recovery Task 1.2 of the U.S. Fish and Wildlife Service (USFWS) Recovery Plan for the piping plover (Charadrius melodus) prioritizes the maintenance of “natural coastal formation processes that perpetuate high quality breeding habitat,” specifically discouraging the “construction of structures or other developments that will destroy or degrade plover habitat” (Task 1.21), and the “interference with natural processes of inlet formation, migration, and closure” (Task 1.22) (USFWS 1996, pp. 65-66). This assessment fills a data need to identify such habitat modifications that have altered natural coastal processes and the resulting abundance, distribution, and condition of currently existing habitat in the breeding range. Four previous studies provided these data for the United States (U.S.) continental migration and overwintering range of the piping plover (Rice 2012a, 2012b) and the southern portion of the U.S. Atlantic Coast breeding range (Rice 2014, 2015) and additional reports will assess the status of these two habitats in the breeding area immediately following and 3 years after Hurricane Sandy. This assessment provides these data for one habitat type – namely sandy tidal inlets within the northern portion of the breeding range along the Atlantic coast of the U.S. A separate report will provide data for sandy beach habitat in the northern portion of the U.S. Atlantic Coast breeding range. -
A Biogeochemical Study of Ditchplug and Natural Pools in Sprague River Marsh, Phippsburg, ME Ingrid Knowles Bates College, [email protected]
Bates College SCARAB Honors Theses Capstone Projects Spring 5-2011 A Biogeochemical Study of Ditchplug and Natural Pools in Sprague River Marsh, Phippsburg, ME Ingrid Knowles Bates College, [email protected] Follow this and additional works at: http://scarab.bates.edu/honorstheses Recommended Citation Knowles, Ingrid, "A Biogeochemical Study of Ditchplug and Natural Pools in Sprague River Marsh, Phippsburg, ME" (2011). Honors Theses. 1. http://scarab.bates.edu/honorstheses/1 This Open Access is brought to you for free and open access by the Capstone Projects at SCARAB. It has been accepted for inclusion in Honors Theses by an authorized administrator of SCARAB. For more information, please contact [email protected]. A Biogeochemical Study of Ditchplug and Natural Pools in the Sprague River Marsh, Phippsburg, ME A Thesis Presented to The Faculty of the Department of Geology Bates College In partial fulfillment of the requirements for the Degree of Bachelor of Arts By Ingrid Bischoff Knowles Lewiston, Maine March 2011 Table of Contents Introduction . 1 1 .1 Maine Coastline . 2 1 .2 Salt Marshes . 4 1 .2 .1 Glacial History . 4 1 .2 .2 Formation and Survival . 4 1 .2 .3 Vegetation Zonation . 6 1 .2 .4 Importance . 6 1 .2 .5 Ditching . 8 1 .2 .6 Salt Marsh Restoration . 8 1 .2 .7 Restoration Monitoring . 9 1 .3 Water Quality . 11 1 .4 Stable Isotopes . 11 1 .4 .1 C3 and C4 Vegetation . 12 1 .4 .2 Previous Studies on Sprague Marsh . 13 1 .5 Purpose . 14 1 .6 Study Area . 14 1 .6 .1Geology . 14 1 .6 .2History of Human Alteration . -
Morphodynamics of Tidal Inlet Systems in Maine
Maine Geological Survey Studies in Maine Geology: Volume 5 1989 Morphodynamics of Tidal Inlet Systems in Maine 1 2 Duncan M. FitzGeraui, Jonathan M. Lincoln • 3 1 L. Kenneth Fink, Jr. , and Dabney W. Caldwel/ 1Departm ent of Geology Boston University Boston, Massachusetts 02215 2Department of Geological Sciencies Northwestern University Evanston, Illinois 60201 3Department of Geology University of Maine Orono, Maine 04469 ABSTRACT The occurrence of tidal inlets along the coast of Maine is tied closely to the structural geology and glacial history of this region. Most of the inlets are found along the southern arcuate-embayment shoreline where sand sources, consisting of glaciomarine sediments and other glacial deposits, were sufficient to build swash-aligned barriers between pronounced bedrock headlands. Along the peninsula coast of Maine, tidal inlets also occur at the mouths of the Kennebec and Sheepscot Rivers where large quantities of glaciofluvial sands were deposited during deglacia tion. The remainder of the southeastward facing coast was stripped of its preglacial sediment cover by the southerly moving glaciers. The thin tills that were left behind yield little sand and, thus, barriers and inlets are generally absent. Small to large-sized inlets (width= 50-200 m) in Maine are anchored next to bedrock outcrops and are bordered on their opposite sides by sandy spits. Despite the ubiquitous name "river inlet," they normally have little fresh water discharge compared to their salt water tidal prisms. The backbarriers of these inlets are expansive and would produce relatively large tidal prisms if high Spartina marshes had not filled most of the region, leaving little open water area. -
Chapter 3. PROTECTION and IMPROVEMENT of WATERS
MRS Title 38, Chapter 3. PROTECTION AND IMPROVEMENT OF WATERS CHAPTER 3 PROTECTION AND IMPROVEMENT OF WATERS SUBCHAPTER 1 ENVIRONMENTAL PROTECTION BOARD ARTICLE 1 ORGANIZATION AND GENERAL PROVISIONS §361. Organization; compensation; meetings; duties (REPEALED) SECTION HISTORY PL 1967, c. 475, §§1,2 (AMD). PL 1969, c. 431, §9 (AMD). PL 1969, c. 499, §§1-3 (AMD). PL 1969, c. 571, §1 (AMD). PL 1971, c. 256, §1 (AMD). PL 1971, c. 414 (AMD). PL 1971, c. 527, §§1,2 (AMD). PL 1971, c. 618, §9 (AMD). PL 1973, c. 217 (AMD). PL 1973, c. 450, §1 (AMD). PL 1973, c. 712, §5 (AMD). PL 1973, c. 788, §206 (AMD). PL 1975, c. 228, §1 (AMD). PL 1975, c. 395 (AMD). PL 1975, c. 614, §1 (AMD). PL 1975, c. 771, §419 (AMD). PL 1977, c. 300, §§10-12 (AMD). PL 1977, c. 596, §2 (AMD). PL 1983, c. 483, §§4,5 (AMD). PL 1983, c. 566, §10 (AMD). PL 1983, c. 574, §2 (AMD). PL 1983, c. 743, §8 (AMD). PL 1983, c. 812, §§290,291 (AMD). PL 1985, c. 746, §17 (AMD). PL 1987, c. 125, §1 (AMD). PL 1989, c. 503, §B175 (AMD). PL 1989, c. 890, §§A34,40 (RP). §361-A. Definitions Unless the context otherwise indicates, the following words when used in any statute administered by the Department of Environmental Protection shall have the following meanings: [PL 1973, c. 423, §1 (RPR).] 1. Discharge. "Discharge" means any spilling, leaking, pumping, pouring, emptying, dumping, disposing or other addition of any pollutant to water of the State. [PL 1973, c. -
Global Programme of Action Coalition for the Gulf of Maine (GPAC)
This working paper was prepared for the Secretariat of the Commission for Environmental Cooperation (CEC) and the Global Programme of Action Coalition for the Gulf of Maine (GPAC). The views contained herein do not necessarily reflect the views of the CEC, or governments of Canada, Mexico or the United States of America. Reproduction of this document in whole or in part and in any form for educational or non-profit purposes may be made without special permission from the CEC Secretariat, provided acknowledgement of the source is made. The CEC and the Wells National Estuarine Research Reserve would appreciate receiving a copy of any publication or material that uses this document as a source. Published by the Wells National Estuarine Research Reserve For more information about this report or to obtain additional copies contact: The Wells National Estuarine Research Reserve Research Department 342 Laudholm Farm Road Wells, ME 04090 Tel: (207) 646-1555vFax: (207) 646-2930 E-mail: [email protected] Internet: http://www.wellsreserve.org For information about this or other publications from the CEC, contact: Commission for Environmental Cooperation 393, rue St-Jacques Ouest, bureau 200 Montreal (Quebec) Canada H2Y 1N9 Tel: (514) 350-4300vFax: (514) 350-4314 E-mail: [email protected] Internet: http://www.cec.org Cover Photo Collage Background photo: mid-tide in an unaltered salt marsh (i.e., no tidal restrictions). Foreground photos clockwise from top right: wading birds foraging in a salt marsh panne; volunteer sampling vegetation on high marsh (orange color of grass indicates a fall rather than a summer sample date); road crossing with undersized culvert alters hydrology, functions and values of upstream marsh (photo taken at low tide in early spring); the mummichog (Fundulus heteroclitus) plays an important role in the marsh food web; Phragmites australis (commonly referred to as Phrag), a brackish marsh plant that can become invasive in salt marsh areas where elevations and/or hydrology have been altered. -
90 Dams Removed in 2019 to Restore Rivers
90 Dams Removed in 2019 to Restore Rivers American Rivers releases annual list including dams in Alabama, California, Colorado, Connecticut, Delaware, Florida, Georgia, Hawaii, Indiana, Iowa, Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New Jersey, New York, Ohio, Oregon, Pennsylvania, South Carolina, Texas, Vermont, Virginia, West Virginia, and Wisconsin for a total of 26 states. Nationwide, 1,722 dams have been removed from 1912 through 2019. Dam removal brings a variety of benefits to local communities, including restoring river health and clean water, revitalizing fish and wildlife, improving public safety and recreation, and enhancing local economies. Working in a variety of functions with partner organizations throughout the country, American Rivers contributed financial and technical support in many of the removals. Contact information is provided for dam removals, if available. For further information about the list, please contact Jessie Thomas-Blate, American Rivers, Director of River Restoration at 202.347.7550 or [email protected]. This list includes all dam removals reported to American Rivers (as of February 6, 2020) that occurred in 2019, regardless of the level of American Rivers’ involvement. Inclusion on this list does not indicate endorsement by American Rivers. Dams are categorized alphabetically by state. Howle and Turner Dam, Tallapoosa River, Alabama The removal of Howle and Turner Dam was in the works for over four years. This project was the result of a great partnership between the U.S. Fish and Wildlife Service’s Partners for Fish and Wildlife program and the Alabama Rivers and Streams Network. The Service coordinated the pre-restoration planning and worked with their Fisheries and Aquatic Conservation Aquatic Habitat Restoration Team to carry out the demolition and restoration of the river channel.