Pierre Curie: the Anonymous Neurosurgical Contributor

Total Page:16

File Type:pdf, Size:1020Kb

Pierre Curie: the Anonymous Neurosurgical Contributor NEUROSURGICAL FOCUS Neurosurg Focus 39 (1):E7, 2015 Pierre Curie: the anonymous neurosurgical contributor Karen Man, BAS,1 Victor M. Sabourin, MD,1 Chirag D. Gandhi, MD,1–3 Peter W. Carmel, MD,1 and Charles J. Prestigiacomo, MD1–3 Departments of 1Neurological Surgery, 2Radiology, 3Neurology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey Pierre Curie, best known as a Nobel Laureate in Physics for his co-contributions to the field of radioactivity alongside research partner and wife Marie Curie, died suddenly in 1906 from a street accident in Paris. Tragically, his skull was crushed under the wheel of a horse-drawn carriage. This article attempts to honor the life and achievements of Pierre Curie, whose trailblazing work in radioactivity and piezoelectricity set into motion a wide range of technological develop- ments that have culminated in the advent of numerous techniques used in neurological surgery today. These innovations include brachytherapy, Gamma Knife radiosurgery, focused ultrasound, and haptic feedback in robotic surgery. http://thejns.org/doi/abs/10.3171/2015.4.FOCUS15102 KEY WORDS Pierre Curie; piezoelectricity; radium brachytherapy; Gamma Knife; focused ultrasound; haptic feedback IERRE Curie (Fig. 1) was a man of singular ability in brother Jacques.6 Through the liberal attitude and support the sciences. Although he is not much celebrated in of his family, Pierre earned a Bachelor of Science degree scientific history, this may be due in part to the fact (equivalent to a General Certificate of Education) at the Pthat he was a modest man in life, with a general distaste for age of sixteen and was able to matriculate into the presti- glory or unnecessary publicity.14 However, to understand gious Sorbonne, also known as the University of Paris, for the trajectory of his work, it is necessary to understand the his higher education.6,7,14,26 Two years later, in 1877, Pierre life that he led, his early work in physics, and the passion graduated with a licentiate in the Physical Sciences, the for scientific investigation that enabled his achievements. equivalent of a modern bachelor’s degree in physics.6,7,26 His life’s work has so broadly impacted medicine and the Afterward, he began to work at the Sorbonne as an as- sciences that it may be said that those who employ the sistant in a physics laboratory in an effort to help support fruits of his labor in modern times owe it to him to remem- his family financially.6,7,26 In 1880 (Fig. 2), he published ber his legacy. his first paper in the physical sciences with Professor Paul Desains, the director of the lab where he worked, describ- ing a novel method for measuring infrared waves using Early Life and Career of Pierre Curie thermoelectricity and a metallic grid.6,25,26 Pierre Curie was born on May 15, 1859, in Paris, Pierre’s older brother Jacques was also working at the France.6,14 Pierre’s paternal grandfather and father were Sorbonne as a lab assistant in the mineralogy depart- both physicians.6,7,14 His father had also worked as a natu- ment.6,7,26 Throughout childhood and adulthood, Pierre and ral science researcher at the Museum of Natural History Jacques were close friends and shared similar interests.6,14 in Paris.6,7 Pierre was homeschooled during his childhood, While together at the Sorbonne, the brothers investigated having been deemed by his parents too sensitive and easily and first described the phenomenon of piezoelectricity— distracted for the rigidly structured French education sys- the tendency of some crystals to produce electricity when tem.6,7,14,26 Instead, he was taught by his parents and older subjected to mechanical stress.6,12,14,47 For the sake of their SUBMITTED February 28, 2015. ACCEPTED April 3, 2015. INCLUDE WHEN CITING DOI: 10.3171/2015.4.FOCUS15102. DISCLOSURE The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. ©AANS, 2015 Neurosurg Focus Volume 39 • July 2015 1 Unauthenticated | Downloaded 10/05/21 05:06 PM UTC K. Man et al. FIG. 1. Pierre Curie in the amphitheater of the Faculty of Sciences of Paris, 1904. Courtesy of the Curie Museum, Collection of the Associa- tion of Curie Joliot-Curie. (http://www.calames.abes.fr/pub/curie.aspx#d FIG. 2. Pierre Curie, circa 1880. Courtesy of the Curie Museum, Collec- etails?id=Calames-2014730177403311003). tion of the Association of Curie Joliot-Curie. (http://www.calames.abes. fr/pub/curie.aspx#details?id=Calames-201473017740330823). experiments, Pierre developed a tool known as the Cu- detect underwater vessels.6,7,26,47,48,62 This sonar device rie electrometer (Fig. 3), used to measure small amounts generated echoes that reflected off of underwater objects, of electricity emitted by piezoelectric materials, such as applying pressure to piezoelectric transducers upon their quartz crystals.6,7,26,47 This device would also later be used return, which converted the signal to electricity and al- by Marie Curie in her investigation on the emissions of lowed for the calculation of the range, speed, and position uranium salts and various other compounds, which would of underwater objects.6,7,26,47,48,62 eventually lead to her pioneering work in radioactivity.6,7 The brothers went on to publish several papers on the top- The Power Couple of Physics: Pierre and ic of piezoelectricity.11–13,26 In 1883, at the age of 24, Pierre left the Sorbonne to Marie teach as a chief laboratory assistant at the School of In- Pierre Curie and Marie Skłodowska (Fig. 4) were ini- dustrial Physics and Chemistry of the City of Paris, where tially introduced to each other by a mutual friend in 1894, he conducted research on crystal symmetry and magne- when the Polish-born Marie had just earned her licentiate tism.6,7,14,26,47 In 1895, he obtained his doctoral degree in in physics at the Sorbonne.6,7,10,14 Pierre and Marie shared physics, for which he published his most influential indi- an immediate personal rapport, which, after several vidual work: his doctoral thesis on paramagnetic materi- months of friendship, resulted in marriage in July of 1895 als.6,19,26 In his thesis, he established Curie’s law, which (Fig. 5).6,7,10,14,26 By 1897, Pierre was engrossed in research states that the magnetic susceptibility of a paramagnetic on the properties of crystals, and Marie began to pursue a substance is inversely proportional to the absolute tem- doctoral degree in physics with encouragement from her perature.6,18,19,26 He also described the Curie temperature, husband.6,7,10,14 the point at which ferromagnetic materials lose their mag- Prior to the start of Marie’s doctoral research, in 1896, netic characteristics and become paramagnetic.6,18,19,26,47 Henri Becquerel had described the spontaneous emission In 1895, after successfully defending his doctoral thesis, of rays from uranium salts and thus uncovered the phenom- Pierre became a professor at the School of Industrial Phys- enon of radioactivity.6,7,10,14,26 Marie became intrigued by ics and Chemistry.6,14,26,47 the nascent literature and sought to examine a wide variety One of his pupils was Paul Langevin, who was later of materials for similar energetic properties.6,7,10,14,26 Pierre instrumental in the development of sonar technology, an used his various connections with a chemist acquaintance, application of piezoelectricity that used sound waves to the School of Physics, and the Museum of Natural History 2 Neurosurg Focus Volume 39 • July 2015 Unauthenticated | Downloaded 10/05/21 05:06 PM UTC Pierre Curie: anonymous neurosurgical contributor FIG. 4. Pierre and Marie Curie in the Curie garden at Sceaux, 1895. Photo taken by Albert Harlingue. Courtesy of the Curie Museum, Collec- tion of the Association of Curie Joliot-Curie. (http://www.calames.abes. fr/pub/curie.aspx#details?id=Calames-201473017740331883). prepared a paper on the discovery of a second radioactive 6,7,10,14,16,26 FIG. 3. The Piezoelectric Quartz Electrometer patented by Pierre Curie. element, which they named “radium.” In Decem- Courtesy of the Curie Museum, Collection of the Association of Curie ber of 1898, Henri Becquerel presented their paper to the Joliot-Curie. (http://www.calames.abes.fr/pub/curie.aspx#details?id=Cal French Academy of Sciences, but the society informed the ames-2014730177403311044). Curies that their paper would not be accepted unless they could confirm the singularity of their element through in Paris to acquire a range of compound samples for Marie mass spectrometry.6,7,14,26 to analyze.6 Part of her analytical methodology involved However, the microscopic amounts of radium the Cu- using the Curie electrometer, her husband’s invention, to ries had been able to isolate were not adequate for spec- detect minute emissions from each substance.6,7,26 In 1898, troscopic analysis.6,10,14 They would need to process enor- interested in the results of his wife’s work, Pierre ceased mous quantities of pitchblende (500 tons, by the end of his own studies on crystals to collaborate with Marie and their experiments); the venture would be massively expen- recruit assistants to help with the purification of chemi- sive and the purification would ultimately take years.6,10,14 cal compounds.6,10,14 Together in their lab (Fig. 6), Pierre Admirably, the Curies (Fig. 7) were not daunted. Pierre and Marie discovered that pitchblende, then regarded as wrote letters to numerous institutions and organizations, a waste byproduct of the uranium extraction process, had within and outside
Recommended publications
  • 1 the Equation of a Light Leptonic Magnetic Monopole and Its
    The equation of a Light Leptonic Magnetic Monopole and its Experimental Aspects Georges Lochak Fondation Louis de Broglie 23, rue Marsoulan F-75012 Paris [email protected] Abstract. The present theory is closely related to Dirac’s equation of the electron, but not to his magnetic monopole theory, except for his relation between electric and magnetic charge. The theory is based on the fact, that the massless Dirac equation admits a second electromagnetic coupling, deduced from a pseudo-scalar gauge invariance. The equation thus obtained has the symmetry laws of a massless leptonic, magnetic monopole, able to interact weakly. We give a more precise form of the Dirac relation between electric and magnetic charges and a quantum form of the Poincaré first integral. In the Weyl representation our equation splits into P-conjugated monopole and antimonopole equations with the correct electromagnetic coupling and opposite chiralities, predicted by P. Curie. Charge conjugated monopoles are symmetric in space and not in time (contrary to the electric particles) : an important fact for the vacuum polarization. Our monopole is a magnetically excited neutrino, which leads to experimental consequences. These monopoles are assumed to be produced by electromagnetic pulses or arcs, leading to nuclear transmutations and, for beta radioactive elements, a shortening of the life time and the emission of monopoles instead of neutrinos in a magnetic field. A corresponding discussion is given in section 15. 1. Introduction. The hypothesis of separated magnetic poles is very old. In the 2nd volume of his famous Treatise of Electricity and Magnetism [1], devoted to Magnetism, Maxwell considered the existence of free magnetic charges as an evidence, just as the evidence of electric charges.
    [Show full text]
  • Unerring in Her Scientific Enquiry and Not Afraid of Hard Work, Marie Curie Set a Shining Example for Generations of Scientists
    Historical profile Elements of inspiration Unerring in her scientific enquiry and not afraid of hard work, Marie Curie set a shining example for generations of scientists. Bill Griffiths explores the life of a chemical heroine SCIENCE SOURCE / SCIENCE PHOTO LIBRARY LIBRARY PHOTO SCIENCE / SOURCE SCIENCE 42 | Chemistry World | January 2011 www.chemistryworld.org On 10 December 1911, Marie Curie only elements then known to or ammonia, having a water- In short was awarded the Nobel prize exhibit radioactivity. Her samples insoluble carbonate akin to BaCO3 in chemistry for ‘services to the were placed on a condenser plate It is 100 years since and a chloride slightly less soluble advancement of chemistry by the charged to 100 Volts and attached Marie Curie became the than BaCl2 which acted as a carrier discovery of the elements radium to one of Pierre’s electrometers, and first person ever to win for it. This they named radium, and polonium’. She was the first thereby she measured quantitatively two Nobel prizes publishing their results on Boxing female recipient of any Nobel prize their radioactivity. She found the Marie and her husband day 1898;2 French spectroscopist and the first person ever to be minerals pitchblende (UO2) and Pierre pioneered the Eugène-Anatole Demarçay found awarded two (she, Pierre Curie and chalcolite (Cu(UO2)2(PO4)2.12H2O) study of radiactivity a new atomic spectral line from Henri Becquerel had shared the to be more radioactive than pure and discovered two new the element, helping to confirm 1903 physics prize for their work on uranium, so reasoned that they must elements, radium and its status.
    [Show full text]
  • Eve Curie-Labouisse 1904-2007
    The Invisible Light The Journal of The British Society for the History of Radiology 21st Birthday Year 1987-2008 The Centenary of the death of Henri Becquerel Number 28, May 2008 ISSN 1479-6945 (Print) ISSN 1479-6953 (Online) http://www.bshr.org.uk 2 Contents Page Editorial Notes 3 X-RAY THERAPY AND THE EARLY YEARS, 1902-1907 by Noel Timothy 4 Start of the “Radium Story” by Richard Mould 11 “The first Argentinean radiological journal” by Alfredo Buzzi and César Gotta 13 “Eve Curie-Labouisse 1904-2007” by Richard F. Mould 16 British Society for the History of Medicine, Congress September 2009 in Belfast 30 Interesting Web sites 31 “William Hunter and the Art and Science of Eighteenth-Century Collecting” 31 And finally: Betty Boop 32 Editorial Notes Our Radiology History Committee was founded way back in 1987. I hope everyone likes this issue of ‘The Invisible Light’ in this our 21st Birthday Year. There are four good articles for you to read. Do please consider getting involved in our committee and do contact me if you are interested. I would be delighted to include any of your articles in the next issue of ‘The Invisible Light.’ Please send me any material that you have. This journal is also available on-line to members. If you wish to receive it in that way please contact Jean Barrett at [email protected] This year 2008 is the centenary year of the death of Henri Becquerel who discovered natural radioactivity and was joint Nobel laureate with Marie and Pierre.
    [Show full text]
  • A Century of X-Ray Crystallography and 2014 International Year of X-Ray Crystallography
    Macedonian Journal of Chemistry and Chemical Engineering, Vol. 34, No. 1, pp. 19–32 (2015) MJCCA9 – 658 ISSN 1857-5552 Received: January 15, 2015 UDC: 631.416.865(497.7:282) Accepted: February 13, 2015 Review A CENTURY OF X-RAY CRYSTALLOGRAPHY AND 2014 INTERNATIONAL YEAR OF X-RAY CRYSTALLOGRAPHY Biserka Kojić-Prodić Rudjer Bošković Institute, Bijenička c. 54, Zagreb, Croatia [email protected] The 100th anniversary of the Nobel prize awarded to Max von Laue in 1914 for his discovery of diffraction of X-rays on a crystal marked the beginning of a new branch of science - X-ray crystallog- raphy. The experimental evidence of von Laue's discovery was provided by physicists W. Friedrich and P. Knipping in 1912. In the same year, W. L. Bragg described the analogy between X-rays and visible light and formulated the Bragg's law, a fundamental relation that connected the wave nature of X-rays and fine structure of a crystal at atomic level. In 1913 the first simple diffractometer was constructed and structure determination started by the Braggs, father and son. In 1915 their discoveries were acknowl- edged by a Nobel Prize in physics. Since then, X-ray diffraction has been the basic method for determina- tion of three-dimensional structures of synthetic and natural compounds. The three-dimensional structure of a substances defines its physical, chemical, and biological properties. Over the past century the signifi- cance of X-ray crystallography has been recognized by about forty Nobel prizes. X-ray structure analysis of simple crystals of rock salt, diamond and graphite, and later of complex biomolecules such as B12- vitamin, penicillin, haemoglobin/myoglobin, DNA, and biomolecular complexes such as viruses, chroma- tin, ribozyme, and other molecular machines have illustrated the development of the method.
    [Show full text]
  • The Riches of Uranium Uranium Is Best Known, and Feared, for Its Involvement in Nuclear Energy
    in your element The riches of uranium Uranium is best known, and feared, for its involvement in nuclear energy. Marisa J. Monreal and Paula L. Diaconescu take a look at how its unique combination of properties is now increasingly attracting the attention of chemists. t is nearly impossible to find an uplifting, and can be arrested by the skin, making found about uranium’s superior catalytic funny, or otherwise endearing quote on depleted uranium (composed mainly of 238U) activity may not be an isolated event. The Iuranium — the following dark wisecrack1 safe to work with as long as it is not inhaled organometallic chemistry of uranium was reflects people’s sinister feelings about this or ingested. born during the ‘Manhattan project’ — code element: “For years uranium cost only a few Studying the fundamental chemistry of name of the development of the first nuclear dollars a ton until scientists discovered you uranium is an exotic endeavour, but those who weapon during the Second World War. This could kill people with it”. But, in the spirit of embrace it will reap its benefits. Haber and field truly began to attract interest in 1956 rebranding, it is interesting to note that the Bosch found that uranium was a better catalyst when Reynolds and Wilkinson reported the main source of Earth’s internal heat comes than iron for making ammonia2. The preparation of the first cyclopentadienyl from the radioactive decay of uranium, isolation of an η1-OCO complex derivatives6. The discovery of thorium and potassium-40 that keeps the of uranium3 also showed uranocene electrified the field outer core liquid, induces mantle convection that, even though it is as much as that of ferrocene and, subsequently, drives plate tectonics.
    [Show full text]
  • Nobel Prizes Social Network
    Nobel prizes social network Marie Skłodowska Curie (Phys.1903, Chem.1911) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Irène Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Maurice de Broglie Louis de Broglie (Phys.1929) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network Sir J. J. Thomson (Phys.1906) Henri Becquerel (Phys.1903) Pierre Curie (Phys.1903) = Marie Skłodowska Curie (Phys.1903, Chem.1911) Paul Langevin Maurice de Broglie Louis de Broglie (Phys.1929) Irène Joliot-Curie (Chem.1935) = Frédéric Joliot-Curie (Chem.1935) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Clinton Davisson (Phys.1937) Nobel prizes social network (more) Sir J. J. Thomson (Phys.1906) Owen Richardson (Phys.1928) Charlotte Richardson = Clinton Davisson (Phys.1937) Nobel prizes social network (more) Sir J.
    [Show full text]
  • Epistemology of Research on Radiation and Matter: a Structural View
    Kairos. Journal of Philosophy & Science 22, 2019 Center for the Philosophy of Sciences of Lisbon University Epistemology of Research on Radiation and Matter: a Structural View Isabel Serra (CFCUL) ([email protected]) Elisa Maia (CFCUL e IIBRC) ([email protected]) DOI 10.2478/kjps-2019–0016 Abstract The modern understanding of radiation got its start in 1895 with X-rays discovered by Wilhelm Röntgen, followed in 1896 by Henri Becquerel’s discovery of radioactivity. The development of the study of radiation opened a vast field of resear- ch concerning various disciplines: chemistry, physics, biology, geology, sociology, ethics, etc. Additionally, new branches of knowledge were created, such as atomic and nuclear physics that enabled an in-depth knowledge of the matter. Moreover, during the historical evolution of this body of knowledge a wide variety of new te- chnologies was emerging. This article seeks to analyze the characteristics of expe- rimental research in radioactivity and microphysics, in particular the relationship experience-theory. It will also be emphasized that for more than two decades, since the discovery of radioactivity, experiments took place without the theory being able to follow experimental dynamics. Some aspects identified as structural features of scientific research in the area of radiation and matter will be addressed through his- torical examples. The inventiveness of experiments in parallel with the emergence of quantum mechanics, the formation of teams and their relationship with technology developed from the experiments, as well as the evolution of microphysics in the sen- se of “Big Science” will be the main structural characteristics here focused. The case study of research in radioactivity in Portugal that assumes a certain importance and has structural characteristics similar to those of Europe will be presented.
    [Show full text]
  • Download Report 2010-12
    RESEARCH REPORt 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Cover: Aurora borealis paintings by William Crowder, National Geographic (1947). The International Geophysical Year (1957–8) transformed research on the aurora, one of nature’s most elusive and intensely beautiful phenomena. Aurorae became the center of interest for the big science of powerful rockets, complex satellites and large group efforts to understand the magnetic and charged particle environment of the earth. The auroral visoplot displayed here provided guidance for recording observations in a standardized form, translating the sublime aesthetics of pictorial depictions of aurorae into the mechanical aesthetics of numbers and symbols. Most of the portait photographs were taken by Skúli Sigurdsson RESEARCH REPORT 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Introduction The Max Planck Institute for the History of Science (MPIWG) is made up of three Departments, each administered by a Director, and several Independent Research Groups, each led for five years by an outstanding junior scholar. Since its foundation in 1994 the MPIWG has investigated fundamental questions of the history of knowl- edge from the Neolithic to the present. The focus has been on the history of the natu- ral sciences, but recent projects have also integrated the history of technology and the history of the human sciences into a more panoramic view of the history of knowl- edge. Of central interest is the emergence of basic categories of scientific thinking and practice as well as their transformation over time: examples include experiment, ob- servation, normalcy, space, evidence, biodiversity or force.
    [Show full text]
  • ARIE SKLODOWSKA CURIE Opened up the Science of Radioactivity
    ARIE SKLODOWSKA CURIE opened up the science of radioactivity. She is best known as the discoverer of the radioactive elements polonium and radium and as the first person to win two Nobel prizes. For scientists and the public, her radium was a key to a basic change in our understanding of matter and energy. Her work not only influenced the development of fundamental science but also ushered in a new era in medical research and treatment. This file contains most of the text of the Web exhibit “Marie Curie and the Science of Radioactivity” at http://www.aip.org/history/curie/contents.htm. You must visit the Web exhibit to explore hyperlinks within the exhibit and to other exhibits. Material in this document is copyright © American Institute of Physics and Naomi Pasachoff and is based on the book Marie Curie and the Science of Radioactivity by Naomi Pasachoff, Oxford University Press, copyright © 1996 by Naomi Pasachoff. Site created 2000, revised May 2005 http://www.aip.org/history/curie/contents.htm Page 1 of 79 Table of Contents Polish Girlhood (1867-1891) 3 Nation and Family 3 The Floating University 6 The Governess 6 The Periodic Table of Elements 10 Dmitri Ivanovich Mendeleev (1834-1907) 10 Elements and Their Properties 10 Classifying the Elements 12 A Student in Paris (1891-1897) 13 Years of Study 13 Love and Marriage 15 Working Wife and Mother 18 Work and Family 20 Pierre Curie (1859-1906) 21 Radioactivity: The Unstable Nucleus and its Uses 23 Uses of Radioactivity 25 Radium and Radioactivity 26 On a New, Strongly Radio-active Substance
    [Show full text]
  • Pierre Curie, Swiss Federal Institute of Technology, University of Heidelberg
    Mileva Maric, an unfulfilled career in science Matthias Tomczak* * School of the Environment, Flinders University, GPO Box 2100, Adelaide SA 500, [email protected] The following abbreviations are used: Collected Papers, Albert Einstein, Anna Beck, Peter Havas: The Collected Papers of Albert Einstein, vol. 1: The Early Years, 1879–1902, Princeton, New Jersey: Princeton University Press, 1987; ETH, Eidgenössische Technische Hochschule; VFW, Verein Feminist. Wiss. Schweiz: Ebenso neu als kühn: 120 Jahre Frauenstudium an der Universität Zürich. Schriftenreihe Feministische Wissenschaft Bd. 1, 1988. ABSTRACT In 1990 a controversy developed, and continued into the next decade, about the role of Einstein’s first wife Mileva Maric in Einstein’s work. This article does not specifically address the controversy but takes it as a starting point to ask whether Maric could have had a career of her own in science and what prevented her from reaching it. Particular focus is placed on the influence of society’s norms and expectations on individual behaviour. Maric showed extraordinary promise as a mathematician. Encouraged by a supportive university environment she overcame all hurdles faced by women of the 19th century who wanted to enter an academic career; every step of her student career gives cause to believe that she would have had a successful science career would she not have met Einstein. Her unconditional love for Einstein caused her to divert her energy towards intellectual support of her husband, neglecting her own work. Einstein, who had internalised the social norm that women belong in the kitchen, made use of her mathematical abilities but did not support his wife in developing her potential further; he was the instrument of society that prevented Maric from fulfilling her career hopes.
    [Show full text]
  • Miller's Waves
    Miller’s Waves An Informal Scientific Biography William Fickinger Department of Physics Case Western Reserve University Copyright © 2011 by William Fickinger Library of Congress Control Number: 2011903312 ISBN: Hardcover 978-1-4568-7746-0 - 1 - Contents Preface ...........................................................................................................3 Acknowledgments ...........................................................................................4 Chapter 1-Youth ............................................................................................5 Chapter 2-Princeton ......................................................................................9 Chapter 3-His Own Comet ............................................................................12 Chapter 4-Revolutions in Physics..................................................................16 Chapter 5-Case Professor ............................................................................19 Chapter 6-Penetrating Rays ..........................................................................25 Chapter 7-The Physics of Music....................................................................31 Chapter 8-The Michelson-Morley Legacy......................................................34 Chapter 9-Paris, 1900 ...................................................................................41 Chapter 10-The Morley-Miller Experiment.....................................................46 Chapter 11-Professor and Chair ...................................................................51
    [Show full text]
  • Marie Curie and Her Contemporaries
    @ : --@ @ - @ ., b—' . 4Y@i @ ,,, ,, . @ ‘/1'. ;: @;4 i :i@ ‘ k@ ,@/.‘@I I 16 THE JOURNAL OF NUCLEAR MEDICINE JOURNAL OF NUCLEAR MEDICINE 2: 167, 1961 Professor George C. de Hevesy Professor George C. de Hevesy, of the Institute for Organic Chemistry and Biochemistry, at the University of Stockholm, Sweden, is to be this year's Nuclear Pioneer Lecturer. Although he is known first of all for his numerous pioneering investigations and his eminence as a teacher, he very properly is a first-hand re porter and historian of some of the most momentous events in the history of science. Professor de Hevesy was born in Budapest August 1, 1885. He earned the doctoral degree at the University of Freiburg in 1908. He then went to Zurich for postgraduate work in physical chemistry. He was one of twenty in the audi ence attending Einstein's inaugural lecture as Associate Professor of Theoretical Physics. In 1911, to prepare for investigations suggested by Haber, he went to Rutherford's Laboratory in Manchester to become familiar with techniques for studying the conductivity of electricity in gases. During the years 1911-1914, he was associated with the discovery of the atomic nucleus, the use of a forerunner of Geiger's Beta Counter for detecting alpha particles, the setting up of the first X-ray spectograph by Moseley, and the discovery of cosmic rays by Hess. He visited Madame Curie in her laboratory many times after he began work with Radium D in 1912. Professor de Hevesy's most notable investigations started with his failure to separate Radium D (Pb21°) from large amounts of radioactive lead chloride, at Lord Rutherford's request.
    [Show full text]