Morphodynamics of Tidal Inlet Systems in Maine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preliminary Flood Insurance Study
VOLUME 4 OF 4 YORK COUNTY, MAINE (ALL JURISDICTIONS) COMMUNITY NAME NUMBER COMMUNITY NAME NUMBER ACTON, TOWN OF 230190 OGUNQUIT, TOWN OF 230632 ALFRED, TOWN OF 230191 OLD ORCHARD BEACH, TOWN OF 230153 ARUNDEL, TOWN Of 230192 PARSONSFIELD, TOWN OF 230154 BERWICK, TOWN OF 230144 SACO, CITY OF 230155 BIDDEFORD, CITY OF 230145 SANFORD, CITY OF 230156 BUXTON, TOWN OF 230146 SHAPLEIGH, TOWN OF 230198 CORNISH, TOWN OF 230147 SOUTH BERWICK, TOWN OF 230157 DAYTON, TOWN OF 230148 WATERBORO, TOWN OF 230199 ELIOT, TOWN OF 230149 WELLS, TOWN OF 230158 HOLLIS, TOWN OF 230150 YORK, TOWN OF 230159 KENNEBUNK, TOWN OF 230151 KENNEBUNKPORT, TOWN OF 230170 KITTERY, TOWN OF 230171 LEBANON, TOWN OF 230193 LIMERICK, TOWN OF 230194 LIMINGTON, TOWN OF 230152 LYMAN, TOWN OF 230195 NEWFIELD, TOWN OF 230196 NORTH BERWICK, TOWN OF 230197 EFFECTIVE: FLOOD INSURANCE STUDY NUMBER 23005CV004A Version Number 2.3.2.1 TABLE OF CONTENTS Volume 1 Page SECTION 1.0 – INTRODUCTION 1 1.1 The National Flood Insurance Program 1 1.2 Purpose of this Flood Insurance Study Report 2 1.3 Jurisdictions Included in the Flood Insurance Study Project 2 1.4 Considerations for using this Flood Insurance Study Report 20 SECTION 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS 31 2.1 Floodplain Boundaries 31 2.2 Floodways 43 2.3 Base Flood Elevations 44 2.4 Non-Encroachment Zones 44 2.5 Coastal Flood Hazard Areas 45 2.5.1 Water Elevations and the Effects of Waves 45 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas 46 2.5.3 Coastal High Hazard Areas 47 2.5.4 Limit of Moderate Wave Action 48 SECTION -
Implementation of the Great Works River Non-Point Source Pollution Watershed Management Plan" (2010)
University of New Hampshire University of New Hampshire Scholars' Repository PREP Publications Piscataqua Region Estuaries Partnership 2010 Implementation of the Great Works River Non- Point Source Pollution Watershed Management Plan PREP Follow this and additional works at: http://scholars.unh.edu/prep Part of the Marine Biology Commons Recommended Citation PREP, "Implementation of the Great Works River Non-Point Source Pollution Watershed Management Plan" (2010). PREP Publications. Paper 72. http://scholars.unh.edu/prep/72 This Article is brought to you for free and open access by the Piscataqua Region Estuaries Partnership at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Implementation of the Great Works River Non- point Source Pollution Watershed Management Plan 09-060 A Final Report to The Piscataqua Region Estuaries Partnership Submitted by Tin Smith Wells National Estuarine Research Reserve 342 Laudholm Farm Road Wells Maine 04090 207-646-1555 x 119 [email protected] May 2010 This project was funded in part by a grant from the Piscataqua Region Estuaries Partnership as authorized by the U.S. Environmental Protection Agency’s National Estuary Program. Table of Contents I. Abstract 1 II. Executive Summary 1 III. Introduction 3 IV. Project Goals and Objectives 4 V. Activities 5 VI. Outcomes 7 VII. Appendices 9 I. Abstract This project was a collaboration between the Wells National Estuarine Research Reserve, Great Works Regional Land Trust, and the Great Works River Watershed Coalition to implement five of the “Highest Priority” tasks from the Action Plan of the Great Works River Nonpoint Source Pollution Watershed Management Plan (2007). -
KENNEBEC SALMON RESTORATION: Innovation to Improve the Odds
FALL/ WINTER 2015 THE NEWSLETTER OF MAINE RIVERS KENNEBEC SALMON RESTORATION: Innovation to Improve the Odds Walking thigh-deep into a cold stream in January in Maine? The idea takes a little getting used to, but Paul Christman doesn’t have a hard time finding volunteers to do just that to help with salmon egg planting. Christman is a scientist with Maine Department of Marine Resource. His work, patterned on similar efforts in Alaska, involves taking fertilized salmon eggs from a hatchery and planting them directly into the cold gravel of the best stream habitat throughout the Sandy River, a Kennebec tributary northwest of Waterville. Yes, egg planting takes place in the winter. For Maine Rivers board member Sam Day plants salmon eggs in a tributary of the Sandy River more than a decade Paul has brought staff and water, Paul and crews mimic what female salmon volunteers out on snowshoes and ATVs, and with do: Create a nest or “redd” in the gravel of a river waders and neoprene gloves for this remarkable or stream where she plants her eggs in the fall, undertaking. Finding stretches of open stream continued on page 2 PROGRESS TO UNDERSTAND THE HEALTH OF THE ST. JOHN RIVER The waters of the St. John River flow from their headwaters in Maine to the Bay of Fundy, and for many miles serve as the boundary between Maine and Quebec. Waters of the St. John also flow over the Mactaquac Dam, erected in 1968, which currently produces a substantial amount of power for New Brunswick. Efforts are underway now to evaluate the future of the Mactaquac Dam because its mechanical structure is expected to reach the end of its service life by 2030 due to problems with the concrete portions of the dam’s station. -
Status of Conservation Planning for Watersheds of Southern Maine
watermark volume 26 issue 1 5 stewardship / conserving natural resources Status of Conservation Planning for Watersheds of Southern Maine The Wells Reserve has produced or assisted with every key conservation planning document prepared for What is a watershed? southern Maine watersheds over the past decade. Use this chart to learn which plans cover your town, then An area in which water, sediments, download the plan(s) from our website or read them at the Dorothy Fish Coastal Resource Library. and dissolved material drain to a To get involved in land or water protection in your area, contact the individuals or organizations named common outlet, such as a river, lake, in the plans. Key contacts for most towns and watersheds can also be found at swim.wellsreserve.org. If these bay, or ocean. avenues don’t work out, call the Wells Reserve stewardship coordinator, Tin Smith, at 646-1555 ext 119. U.S. Environmental Protection Agency Watershed A geographic area in which water flows on its way to a larger water body, such as a stream, river, estuary, lake, or Town Bridges Swamp Neddick River Cape River Works Great Josias River Kennebunk River Little River Mousam River Ogunquit River River Piscataqua River Salmon Falls Southside Brook Creek Spruce River Webhannet River York ocean. Coastal and ocean resources Acton 7 11 are affected not only by activities in Alfred 4 7 coastal areas but also by those in Arundel 4 7 upland watersheds. Berwick 2,3 2,11 U.S. Commission on Ocean Policy Eliot 2,11 2,11 2,13,14 2,16,17 Kennebunk 4 5,6 7 Kennebunkport 4 Why these watersheds? Kittery 11 11 0 13,14 16,17 The chart shows the Maine watersheds Lebanon 11 and towns that are included in the web- Lyman 4 7 based Seacoast Watershed Information North Berwick 2,3 2,11 Manager (swim.wellsreserve.org). -
Bay of Fundy (Canada)
Tides Bay of Fundy (Canada) Tides Measuring tides General description Physical mechanism Characteristics in different locations Tidal resonance and tidal bore Measuring tides Records of the position of sea surface with respect to a fixed level (a datum) tidal pole float tidal gauge Measuring tides Time series of sea surface height Hilo tide observations and predictions (PacIOOS) Measuring tides Examples of tidal time series General description Up and down motion of sea level Back and forth currents Periodic (~12 hours and 24 hours) Amplitude and timing vary from one location to another Propagating shallow-water wave of very long wavelength (~10,000km) Physical mechanism due to the gravitational attraction of Moon and Sun on Earth and its ocean and the rotation of Moon around Earth and the Earth-Moon system around the Sun Moon Sun Earth Physical mechanism due to the gravitational attraction of Moon and Sun on Earth and its ocean and the rotation of Moon around Earth and the Earth-Moon system around the Sun Moon Sun “It's complicated!” Earth Theory of equilibrium tides Simplified problem Earth-Moon system only No rotation of Earth around its own axis Earth covered with an ocean (no continents) No friction Theory of equilibrium tides Centrifugal Force (varies with r) r d Gravitational Force (varies with 1/d2) Theory of equilibrium tides Theory of equilibrium tides Theory of equilibrium tides Theory of equilibrium tides Theory of equilibrium tides Tidal Force Theory of equilibrium tides Tidal Force Theory of equilibrium -
Section 5-2 Androscoggin River (Friends of Merrymeeting Bay)
Maine Department of Environmental Protection Androscoggin River (FOMB) 2018 Summary Data Report Section 5-2 Androscoggin River (Friends of Merrymeeting Bay) Androscoggin River The Androscoggin River is the third largest river in the state of Maine. It has a length of 177 miles and drainage area of 3,450 square miles (2,730 sq. mi. in Maine).1 The Androscoggin River’s headwaters are Umbagog Lake in Maine/New Hampshire. From there it flows into New Hampshire and then back into Maine through the towns of Gilead and Bethel. It continues flowing through the towns and cities of Rumford, Mexico, Dixfield, Jay, Livermore Falls, Lewiston, Auburn, Lisbon, Lisbon Falls, Durham, Brunswick, and Topsham where it joins the Kennebec River at Merrymeeting Bay. The Androscoggin River has a long history of industrial and municipal use over the last 200 years.1 Beginning in the early 1800s, many dams were constructed for mills, primarily in the lower part of the river. By the late 1800s, many textile and lumber mills were in operation, mostly from Lewiston to Brunswick. Pulp and paper mills that are still in operation today were established in the late 1800s in New Hampshire, Rumford, and Jay. Beginning in the late 1920s, Central Maine Power built hydroelectric dams that impounded much of the river from Lewiston to Livermore Falls. Some of these uses continue today. “Along its course to the sea, the river is repeatedly dammed. It receives discharges from industrial and municipal sources, as well as polluted runoff from a variety of sources.”2 Specific problems include mill discharges, combined sewer overflows (CSOs), dam impacts (28 dams exist), and historical sediment toxins. -
Kennebec Estuary Focus Areas of Statewide Ecological Significance Kennebec Estuary
Focus Areas of Statewide Ecological Significance: Kennebec Estuary Focus Areas of Statewide Ecological Significance Kennebec Estuary WHY IS THIS AREA SIGNIFICANT? The Kennebec Estuary Focus Area contains more than 20 percent of Maine’s tidal marshes, a significant percentage of Maine’s sandy beach and associated dune Biophysical Region habitats, and globally rare pitch pine • Central Maine Embayment woodland communities. More than two • Cacso Bay Coast dozen rare plant species inhabit the area’s diverse natural communities. Numerous imperiled species of animals have been documented in the Focus Area, and it contains some of the state’s best habitat for bald eagles. OPPORTUNITIES FOR CONSERVATION » Work with willing landowners to permanently protect remaining undeveloped areas. » Encourage town planners to improve approaches to development that may impact Focus Area functions. » Educate recreational users about the ecological and economic benefits provided by the Focus Area. » Monitor invasive plants to detect problems early. » Find ways to mitigate past and future contamination of the watershed. For more conservation opportunities, visit the Beginning with Habitat Online Toolbox: www.beginningwithhabitat.org/ toolbox/about_toolbox.html. Rare Animals Rare Plants Natural Communities Bald Eagle Lilaeopsis Estuary Bur-marigold Coastal Dune-marsh Ecosystem Spotted Turtle Mudwort Long-leaved Bluet Maritime Spruce–Fir Forest Harlequin Duck Dwarf Bulrush Estuary Monkeyflower Pitch Pine Dune Woodland Tidewater Mucket Marsh Bulrush Smooth Sandwort -
Assimilation Spawns Disunity --- Disunity Nurtures Assimilation
(submitted to June 2013 Wulustuk Times) Assimilation Spawns Disunity --- Disunity Nurtures Assimilation When Champlain visited Tadoussac in May, 1603 three First Nations had gathered together at St. Matthew’s Point near Tadoussac (in present day Quebec), a thousand of them, to celebrate a recent war victory over the Iroquois nation. The celebrations lasted for many days. These three victorious nations were the Etechemins, Algonquins and Montagnais. Most historians contend that the Etechemin nation was the name Champlain called the nation of the Wolastoqiyik whose territory extended from the St. John River watershed all the way to the St. Lawrence River. By uniting with their allied nations the Wolastoqiyik were able to defeat an enemy whose numbers were much greater than their own. When English captive John Gyles went hunting with the Wolastoqiyik in the late 1600s they took him up the Wolastoq to the Madawaska River and all the way to the Notre Dame Mountains along the St. Lawrence. There was plenty of game in those days and this region was their hunting and fishing grounds. Every year all of the families gathered at one place for the Grand Council meeting, Eqpahak Island above present day Fredericton being one such location. At that time families were assigned different hunting and fishing territories so that one area didn't get overharvested and the game depleted. This is how they survived for thousands of years working together as a united body. As late as the early 20th century some Wolastoqiyik families in New Brunswick and Maine were still hunting in their traditional family territories. -
A Review of Ice and Tide Observations in the Bay of Fundy
A tlantic Geology 195 A review of ice and tide observations in the Bay of Fundy ConDesplanque1 and David J. Mossman2 127 Harding Avenue, Amherst, Nova Scotia B4H 2A8, Canada departm ent of Physics, Engineering and Geoscience, Mount Allison University, 67 York Street, Sackville, New Brunswick E4L 1E6, Canada Date Received April 27, 1998 Date Accepted December 15,1998 Vigorous quasi-equilibrium conditions characterize interactions between land and sea in macrotidal regions. Ephemeral on the scale of geologic time, estuaries around the Bay of Fundy progressively infill with sediments as eustatic sea level rises, forcing fringing salt marshes to form and reform at successively higher levels. Although closely linked to a regime of tides with large amplitude and strong tidal currents, salt marshes near the Bay of Fundy rarely experience overflow. Built up to a level about 1.2 m lower than the highest astronomical tide, only very large tides are able to cover the marshes with a significant depth of water. Peak tides arrive in sets at periods of 7 months, 4.53 years and 18.03 years. Consequently, for months on end, no tidal flooding of the marshes occurs. Most salt marshes are raised to the level of the average tide of the 18-year cycle. The number of tides that can exceed a certain elevation in any given year depends on whether the three main tide-generating factors peak at the same time. Marigrams constructed for the Shubenacadie and Cornwallis river estuaries, Nova Scotia, illustrate how the estuarine tidal wave is reshaped over its course, to form bores, and varies in its sediment-carrying and erosional capacity as a result of changing water-surface gradients. -
Designation of Critical Habitat for the Gulf of Maine, New York Bight, And
Federal Register / Vol. 81, No. 107 / Friday, June 3, 2016 / Proposed Rules 35701 the Act, including the factors identified Recovery and State Grants, Ecological Public hearings and public in this finding and explanation (see Services Program, U.S. Fish and information meetings: We will hold two Request for Information, above). Wildlife Service. public hearings and two public informational meetings on this proposed Conclusion Authority rule. We will hold a public On the basis of our evaluation of the The authority for these actions is the informational meeting from 2 to 4 p.m., information presented under section Endangered Species Act of 1973, as in Annapolis, Maryland on Wednesday, 4(b)(3)(A) of the Act, we have amended (16 U.S.C. 1531 et seq.). July 13 (see ADDRESSES). A second determined that the petition to remove Dated: May 25, 2016. public informational meeting will be the golden-cheeked warbler from the Stephen Guertin, held from 3 to 5 p.m., in Portland, List of Endangered and Threatened Maine on Monday, July 18 (see Wildlife does not present substantial Acting Director, U.S. Fish and Wildlife Service. ADDRESSES). We will hold two public scientific or commercial information [FR Doc. 2016–13120 Filed 6–2–16; 8:45 am] hearings, from 3 to 5 p.m. and 6 to 8 indicating that the requested action may p.m., in Gloucester, Massachusetts on BILLING CODE 4333–15–P be warranted. Therefore, we are not Thursday, July 21 (see ADDRESSES). initiating a status review for this ADDRESSES: You may submit comments, species. DEPARTMENT OF COMMERCE identified by the NOAA–NMFS–2015– We have further determined that the 0107, by either of the following petition to list the U.S. -
Safe Boating Through the St. Lucie Inlet
Information: Florida Fish & Wildlife Commission 850-488-4676 SAFE BOATING US Coast Guard - Ft. Pierce 772-461-7606 THROUGH THE ST. LUCIE INLET US Coast Guard Auxiliary 772-465-8128 US Army Corps of Engineers 772-221-3349 St. Lucie Inlet Coastal 772-225-2300 Weather Station HERE ARE SOME THINGS TO REMEMBER: • Listen to the most recent weather forecast for the times you plan to go out AND come back in the inlet. • Look in the Tide Tables or local newspapers for the times St. Lucie Inlet of predicted high and low tides for the day you plan to go out. Remember the outgoing (ebb) tital current at low Newcomers tide is the worst time to make a passage through the St. Lucie Inlet. If you are a boater new to this area, it is highly • Safe boating practices are even more important in inlets. recommended that you make your first passage of Check your boat before you head out. Life preservers the St. Lucie Inlet as an observer. An experienced should be worn when going through inlets. boater with local knowledge at the helm can point • Expect the unexpected. Watch the clouds to anticipate out various hazards and conditions to avoid. This is severe weather such as thunderstorms. Be on the lookout for shifting shoals and changing channels. especially important if you have no prior experience • Engine failure is common in small boats in rough seas. with any ocean inlets. The extra roughness agitates gasoline and settled dirt or water in the fuel system, which can cause engine failure Notes on Navigation at Night at a crtical time. -
Hazardous Beach-System Development in Maine and Some Outcomes of the Sand Dune Rules Julia M
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 12-2003 Hazardous Beach-System Development in Maine and Some Outcomes of the Sand Dune Rules Julia M. Knisel Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Knisel, Julia M., "Hazardous Beach-System Development in Maine and Some Outcomes of the Sand Dune Rules" (2003). Electronic Theses and Dissertations. 154. http://digitalcommons.library.umaine.edu/etd/154 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. HAZARDOUS BEACH-SYSTEM DEVELOPMENT IN MAINE AND SOME OUTCOMES OF THE SAND DUNE RULES BY Julia M. Knisel B.S. The Pennsylvania State University A THESIS Submitted in Partial Fullillment of the Requirements for the Degree of Master of Science (in Marine Policy) The Graduate School The University of Maine December, 2003 Advisory Committee: Joseph T. Kelley, Professor of Marine Geology, Advisor Mary Kate Beard-Tisdale, Professor of Spatial Information Science and Engineering Deirdre Mageean, Professor of Resource Economics and Policy Daniel F. Belknap, Professor of Geology HAZARDOUS BEACH-SYSTEM DEVELOPMENT IN MAINE AND SOME OUTCOMES OF THE SAND DUNE RULES By Julia M. Knisel Thesis Advisor: Dr. Joseph T. Kelley An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Policy) December, 2003 Damages to coastal property in southwestern Maine occur primarily as a result of storms, flooding, and erosion.