Geologic Map of Lassen Volcanic National Park and Vicinity, California by Michael A

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map of Lassen Volcanic National Park and Vicinity, California by Michael A Geologic Map of Lassen Volcanic National Park and Vicinity, California By Michael A. Clynne and L.J. Patrick Muffler Pamphlet to accompany Scientific Investigations Map 2899 Lassen Peak and the Devastated Area Aerial view of Lassen Peak and the proximal Devastated Area looking south. Area with sparse trees marks the paths of the avalanche and debris-flow deposits of May 19–20, 1915 (unitsw9 ) and the pyroclastic-flow and fluid debris-flow deposits of May 22, 1915 (unit pw2) (Clynne and others, 1999; Christiansen and others, 2002). Small dark crags just to right of the summit are remnants of the May 19–20, 1915, lava flow (unitd9 ). The composite dacite dome of Lassen Peak (unit dl, 27±1 ka) dominates the upper part of the view. Lithic pyroclastic-flow deposit (unitpfl ) from partial collapse of the dome of Lassen Peak is exposed in the canyon of the headwaters of Lost Creek in center of view. Ridges flanking central area are glacial moraines (unitQta ) thinly covered by deposits of the 1915 eruption of Lassen Peak (Christiansen and others, 2002). Small permanent snowfield is seen on the left lower slope of Lassen Peak. Area east of the snowfield is the rhyodacite lava flow of Kings Creek (unitrk , 35±1 ka, part of the Eagle Peak sequence). Dacite domes of Bumpass Mountain (unit db, 232±8 ka), Crescent Crater (unit dc, 236±1 ka), hill 8283 (unit d82, 261±5 ka), and Loomis Peak (unit rlm, ~300 ka) are part of the Bumpass sequence. Photograph by Michael A. Clynne. 2010 U.S. Department of the Interior U.S. Geological Survey This page intentionally left blank CONTENTS Introduction.....................................................................................................................................................1 Regional Volcanism .......................................................................................................................................1 Calc-Alkaline Volcanoes ......................................................................................................................1 Low-Potassium Olivine Tholeiite (LKOT) ...........................................................................................2 Volcanic Centers ............................................................................................................................................2 Tectonic Setting .............................................................................................................................................3 Eruptive History of the Lassen Area ...........................................................................................................4 Regional Volcanic Rocks .....................................................................................................................4 Pliocene-Early Pleistocene Volcanic Centers .................................................................................4 Dittmar Volcanic Center ..............................................................................................................5 Maidu Volcanic Center ...............................................................................................................5 Lassen Volcanic Center .......................................................................................................................6 Rockland Caldera Complex ........................................................................................................6 Brokeoff Volcano .........................................................................................................................7 Lassen Domefield.........................................................................................................................7 Holocene Activity ................................................................................................................8 Chaos Crags ................................................................................................................8 Cinder Cone ................................................................................................................8 1914-1917 Eruption of Lassen Peak .........................................................................9 Caribou Volcanic Field .......................................................................................................................10 Red Cinder Chain .......................................................................................................................10 Poison Lake Chain .....................................................................................................................10 Caribou Chain .............................................................................................................................10 Other Chains and Sequences in the Caribou Volcanic Field ..............................................10 Glacial Geology ............................................................................................................................................11 Methods.........................................................................................................................................................11 Unit Names...........................................................................................................................................11 Mineral Names ....................................................................................................................................12 Reacted Phenocrysts and Mafic Inclusions ..................................................................................12 Unit Ages ..............................................................................................................................................12 Unit Labels............................................................................................................................................12 Acknowledgments .......................................................................................................................................13 Description of Map Units ...........................................................................................................................14 Glacial, sedimentary, and hydrothermal deposits .........................................................................14 Nonvolcanic sedimentary deposits ........................................................................................14 Alluvium and colluvium ....................................................................................................14 Mass-wasting deposits ...................................................................................................14 Hydrothermal deposits .....................................................................................................16 Glacial deposits .................................................................................................................16 Till ........ .......................................................................................................................16 Outwash ....................................................................................................................17 Sedimentary deposits ......................................................................................................18 Volcanic Centers of southernmost Cascades ................................................................................18 Lassen Volcanic Center ............................................................................................................18 Lassen domefield ..............................................................................................................18 Twin Lakes sequence, younger .............................................................................18 Twin Lakes sequence, older ...................................................................................24 i Eagle Peak sequence ..............................................................................................25 Bumpass sequence .................................................................................................30 Brokeoff Volcano ..............................................................................................................34 Diller sequence ........................................................................................................34 Mill Canyon sequence ............................................................................................36 Rockland caldera complex ..............................................................................................38 Maidu Volcanic Center .............................................................................................................40 Stage 3 ................................................................................................................................41 Stage 2 ................................................................................................................................42 Stage 1 ................................................................................................................................43 Dittmar Volcanic Center ............................................................................................................44 Stage 3 ................................................................................................................................44 Stage 2 ................................................................................................................................45
Recommended publications
  • Plate Tectonics, Volcanoes, and Earthquakes / Edited by John P
    ISBN 978-1-61530-106-5 Published in 2011 by Britannica Educational Publishing (a trademark of Encyclopædia Britannica, Inc.) in association with Rosen Educational Services, LLC 29 East 21st Street, New York, NY 10010. Copyright © 2011 Encyclopædia Britannica, Inc. Britannica, Encyclopædia Britannica, and the Thistle logo are registered trademarks of Encyclopædia Britannica, Inc. All rights reserved. Rosen Educational Services materials copyright © 2011 Rosen Educational Services, LLC. All rights reserved. Distributed exclusively by Rosen Educational Services. For a listing of additional Britannica Educational Publishing titles, call toll free (800) 237-9932. First Edition Britannica Educational Publishing Michael I. Levy: Executive Editor J. E. Luebering: Senior Manager Marilyn L. Barton: Senior Coordinator, Production Control Steven Bosco: Director, Editorial Technologies Lisa S. Braucher: Senior Producer and Data Editor Yvette Charboneau: Senior Copy Editor Kathy Nakamura: Manager, Media Acquisition John P. Rafferty: Associate Editor, Earth Sciences Rosen Educational Services Alexandra Hanson-Harding: Editor Nelson Sá: Art Director Cindy Reiman: Photography Manager Nicole Russo: Designer Matthew Cauli: Cover Design Introduction by Therese Shea Library of Congress Cataloging-in-Publication Data Plate tectonics, volcanoes, and earthquakes / edited by John P. Rafferty. p. cm.—(Dynamic Earth) “In association with Britannica Educational Publishing, Rosen Educational Services.” Includes index. ISBN 978-1-61530-187-4 ( eBook) 1. Plate tectonics.
    [Show full text]
  • NOMINATION FORM for NPS USE ONLY for FEDERAL PROPERTIES ENTRY DATE (Type All Entries - Complete Applicable Sections) Rti^T Fl 1SP6
    STATE: .Form Igd?6 UNITED STATES DEPARTMENT OF THE INTERIOR (Uct. IV/^J NATIONAL PARK SERVICE California COUNTY: NATIONAL REGISTER OF HISTORIC PLACES Shasta and Lassen INVENTORY - NOMINATION FORM FOR NPS USE ONLY FOR FEDERAL PROPERTIES ENTRY DATE (Type all entries - complete applicable sections) rti^T fl 1SP6 COMMON: Nobles' Emigrant Trail HS-1 AND/OR HISTORIC: Nobles' Trail (Fort Kearney, South Pass and Honey Lake Wagon Road) STREET AND NUMBER: M --"'' ^ * -X'"' '' J-- - ;/* ( ,: - "; ^ ;." ; r ^-v, % /'• - O1- - >,- ,•<•-,- , =••'"' CITY OR TOWN: / '-' j- ,. " ,-, ,, , CONG RESSIONAL DISTRICT: Lassen Volcanic National Park S econd STATE: CODE COUN TY: CODE California 06 Shaj3ta and Lassen 089/035 :. : ; STATUS ACCESSIBLE (Check?ATE,G SOne)R \ OWNERSHIP SIAIU3 T0 THE p UBL|c gf] District Q Building [ig Public Public Acquisition: [ | Occupied Yes: : : -Z Q Site | | Structure | | Private Q In Process PT"1 Unoccupied | | Restricted 0 [~~| Object Qj Both f~| Being Consider)sd Q Preservation work [X] Unrestricted in progress [~~] No u PRESENT USE (Check One or More as Appropriate) | | Agricultural jj£] Government [X] Park | | Transportation | | Comments h- I | Commercial Q2 Industrial [~~| Private Residence | | Other (SpeciM »/> Q Educational Q Military [~1 Religious ;; /. z [^Entertainment Q Museum f"| Scientific UJ STATE: »/> National Park Service REGIONAL HEADQUARTERS: (If applicable) SIr REET AND NUMBER: Western Region l^50 Golden Gate Avenue Cl TY OR TOWN: SIPATE: CODE San Francisco California Ub V BliBsi^iiiiBHIiiMMIiBlilBl^isMiM^Ml Illlllillliil^^ COURTHOUSE, REGISTRY OF DEEDS, ETC: COUNTY: STREET AND NUMBER: CITY OR TOWN: SIPATE: CODE Lassen Volcanic National Park California Ob toM^ TITLE OF SURVEY: The National Survey of Historic '&&& s^n^lt^J^aglix "Overland Migrations West of the Mississippi" TI AsX -X^ ENT^Y*"NUMBER o DATE OF SURVEY: 1959 [X] Federal Q State / ^yl County | _ | LocoilP' ^k X3 Z DEPOSITORY FOR SURVEY RECORDS: t) •j? in C OAHP, WASO c/> rj V?\ m STREET AND NUMBER: 'l - i H~*~! ^|T"-, r £;.
    [Show full text]
  • Area Adventure Hat Creek Ranger District Lassen National Forest
    Area Adventure Hat Creek Ranger District Lassen National Forest Welcome The following list of recreation activities are avail- able in the Hat Creek Recreation Area. For more detailed information please stop by the Old Station Visitor Information Center, open April - December, or our District Office located in Fall River Mills. Give Hat Creek Rim Overlook - Nearly 1 million years us a call year-around Mon.- Fri. at (530) 336-5521. ago, active faulting gradually dropped a block of Enjoy your visit to this very interesting country. the Earth’s crust (now Hat Creek Valley) 1,000 feet below the top of the Hat Creek Rim, leaving behind Subway Cave - See an underground cave formed this large fault scarp. This fault system is still “alive by flowing lava. Located just off Highway 89, 1/4 and cracking”. mile north of Old Station junction with Highway 44. The lava tube tour is self guided and the walk is A heritage of the Hat Creek area’s past, it offers mag- 1/3 mile long. Bring a lantern or strong flashlight nificent views of Hat Creek Valley, Lassen Peak, as the cave is not lighted. Sturdy Shoes and a light Burney Mountain, and, further away, Mt. Shasta. jacket are advisable. Subway Cave is closed during the winter months. Fault Hat Creek Rim Fault Scarp Vertical movement Hat Creek V Cross Section of a Lava Tube along this fault system alley dropped this block of earth into its present position Spattercone Trail - Walk a nature trail where volca- nic spattercones and other interesting geologic fea- tures may be seen.
    [Show full text]
  • GEOLOGIC MAP of the Mccoy PEAK QUADRANGLE, SOUTHERN CASCADE RANGE, WASHINGTON
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Geologic map of the McCoy Peak quadrangle, southern Cascade Range, Washington by Donald A. Swanson1 Open-File Report 92-336 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 'U.S. Geological Survey, Department of Geological Sciences AJ-20, University of Washington, Seattle, Washington 98195 CONTENTS INTRODUCTION ........................ 1 5. Locations of samples collected in McCoy Peak ACKNOWLEDGMENTS ................... 1 {quadrangle ......................... 6 ROCK TERMINOLOGY AND CHEMICAL 6. Alkali-lime classification diagram for Tertiary CLASSIFICATION .................... 2 rocks in McCoy Peak quadrangle .......... 7 GENERAL GEOLOGY .................... 6 7. Plot of FeO*/MgO vs. SiO2 for rocks from TERTIARY ROCKS OLDER THAN INTRUSIVE McCoy Peak quadrangle ................ 7 SUITE OF KIDD CREEK ............... 7 8. Plot of total alkalis vs. SiO2 for rocks in McCoy Volcaniclastic rocks ................... 7 Peak quadrangle ..................... 8 Chaotic volcanic breccia ................ 8 9. Plot of K2O vs. SiO2 for rocks from McCoy Vitroclastic dacite and andesite breccia ...... 9 Peak quadrangle ..................... 8 Volcanic centers ...................... 10 10. Distrbution of pyroxene andesite and basaltic Regional dike swarm .................. 11 andesite dikes in French Butte, Greenhorn Age .............................. 13 Buttes, Tower Rock, and McCoy Peak INTRUSIVE SUITE OF KIDD CREEK ......... 13 quadrangles ........................ 12 Dikes ............................. 14 11. Rose diagrams of strikes of dikes and beds in Sills .............................. 16 McCoy Peak and other quadrangles ....... 13 Relation of dikes and sills ............... 16 12. Plcts of TiO2, FeO*, and MnO vs.
    [Show full text]
  • Sulphur Works Is Believed to Have Been the Main Vent for Mount Tehama, a Stratovolcano That Started Erupting About 600,000 Years Ago
    Junior Park Explorer Lassen Volcanic National Park Mystery of Mount Tehama Imagine you are standing almost a mile deep inside a stratovolcano. Well, 400,000 years ago you would have been! The area around Sulphur Works is believed to have been the main vent for Mount Tehama, a stratovolcano that started erupting about 600,000 years ago. By 400,000 years ago, it had reached its full height of 11,500 feet. Look around you in a full circle. Can you spot the mountains pictured below? They are all remnants (left over bits) of Mount Tehama. Remnant 1 – Brokeoff Mountain Remnant 2 – Mount Diller Remnant 3 – Pilot Pinnacle Remnant – Mount Conard Activity 1 - See if you can find these remnants on your park map. Trace a circle from one mountain to the next to outline the footprint of Mount Tehama. Be sure to include Little Hot Springs Valley inside the footprint. Activity 2 - Use the diagram on the next page to reconstruct Mount Tehama. Connect point A to point B, A to C, A to D, A to E, & A to F, individually. Can you see Mount Tehama in your imagination? Color in the mountain if you wish. Activity 3 - Another way to reconstruct Mount Tehama is as a view from down in the Sacramento Valley. On the next page, check out how the skyline of Lassen Volcanic National Park looks today, looking east from near Redding. Can you draw what the skyline might have looked like when Mount Tehama was at its full height of 11,500 feet, 400,000 years ago? Use the graph on the next page.
    [Show full text]
  • The Tuya-Teslin Areal Northern British Columbia
    BRITISH COLUMBIA DEPARTMENT OF MINES HON. E. C. CARSON, Minister JOHN F. WALKER, Dopulu Minis/#, BULLETIN No. 19 THE TUYA-TESLIN AREAL NORTHERN BRITISH COLUMBIA by K. DeP. WATSON and W. H.MATHEWS 1944 CONTENTS. P*GS SUMMARY.................................................................................................................................... 5 CHAPTER I.-Introduction ....................................................................................................... 6 Location............................................................................................................................. 6 Access................................................................................................................................. 7 Field-work .......................................................................................................................... 7 Acknowledgments ............................................................................................................. 7 Previous Work.................................................................................................................. 8 CHAPTER11.- I Topography ........................................................................................................................ 9 Kawdy Plateau.......................................................................................................... 9 Trenches ...................................................................................................................... 9 Teslin
    [Show full text]
  • Apinos, Open-File Report 83-400 This Report Is Preliminary and Has Not
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY The Volcano Hazards Program: Objectives and Long-Range P 1ans R. A. Bailey, P. R, Beauchemln, F, P. ~apinos, and D. W. Klick. Open-File Report 83-400 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. - - Reston 1983 TABLE OF CONTENTS Page I. Introduction 1 General Assessment of the Potential for Future Eruptions A. Mount St. Helens B. Other Cascade Volcanoes C, Other Western Conterminous U.S. Volcanoes D. Hawaii an Volcanoes E. Alaskan Volcanoes 111. Program bals, Objectives, and Components A. Volcanic Hazards Assessment B. Volcano Monitoring C. Fundamental Research 0. Emergency-Response Planning and Public Education IV. A Long-Range Volcano Hazards Program A. Funding his tor.^ B. General Objectives C. Specific Objectives D. Plans for Studies E. Resources F. International Cooperat ion V. The Federal Role 3 1. A. Public Need for Information about Impending 31 Volcanic Hazards B. Interstate Implications of Volcanic Disasters 32 C. Disruption of Regional and National Economies 32 0. Implication for Federal Lands 33 E. Mitigation of Subsequent Federal Disaster Assistance Costs 33 F. Need for an Integrated Research Program 33 Figure 1, Location of Potentially Hazardous Volcanoes in the U.S. 4 e Figure 2, History of Cascades Volcanism, 1800-1980 6 THE VOLCANO HAZARDS PROGRAM: OBJECTIVES AN0 LONG-RANGE PLANS I. INTRODUCTION Volcanoes and the products of volcanoes have a much greater impact on people and society than is generally perceived. Although commonly destructive, volcanic eruptions can be spectacularly beautiful and, more importantly, they have produced the very air we breathe, the water we drink, and our most fertile soils.
    [Show full text]
  • Roadless Rule and Dark Divide the Dark Divide Was Once Much Larger Than Its Current 76,000 Acres
    Exploring the PRING S RA Dark Divide I Despite its intimidating name, the Dark Divide is a place of sunny ridges and tremendous wildflower meadows. The region is endangered, however, by threats from off-road vehicle use. Southwest Washington’s threatened gem By Andrew Engelson soils and meadows. The region was A thick layer of ash from the 1980 excluded from the protections of the eruption of Mount St. Helens is still Don’t be afraid of the Dark Divide. 1984 Washington Wilderness Bill. prominent. Even with a somewhat ominous But hikers are slowly reclaiming the The region is home to a variety of name, this spectacular roadless area ridges with their boots. And there are forest ecosystems, all dependent on between Mount St. Helens and Mt. many reasons to go: unique geology, wildfires. Huge wildfires in the early Adams is actually filled with light: sun- abundant wildflowers and wildlife, 1900s left many of the open meadows baked ridges, subalpine forests, and and superb views. and silver-gray snags you’ll find there meadows exploding with wildflowers. The lava flows that are the founda- today. Even so, the region is home to Named for the 19th century miner tion of the 76,000-acre region are huge trees. Just outside the Dark and settler John Dark, the Dark approximately 20 to 25 million years Divide roadless area, you can find the Divide long served as hunting and old. Areas such as Juniper and world’s largest noble fir, near gathering grounds for American Langille Ridge were actually once Yellowjacket Creek.
    [Show full text]
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]
  • Earth Science Teaching Curriculum
    Earth Science for Secondary Schools Earth Science Teaching Curriculum By Chelsea DeVries Brent G. Hallock Advisor California Polytechnic State University Earth and Soil Sciences Department San Luis Obispo 2010 Approval Page TITLE: Earth Science for Secondary Schools AUTHOR: Chelsea D. DeVries DATE SUBMITTED: December 8, 2010 Brent G. Hallock Senior Project Advisor Signature Dr. Lynn Moody Department Chair Signature i Acknowledgments • I want to thank Dr. Moody and Dr. Hallock for being so kind, supportive, helpful, and PATIENT with me through my journey at Cal Poly. I may never have made it without them!!!! • I also want to thank my loving parents, for knowing exactly what to say every time I wanted to give up. • I want to thank my lovely husband-to-be, for being the rock I needed to stand on when I felt like I was in sinking sand. • Lastly, but DEFINETLY not least, I want to thank Katherine O’Clair and Debra Leopard for helping me with all the “computer stuff.” • I am very grateful the Internet, books, and journals that were used to complete this project. Please refer to the resources page when any picture, photograph, or chart is listed. ii Table of Contents Table of Contents Page Tile Page Approval Page i Acknowledgements ii Table of Contents iii Abstract 1 Introduction 2 Material and Methods 3 Results 7 Resources 82 Appendix 85 ***Power Point Presentations included on CD iii Abstract Creating this senior project, based on secondary Earth Science curriculum, will be directed toward teachers and will assist in lessons and instruction and reaching students at a deeper level.
    [Show full text]
  • Chapter 4 Alaska's Volcanic Landforms and Features
    Chapter 4 Alaska's Volcanic Landforms and Features Resources • Alaska Volcano Observatory website. (Available at http://www.avo.alaska.edu.) • Brantley, S.R., 1999, Volcanoes of the United States: U.S. Geological Survey General Interest Publication. (Available at http://pubs.usgs.gov/gip/volcus/index.html.) • Miller, T.P., McGimsey, R.G., Richter, D.H., Riehle, J.R., Nye, C.J., Yount, M.E., and Dumoulin, J.A., 1998, Catalog of the historically active volcanoes of Alaska: U.S. Geological Survey Open-File Report 98-0582, 104 p. (Also available at http://www.avo.alaska.edu/downloads/classresults.php?citid=645.) • Nye, C.J., and others, 1998, Volcanoes of Alaska: Alaska Division of Geological and Geophysical Surveys Information Circular IC 0038, accessed June 1, 2010, at . PDF Front (6.4 MB) http://www.dggs.dnr.state.ak.us/webpubs/dggs/ic/oversized/ic038_sh001.PDF and . PDF Back (6.6 MB) http://www.dggs.dnr.state.ak.us/webpubs/dggs/ic/oversized/ic038_sh002.PDF. • Smithsonian Institution, [n.d.], Global volcanism program—Augustine: Smithsonian Institution web page, accessed June 1, 2010, at http://www.volcano.si.edu/world/volcano.cfm?vnum=1103-01- &volpage=photos&phoyo=026071. • Tilling, R.I., 1997, Volcanoes—On-line edition: U.S. Geological Survey General Interest Product. (Available at http://pubs.usgs.gov/gip/volc/.) • U.S. Geological Survey, 1997 [2007], Volcanoes teacher’s guide: U.S. Geological Survey website. (Available at http://erg.usgs.gov/isb/pubs/teachers- packets/volcanoes/. • U.S. Geological Survey, 2010, Volcano Hazards Program—USGS photo glossary of volcanic terms: U.S.
    [Show full text]
  • Ashfall to Pact Events, and the State of the Early Atmosphere
    Newsletter of the Volcanology and Igneous Petrology Division Geological Association of Canada No. 64 April 27, 2007 From the President Canada has been doing well, the universities are produc- ing high-quality graduates in our field and the theses topics As a member of the selection committee for the Gelinas are more diverse than they were twenty years ago but still Gold Medal, I read several Ph.D. theses over a period of outstanding. several weeks. They were all excellent, cutting edge theses covering a wide variety of topics ranging from physical From the Editor volcanology through experimental petrology to petrology of mineralized granites. While reading the theses, I thought In this issue we have activity reports from Dante Canil at back to about twenty years ago when I first was on the the University of Victoria, Ryan Toole at the University of executive committee and the chair. At that time the division New Brunswick and Ben Edwards from Dickinson Col- discussed creating an award for the best thesis in volcanol- lege. There have been a few significant eruptions in the last ogy. A prominent member of the division, Leopold Gelinas few months. Nevado Del Huila in Colombia erupted on from Montreal, had recently died so we decided to name 17-18 April causing damage to houses and destroying 19 the award after him. Initially, the division had only a single bridges along the Páez and Símbola rivers. According to the award so we had to compare Ph.D. and M.Sc. theses but the New Zealand Institute of Geological & Nuclear Sciences, total number of theses submitted was significantly lower on Sunday, 19 March, rain triggered a lahar or volcanic than at present.
    [Show full text]