Ecological Effects of Ditching and Ditch-Plugging in New England Salt Marshes

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Effects of Ditching and Ditch-Plugging in New England Salt Marshes University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2012 Ecological effects of ditching and ditch-plugging in New England salt marshes Robert E. Vincent University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Vincent, Robert E., "Ecological effects of ditching and ditch-plugging in New England salt marshes" (2012). Doctoral Dissertations. 661. https://scholars.unh.edu/dissertation/661 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. ECOLOGICAL EFFECTS OF DITCHING AND DITCH-PLUGGING IN NEW ENGLAND SALT MARSHES BY ROBERT E. VINCENT B.A. University of Rhode Island, 1987 M.S. Antioch University, 1996 DISSERTATIOiN Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy In Earth and Environmental Science May, 2012 UMI Number: 3525069 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ttswWioft FtoMsh«i UMI 3525069 Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ALL RIGHTS RESERVED ©2012 Robert E. Vincent This dissertation has been examined and approved. Dissertation Director. Dr. David M Burdick Research Associate Professor. Department of Natural Resources and the Environment Dr. Michele Dionne. Research Director. We Dr. Erik A. Hobbie. Research Associate Professor. Institute for the Study of Earth. Oceans, and Space / Dr. Tbomas D. Lee. Associate Professor. Department of Natural Resources and the Environment Department of Natural Resources and the Environment Date DEDICATION This dissertation is dedicated to my family; and especially to Beth for her patience and support during this process. iv ACKNOWLEDGEMENTS I'd like to thank my dissertation advisor, Dr. David Burdick, for taking me on as a student and for his guidance throughout my Ph.D. work; my committee members, Dr. Michele Dionne, Dr. Erik Hobbie, Dr. Tom Lee, and Dr. Fred Short for their advice during my time at the University of New Hampshire (UNH); and Dr. Michele Dionne for her guidance during my fellowship at the Wells National Estuarine Research Reserve (The Wells Reserve). I'd also like to thank students and faculty at the UNH Jackson Estuarine Laboratory for their help with field work, especially Alyson Eberhardt, Chris Peter, and Dr. Greg Moore, as well as staff at The Wells Reserve. Additional thanks go to Dr. Erik Hobbie and Andy Ouimette at the UNH Stable Isotope Laboratory for their assistance with stable isotope processing; and Dr. Ray Konisky at The Nature Conservancy, Matt Collins at the NOAA Restoration Center, and Beth Lambert and staff at the New Hampshire Coastal Program for help with data collection and use of equipment. Funding for my research at Moody Marsh was provided by the NOAA National Estuarine Research Reserve Graduate Research Fellowship Program. Equipment used in my research was funded in part by the UNH Marine Program. The U.S. Fish and Wildlife Service provided special use permits for work at Chauncey Creek, Moody, and Parker River marshes. Permission to conduct work at Sprague River Marsh was provided by Bates College and The Nature Conservancy. V TABLE OF CONTENTS DEDICATION iv ACKNOWLEDGEMENTS v LIST OF TABLES ix LIST OF FIGURES x ABSTRACT xiv CHAPTER PAGE I. INTRODUCTION 1 Background 1 Objectives 15 Organization of the Dissertation 24 II. DITCHING AND DITCH-PLUGGING IN NEW ENGLAND SALT MARSHES: EFFECTS ON HYDROLOGY, ELEVATION, AND SOIL CHARACTERISTICS 25 Abstract 25 Introduction 25 Materials and Methods 26 Results 37 Discussion 53 Conclusion 66 vi CHAPTER PAGE III. DITCHING AND DITCH-PLUGGING IN NEW ENGLAND SALT MARSHES: EFFECTS ON PLANT COMMUNITIES 68 Abstract 68 Introduction 69 Materials and Methods 70 Results 74 Discussion 86 Conclusion 97 IV. FISH PRODUCTIVITY AND TROPHIC TRANSFER IN CREATED AND NATURALLY-OCCURRING SALT MARSH HABITAT 100 Abstract 100 Introduction 101 Materials and Methods 105 Results 117 Discussion 136 Conclusion 153 V. CONCLUSION 156 Historic and Current Hydrologic Alterations 156 Ecosystem Response to Ditching 157 Ecosystem Response to Natural Creek Hydrology 163 Ecosystem Response to Ditch-Plugging 164 vii Ecosystem Response to Natural Pool Hydrology 165 LITERATURE CITED 166 APPENDICES PAGE APPENDIX A MEAN VALUES (± SE) BY MARSH AND HABITAT FOR HYDROLOGY, MARSH SURFACE ELEVATION, AND SOIL CHARACTERISTICS 187 APPENDIX B PLANT CHARACTERISTICS BY MARSH 195 APPENDIX C INVERTEBRATE RICHNESS AND ABUNDANCE BY HABITAT, LOCATION, AND TREATMENT: MOODY MARSH, WELLS, MAINE 205 APPENDIX D INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE APPROVAL LETTERS 214 viii LIST OF TABLES TABLE PAGE 1. ANOVA analysis for hydrology, soils, and marsh surface elevations 37 2. Tidal ranges by habitat 39 3. Correlation matrix for hydrology, soils, and marsh surface elevations 40 4. Marsh surface elevations by habitat 41 5. Hydrology, soils, and elevation discriminant function actual by predicted habitat classification matrix 52 6. Discriminant function values for hydrology, soils, and marsh surface elevations 52 7. Discriminant function scoring coefficients for hydrology, soils, and marsh surface elevations 52 8. Kruskal-Wallis test for plant biomass 76 9. ANOVA results for plant characteristics 77 10. Plant discriminant function actual by predicted habitat classification matrix... 85 11. Discriminant function values for plant characteristics 86 12 Discriminant function scoring coefficients for plant characteristics 87 13. ANOVA for invertebrate community characteristics 124 14. Invertebrate proportional distribution by major taxa and habitat 126 15. Stable isotope values by species 130 16. Regression results for fish g15N and g13C vs. pool water salinity 131 ix LIST OF FIGURES FIGURE PAGE 1. Salt marsh self-maintenance process 3 2. Creek habitat 5 3. Wagon wheel ruts in salt marsh habitat 7 4. Ditch habitat 8 5. Salt marsh grid ditching 9 6. Hay staddle erosion pool formation 11 7. Natural pool habitat 11 8. Ditch-plug plywood reinforcement 12 9. Ditch-plug habitat 13 10. Four-marsh study site location map 15 11. Creek habitat conceptual model 18 12. Ditch habitat conceptual model 19 13. Natural pool habitat conceptual model 20 14. Ditch-plug habitat conceptual model 21 15. Natural pool trophic interaction conceptual model 22 16. Ditch-plug trophic interaction conceptual model 23 17. Three-marsh study site location map 27 18. Parker River Marsh study site 28 19. Chauncey Creek Marsh study site 29 20. Sprague River Marsh study site 31 X FIGURE PAGE 21. Water levels by habitat 38 22. Tidal stage duration curves 39 23. Marsh surface elevations by habitat 41 24. Marsh surface elevations by habitat and distance 42 25. Pore-water salinity by habitat 43 26. Soil redox potential by habitat 44 27. Soil strength by habitat 45 28. Soil strength with depth by habitat 46 29. Soil bulk density by habitat 47 30. Soil carbon storage 48 31. Soil percent organic content 49 32. Discriminant function analysis for hydrology and soil characteristics 51 33. Ditch-plug habitat surface water impoundment and vegetation dieback 59 34. Areas of excess salt accumulation in ditch-plug habitat 61 35. Ditch-plug habitat plant dieback areas colonized by sulfur bacteria and algae mat 75 36. Plant percent cover by habitat 76 37. Plant biomass by habitat 77 38. Plant species richness and diversity by habitat 79 xi FIGURE PAGE 39. Plant species composition by habitat 80 40. Plant composition by habitat, distance, and elevation 81 41. Discriminant function analysis for plant characteristics 84 42. Hummock-hollow topography patterns in ditch-plug habitat 95 43. Moody Marsh study site location map and sample stations 107 44. Moody Marsh fish enclosures and exclosures 108 45. Moody Marsh study design with soil core locations 109 46. Moody Marsh pool physical characteristics 119 47. Natural pool and ditch-plug soil cores 120 48. Fish growth by habitat 121 49. Invertebrate community characteristics 123 50. Invertebrate biomass by habitat 124 51. Invertebrate species richness by habitat 125 52. Invertebrate density by habitat 125 53. Invertebrate abundance by major taxa and habitat 127 54. Invertebrate caloric values 128 55. Stable isotope values (513C and 815N) for vegetation, invertebrates, and fish 131 56. Stable isotope values (813C and 8I5N) for plants by habitat 132 57. Natural pool habitat food web 134 58. Ditch-plug habitat food web 135 xii FIGURE PAGE 59. Ditch habitat observed conditions 158 60. Creek habitat observed conditions 159 61. Ditch-plug habitat observed conditions 160 62. Natural pool habitat observed conditions 161 xiii ABSTRACT ECOLOGICAL EFFECTS OF DITCHING AND DITCH-PLUGGING IN NEW ENGLAND SALT MARSHES by Robert E.
Recommended publications
  • Preliminary Flood Insurance Study
    VOLUME 4 OF 4 YORK COUNTY, MAINE (ALL JURISDICTIONS) COMMUNITY NAME NUMBER COMMUNITY NAME NUMBER ACTON, TOWN OF 230190 OGUNQUIT, TOWN OF 230632 ALFRED, TOWN OF 230191 OLD ORCHARD BEACH, TOWN OF 230153 ARUNDEL, TOWN Of 230192 PARSONSFIELD, TOWN OF 230154 BERWICK, TOWN OF 230144 SACO, CITY OF 230155 BIDDEFORD, CITY OF 230145 SANFORD, CITY OF 230156 BUXTON, TOWN OF 230146 SHAPLEIGH, TOWN OF 230198 CORNISH, TOWN OF 230147 SOUTH BERWICK, TOWN OF 230157 DAYTON, TOWN OF 230148 WATERBORO, TOWN OF 230199 ELIOT, TOWN OF 230149 WELLS, TOWN OF 230158 HOLLIS, TOWN OF 230150 YORK, TOWN OF 230159 KENNEBUNK, TOWN OF 230151 KENNEBUNKPORT, TOWN OF 230170 KITTERY, TOWN OF 230171 LEBANON, TOWN OF 230193 LIMERICK, TOWN OF 230194 LIMINGTON, TOWN OF 230152 LYMAN, TOWN OF 230195 NEWFIELD, TOWN OF 230196 NORTH BERWICK, TOWN OF 230197 EFFECTIVE: FLOOD INSURANCE STUDY NUMBER 23005CV004A Version Number 2.3.2.1 TABLE OF CONTENTS Volume 1 Page SECTION 1.0 – INTRODUCTION 1 1.1 The National Flood Insurance Program 1 1.2 Purpose of this Flood Insurance Study Report 2 1.3 Jurisdictions Included in the Flood Insurance Study Project 2 1.4 Considerations for using this Flood Insurance Study Report 20 SECTION 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS 31 2.1 Floodplain Boundaries 31 2.2 Floodways 43 2.3 Base Flood Elevations 44 2.4 Non-Encroachment Zones 44 2.5 Coastal Flood Hazard Areas 45 2.5.1 Water Elevations and the Effects of Waves 45 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas 46 2.5.3 Coastal High Hazard Areas 47 2.5.4 Limit of Moderate Wave Action 48 SECTION
    [Show full text]
  • Implementation of the Great Works River Non-Point Source Pollution Watershed Management Plan" (2010)
    University of New Hampshire University of New Hampshire Scholars' Repository PREP Publications Piscataqua Region Estuaries Partnership 2010 Implementation of the Great Works River Non- Point Source Pollution Watershed Management Plan PREP Follow this and additional works at: http://scholars.unh.edu/prep Part of the Marine Biology Commons Recommended Citation PREP, "Implementation of the Great Works River Non-Point Source Pollution Watershed Management Plan" (2010). PREP Publications. Paper 72. http://scholars.unh.edu/prep/72 This Article is brought to you for free and open access by the Piscataqua Region Estuaries Partnership at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Implementation of the Great Works River Non- point Source Pollution Watershed Management Plan 09-060 A Final Report to The Piscataqua Region Estuaries Partnership Submitted by Tin Smith Wells National Estuarine Research Reserve 342 Laudholm Farm Road Wells Maine 04090 207-646-1555 x 119 [email protected] May 2010 This project was funded in part by a grant from the Piscataqua Region Estuaries Partnership as authorized by the U.S. Environmental Protection Agency’s National Estuary Program. Table of Contents I. Abstract 1 II. Executive Summary 1 III. Introduction 3 IV. Project Goals and Objectives 4 V. Activities 5 VI. Outcomes 7 VII. Appendices 9 I. Abstract This project was a collaboration between the Wells National Estuarine Research Reserve, Great Works Regional Land Trust, and the Great Works River Watershed Coalition to implement five of the “Highest Priority” tasks from the Action Plan of the Great Works River Nonpoint Source Pollution Watershed Management Plan (2007).
    [Show full text]
  • Status of Conservation Planning for Watersheds of Southern Maine
    watermark volume 26 issue 1 5 stewardship / conserving natural resources Status of Conservation Planning for Watersheds of Southern Maine The Wells Reserve has produced or assisted with every key conservation planning document prepared for What is a watershed? southern Maine watersheds over the past decade. Use this chart to learn which plans cover your town, then An area in which water, sediments, download the plan(s) from our website or read them at the Dorothy Fish Coastal Resource Library. and dissolved material drain to a To get involved in land or water protection in your area, contact the individuals or organizations named common outlet, such as a river, lake, in the plans. Key contacts for most towns and watersheds can also be found at swim.wellsreserve.org. If these bay, or ocean. avenues don’t work out, call the Wells Reserve stewardship coordinator, Tin Smith, at 646-1555 ext 119. U.S. Environmental Protection Agency Watershed A geographic area in which water flows on its way to a larger water body, such as a stream, river, estuary, lake, or Town Bridges Swamp Neddick River Cape River Works Great Josias River Kennebunk River Little River Mousam River Ogunquit River River Piscataqua River Salmon Falls Southside Brook Creek Spruce River Webhannet River York ocean. Coastal and ocean resources Acton 7 11 are affected not only by activities in Alfred 4 7 coastal areas but also by those in Arundel 4 7 upland watersheds. Berwick 2,3 2,11 U.S. Commission on Ocean Policy Eliot 2,11 2,11 2,13,14 2,16,17 Kennebunk 4 5,6 7 Kennebunkport 4 Why these watersheds? Kittery 11 11 0 13,14 16,17 The chart shows the Maine watersheds Lebanon 11 and towns that are included in the web- Lyman 4 7 based Seacoast Watershed Information North Berwick 2,3 2,11 Manager (swim.wellsreserve.org).
    [Show full text]
  • Kennebec Estuary Focus Areas of Statewide Ecological Significance Kennebec Estuary
    Focus Areas of Statewide Ecological Significance: Kennebec Estuary Focus Areas of Statewide Ecological Significance Kennebec Estuary WHY IS THIS AREA SIGNIFICANT? The Kennebec Estuary Focus Area contains more than 20 percent of Maine’s tidal marshes, a significant percentage of Maine’s sandy beach and associated dune Biophysical Region habitats, and globally rare pitch pine • Central Maine Embayment woodland communities. More than two • Cacso Bay Coast dozen rare plant species inhabit the area’s diverse natural communities. Numerous imperiled species of animals have been documented in the Focus Area, and it contains some of the state’s best habitat for bald eagles. OPPORTUNITIES FOR CONSERVATION » Work with willing landowners to permanently protect remaining undeveloped areas. » Encourage town planners to improve approaches to development that may impact Focus Area functions. » Educate recreational users about the ecological and economic benefits provided by the Focus Area. » Monitor invasive plants to detect problems early. » Find ways to mitigate past and future contamination of the watershed. For more conservation opportunities, visit the Beginning with Habitat Online Toolbox: www.beginningwithhabitat.org/ toolbox/about_toolbox.html. Rare Animals Rare Plants Natural Communities Bald Eagle Lilaeopsis Estuary Bur-marigold Coastal Dune-marsh Ecosystem Spotted Turtle Mudwort Long-leaved Bluet Maritime Spruce–Fir Forest Harlequin Duck Dwarf Bulrush Estuary Monkeyflower Pitch Pine Dune Woodland Tidewater Mucket Marsh Bulrush Smooth Sandwort
    [Show full text]
  • Firm Map Index Nfip
    MAP NUMBER MAP DATES Great Works Goodall MAP REPOSITORIES River Brook TOWN OF LYMAN L i This FIRM Index displays the map date for each t B t Duck Brook (Maps available for reference only, not for l CITY OF SACO og e Estes Lake FIRM panel at the time that this Index was Br R distribution.) ook Mousam ive TOWN OF W TOWN OF printed. Because this Index may not be r River Mousam ard Brook 9 River ALFRED ARUNDEL (! distributed to unaffected communities in 23031C0361G 23031C0362G Bush Brook 23031C0391G 23031C0392G subsequent revisions, users may determine the 23031C0411G 23031C0412G 23031C0416G 23031C0417G CITY OF BIDDEFORD ACTON, TOWN OF: Salmon 23031C0440G 23031C0441G 23031C0442G 23031C0461G current map date for each FIRM panel by visiting TOWN OF (!35 23031C0462G 23031C0466G 23031C0467G 23031C0486G Town Hall Falls River Round Swamps the FEMA Map Service Center website at S 35 H Road KENNEBUNK mit Little Old Fishing k Brook h http://msc.fema.gov, or by calling the FEMA Map SANFORD Mousam o B River Acton, Maine 04001 23031C0370G Pond 1 o r r o 23031C0390G REGIONAL Kennebunk ¤£ ok Information eXchange (FMIX) at 1-877-336-2627. River B River l B Sand AIRPORT il a Great Works River tso ALFRED, TOWN OF: Pond M n 23031C0495G*** Communities annexing land on adjacent FIRM f R TOWN OF LEBANON i Town Hall 99 of v 23031C0490G*** (! e panels must obtain a current copy of the 4 G 23031C0363G 23031C0364G** (! TOWN OF r 16 Saco Road 23031C0393G adjacent panel as well as the current FIRM 23031C0394G 23031C0413G 23031C0420G KENNEBUNKPORT Alfred, Maine 04002 23031C0414G 23031C0438G 23031C0439G 23031C0443G 23031C0444G 23031C0463G Index.
    [Show full text]
  • Nonpoint Source Priority Watersheds List MARINE WATERS
    Maine Department of Environmental Protection February 2019 Nonpoint Source Priority Watersheds List MARINE WATERS Impaired* Marine Waters Priority List (34 marine waters) Marine Water Area/Town Priority List Reasoning Anthoine Creek & Cove South Portland Negative Water Quality Indicators (FOCB) Broad Cove Cushing DMR/NPS Threat Bunganuc Creek Brunswick CBEP Priority Water Cape Neddick River York MS4 Priority Water Churches Rock So. Thomaston DMR/NPS Threat Egypt Bay Hancock/Franklin DMR/NPS Threat Goosefare Bay Kennebunkport MHB Priority Water, MS4 Priority Water Harpswell Cove Brunswick CBEP Priority Water Harraseeket River Freeport DMR/NPS Threat Hutchins Cove Bagaduce River / DMR/NPS Threat Northern Bay (Penobscot) Hyler Cove Cushing DMR/NPS Threat Kennebunk River Kennebunk MHB Priority Water Little River and Bay Freeport CBEP Priority Water Littlefield Cove Bagaduce River / DMR/NPS Threat Northern Bay (Penobscot) Maquoit Bay Brunswick CBEP Priority Water Martin Cove Lamoine DMR/NPS Threat Medomak River Estuary Waldoboro DMR/NPS Threat Mill Cove South Portland Negative Water Quality Indicators Mill Pond/Parker Head Phippsburg DMR/NPS Threat Mussell Cove Falmouth CBEP Priority Water, DMR/NPS Threat North Fogg Point Freeport CBEP Priority Water Northeast Creek Bar Harbor DMR/NPS Threat Oakhurst Island Harpswell CBEP Priority Water Ogunquit River Estuary Ogunquit MHB Priority Water, DMR/NPS Threat Pemaquid River Bristol DMR/NPS Threat Salt Pond Blue Hill/Sedgwick DMR/NPS Threat, MERI Scarborough River Estuary Scarborough DMR/NPS Threat Spinney Creek Eliot MS4 Priority Water, Negative Water Quality Indicators Spruce Creek Kittery MS4 Priority Water, Negative Water Quality Indicators Page 1 of 2 MDEP NPS Priority Watersheds List – MARINE WATERS February 2019 Marine Water Area/Town Priority List Reasoning Spurwink River Scarborough MHB Priority Water, DMR/NPS Threat St.
    [Show full text]
  • Phippsburg/FOMB Appeal of August Dredging 5-16-11
    STATE OF MAINE BOARD OF ENVIRONMENTAL PROTECTION U.S. ARMY CORPS OF ENGINEERS ) NATURAL RESOURCES PROTECTION ACT Bath and Phippsburg, Sagadahoc County ) COASTAL WETLAND ALTERATION MAINTENANCE DREDGING ) WATER QUALITY CERTIFICATION L-16281-4E-E-N ) APPEAL OF THE DECISION OF THE COMMISSIONER APPROVING THE U.S. ARMY CORPS OF ENGINEERS KENNEBEC RIVER DREDGING PROJCT NOW COME the Town of Phippsburg, the Phippsburg Shellfish Conservation Commission, the Phippsburg Land Trust, the Kennebec Estuary Land Trust, the Friends of Merrymeeting Bay, Bob Cummings, Lawrence Pye, Dean Doyle, Dot Kelly, Captain Ethan DeBery, and Laura Sewall (together as “Appellants”) to appeal the decision of the Commissioner of the Maine Department of Environmental Protection (“Department” or “DEP”) on April 14, 2011 (“Order”), granting to the U.S. Army Corps of Engineers (“Corps”) a water quality certification pursuant to section 401 of the federal Clean Water Act (“401 Certification”) and a permit under the Natural Resources Protection Act (“NRPA”). The Order authorizes the Corps to conduct out-of-season maintenance and advanced maintenance dredging in August of two locations in the Kennebec River in Bath and Phippsburg, Maine, and to dump approximately 70,000 cubic yards of dredge spoils at two locations in the Kennebec River and near-shore environments in Phippsburg. For the reasons below, Appellants request that the Board of Environmental Protection (“Board”) modify the Order to allow only the minimum out-of-season August dredging necessary, if any, to allow the U.S.S. Spruance to safely transit the Kennebec River in September, and to require that disposal of dredge spoils, if any, occur at upland and/or offshore locations where it will not cause unreasonable impacts to the environment or to Appellants.
    [Show full text]
  • Seawall and Popham Beach Dynamics, Phippsburg
    Seawall and Popham Beach Dynamics Maine Geological Survey Maine Geologic Facts and Localities November, 2008 Seawall and Popham Beach Dynamics Phippsburg, Maine 43° 43‘ 56.57“ N, 69° 48‘ 37.22“ W Text by Stephen M. Dickson Maine Geological Survey, Department of Agriculture, Conservation & Forestry 1 Seawall and Popham Beach Dynamics Maine Geological Survey Introduction Beach dynamics and sand movement along the shoreline at Popham Beach State Park and Seawall Beach is a continuing saga of extreme shoreline change and dune erosion. Here we look at Seawall Beach, the Morse River, and the large sand spit (bar) connected to Seawall Beach that extends seaward of Popham Beach. In fall 2008 an enormous beach spit was connected to Seawall Beach reflecting several years of growth and easterly extension. It currently blocks the Morse River from flowing directly south to the sea and has led to severe dune erosion and loss of mature pitch pine trees in the back dune maritime forest at Popham Beach State Park. For more on the historical location of the Morse River and erosion at the park see the previous MGS web page, Tombolo Breach at Popham Beach State Park, Phippsburg, Maine. Maine Geological Survey, Department of Agriculture, Conservation & Forestry 2 Seawall and Popham Beach Dynamics Maine Geological Survey Hiking to Seawall Beach to Visit the Morse River Access to the mouth of the Morse River can be from the east via Popham Beach State Park or from the west via Seawall Beach. In order to see the new beach spit first-hand or to walk out on it when the tide is low, a hike from Route 216 will lead to the beach and the spit (Figure 1).
    [Show full text]
  • Maine Healthy Beaches Program
    Maine Healthyyg Beaches Program: The State of Maine’s Beaches in 2009 MiMaine Beach es C on ference July 10, 2009 Keri Lindberg Fundinggp provided by: US EPA Program Coordinator, UMaine Cooperative Extension/ Maine Sea Grant Sarah Mosley, Mark Margerum, Program Manager, UMaine Cooperative Extension ME Department of Environmental Protection Long Sands Beach, York, ME Geometric Mean 40 35 30 ls mm 25 20 mpn/100 15 10 5 0 2003 2004 2005 2006 2007 2008 YK-6 YK-13 YK-8 YK-16 YK-10 YK-18 YK-11 EPA Safety Level Long Sands Beach, York, ME Potential Bacteria Sources: 9Stormwater Runoff 9Residential/Commercial Development 9Boats 9Bathers 9Wildlife 9Pet Waste Cape Neddick Beach, York, ME Geometric Mean 40 35 30 25 20 pn/100 mls 15 m 10 5 0 2003 2004 2005 2006 2007 2008 YK-2 EPA Safety Level Cape Neddick Beach, York, ME Potential Bacteria Sources: Aliht&NtStAccomplishments & Next Steps: 9Cape Neddick River Outlet 9Town Hired a Shoreland 9Malfunctioning Septic Systems Resource Officer 9Stormwater Runoff 92007-2009 Cape Neddick River Special Study 9Residential/Commercial Development 9In 2008, Selectmen unanimously supported Plan of Work for 2009 9Boats 9Bathers 9Wildlife 9PtWPet Was te Ogunquit Beaches, Ogunquit, ME Geometric Mean 40 35 30 ls 25 20 15 mpn/100 m 10 5 0 2003 2004 2005 2006 2007 2008 OG-1 OG-4 OG-2 OG-5 OG-3 EPA Safety Level 2005 – 2009 Ogunquit River Special Study Potential Bacteria Sources: 9Ogunquit River Outlet 9Malfunctioning Septic Systems 9Stormwater Runoff 9Residential/Commercial Development 9Sanitary Sewer Outfall 9Bathers 9Wildlife 9Pet Waste 2005 – 2009 Ogunquit River Special Study 9Maine Geological Survey Acoustic Doppler Profiling Study & Data Analysis 94 separate current zones and 1 sub-zone 9Oggqunquit River = p rimar y source of contamination 9Wave ht >4 ft.
    [Show full text]
  • IMPORTANT BIRD AREAS of MAINE an Analysis Of
    IMPORTANT BIRD AREAS OF MAINE An Analysis of Avian Diversity and Abundance Compiled by: Susan Gallo, Thomas P. Hodgman, and Judy Camuso A Project Supported by the Maine Outdoor Heritage Fund IMPORTANT BIRD AREAS OF MAINE An Analysis of Avian Diversity and Abundance February 7, 2008 Compiled by: Susan Gallo, Maine Audubon, 20 Gilsland Farm Rd., Falmouth, ME 04105 Thomas P. Hodgman, Maine Department of Inland Fisheries and Wildlife, 650 State St., Bangor, ME 04401 Judy Camuso, Maine Audubon, 20 Gilsland Farm Rd., Falmouth, ME 04105 (Present Address: Maine Department of Inland Fisheries and Wildlife, 358 Shaker Road, Gray, ME 04039) Recommended citation: Gallo, S., T. P. Hodgman, and J. Camuso, Compilers. 2008. Important Bird Areas Of Maine: an analysis of avian diversity and abundance. Maine Audubon, Falmouth, Maine. 94pp. Cover Photo: Scarborough Marsh at sunrise, by W. G. Shriver ii Table of Contents History ..........................................................................................................................................1 What is an Important Bird Area?.......................................................................................1 Qualifying Criteria...................................................................................................................1 Data Use and Applicability Disclaimer .............................................................................2 Acknowledgements...................................................................................................................3
    [Show full text]
  • 3. the Presence of Freshwater Cord Grass ~S Artina ~Sctinata!
    Summary of Significant Features A, Geological 1. Fringing pocket beach with two central beach strea~ outlets non-tidal!. 2. Low sand budget with dramatic summer buildup resulting in a wide berm. 3. Stable shoreline position. 4. The southwestern end is the long-term downdrift end. This is indicated by the width of the back dune, but the beach has finer sand toward the north- east, suggesting short-term downdrift toward the northeast. 5. Good illustration of seasonal accretionary profile. 6. Height of the frontal dune ridge is a function of width of the berm more than a function of the direction it faces. 7. There are no parabolic dunes, but there are good dry dune flats with asso- ciated dune plant species in the back dune. B, Botanical I, The northern coastal range limit of Wormwood Artemisia caudata!. 2. Good Beach Heather Hudsonia tomentosa! patches and associated plants, 3. The presence of Freshwater Cord Grass ~Sartina ~sctinata!. 4. No pitch pines or semi-open community. Not a positive feature.! 5. Good vegetation cover, no foot traffic damage, well managed. C. Size Crescent Beach State Park covers an area of 31 hectares and has a length of 1524 m. Bailey Beach Phi sbur , Sagadahoc Count Description of Geological Features Bailey Beach Figure 27! is a small fringing pocket beach .4 hectares! with a relatively wide back dune area for such a short beach. A large volume of sand has been blown onshore to cover low-lying bedrock upland. Exposure of a coarse cobble/ boulder lag surface at the western end of the beach and the rapid grading to coarse sand beneath the lower beachface suggests that the shoreline has probably never been much further back than today, The sand appears to be locally derived and is not spillover from the Popham-Seawall system.
    [Show full text]
  • Town of Ogunquit Comprehensive Plan Table of Contents
    Town of Ogunquit Comprehensive Plan Table of Contents 1. Introduction of the Town 2. Population Inventory Goals Policies & Strategies 3. Local Economy Inventory Goals Policies & Strategies 4. Housing Inventory Goals Policies & Strategies 5. The Arts and Culture Goals Policies & Strategies 6. Transportation Goals Policies & Strategies 7. Conservation Goals Policies & Strategies 8. Sea Level Rise/Climate Change Goals Policies & Strategies 9. Tourism/Green Tourism Goals Policies & Strategies 10. Aging in Place Goals Policies & Strategies 11. Historic Preservation Goals Policies & Strategies 12. Land Use/Future Land Use Goals Policies & Strategies Dear Ogunquit Residents Welcome to the 2018 Comprehensive Plan Update! What is a Comprehensive Plan Update? So glad you asked! It is the long-range plan that will guide Ogunquit’s future for the next ten years. It is a legal document. The Comprehensive Plan is not itself a regulation; it does not make actual code or zoning changes. Rather, it provides a roadmap for the Town’s future that will recommend and inform regulations and code changes going forward. Many changes for the Town cannot be made unless they have been included in the Comprehensive Plan. The Plan is made up of goals, which are broad, over-arching ideas; policies which are objectives for reaching the goals; and strategies which are specific actions recommended to address the policies. Each strategy is assigned to a responsible party and given a timeline. As this Committee has learned, long-range planning for an entire town is a multi-layered and open- ended process. We have been at this since April of 2016 when we all thought we were in for a one- year term.
    [Show full text]