View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Chemistry & Biology Article A One-Pot Chemoenzymatic Synthesis for the Universal Precursor of Antidiabetes and Antiviral Bis-Indolylquinones Patrick Schneider,1 Monika Weber,1 Karen Rosenberger,1 and Dirk Hoffmeister1,2,* 1 Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universita¨ t, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany 2 Present address: University of Minnesota, Plant Pathology, 1991 Upper Buford Circle, St. Paul, MN 55108, USA. *Correspondence:
[email protected] DOI 10.1016/j.chembiol.2007.05.005 SUMMARY pound, this finding prompted increased interest in the bis-indolylquinones; protocols for their chemical synthesis Bis-indolylquinones represent a class of fungal were devised [7, 8]. The accepted hypothesis on bis- natural products that display antiretroviral, indolylquinone biosynthesis put forth by Arai and antidiabetes, or cytotoxic bioactivities. Recent Yamamoto [9] includes deamination of L-tryptophan to advances in Aspergillus genomic mining efforts indole-3-pyruvic acid, which feeds into a dimerization have led to the discovery of the tdiA-E-gene reaction to yield DDAQ D. This symmetric compound cluster, which is the first genetic locus dedi- represents the generic intermediate en route to numerous derivatives, including the aforementioned compounds, cated to bis-indolylquinone biosynthesis. We whose pathways diverge due to regiospecific transfers have now genetically and biochemically charac- of prenyl groups, the most prominent structural decora- terized the enzymes TdiA (bis-indolylquinone tions of bis-indolylquinones. The C- or N-prenyltransfer synthetase) and TdiD (L-tryptophan:phenylpyru- reactions may occur symmetrically or disturb molecular vate aminotransferase), which, together, symmetry by transfer of one single prenyl unit or two units confer biosynthetic abilities for didemethylas- to different acceptor positions.