A. Diencephalon B. Telencephalon C. Metencephalon D

Total Page:16

File Type:pdf, Size:1020Kb

A. Diencephalon B. Telencephalon C. Metencephalon D SAMPLE TEST QUESTIONS Select the one best answer. l. The olfactory nerve is attached to the: A. Diencephalon B. Telencephalon C. Metencephalon D. Mesencephalon E. Myelencephalon 2. Following complete transection of a peripheral nerve, all the following may occur except: A. Chromatoloysis in the cell body. B. Degeneration of peripheral myelin distal to the site of injury. C. Degeneration of the axon distal to the site of injury. D. Immediate restoration of normal function following prompt surgical repair. E. Outgrowth of axonal sprouting from the proximal nerve stump .. 3. A lesion of the left hypoglossal nerve causes: A. Loss of taste sensation on the left side of the tongue. B. Deviation of the tongue to the right side, upon protrusion. C. Total inability to protrude the tongue. D. Deviation of the tongue to the left, upon protrusion. E. Hoarseness. 4. In the brain stem, the principle sensory decussation f0r general sensation ca~ried in the posterior columns of the spinal cord forms the: A. Medial lemniscus. B. Lateral lemniscus. C. Central tegmental fasciculus D. Medial longitudinal fasciculus E. Spinal lemniscus. 5. All are true of the lateral spinothalamic tract except: A. It caries sensations of pain and thermal sense. B. Fibers from sacral origin are located in the ventro-medial portion of the tract. C. Decussation occurs within one or two spinal segments of its origin. D. Fibers of cervical origin are located in the ventro-medial portion of the tract. E. It forms part of the brain stem lemniscal systems. 81 6. A unilateral lesion of the internal capsule involving the genu and the posterior limb, would cause: A. Contralateral total facial paralysis. B. Contralateral limb paralysis and ipsilateral lower facial paralysis. C. Ipsilateral limb paralysis and ipsilateral lower facial paralysis. D. Contralateral limb paralysis and contralateral lower facial paralysis. E. Ipsilateral total facial paralysis and contralateral limb paralysis. 7. Total occlusion of the right posterior cerebral artery: A. Causes total blindness. B. Causes no deficits because the right hemisphere is not dominant. C. Results in right homonymous hemianopsia. D. Results in left homonymous hemianopsia. E. Causes diplopia. 8. Structures traversing the incisural notch of the tentorium cerebelli include all the following except: A. Cerebral peduncle. B. Oculomotor nerve. C. Posterior cerebral artery. D. Facial nerve. E. Trochlear nerve. 9. Lesions of the cerebellum may cause all the following except: A. Hypotonia. B. Ataxia. C. Dysmetria. D. Hemiballismus. E. Asynnergy. 10. Structures involved in the auditory pathway include all except: A. Medial geniculate body. B. Inferior colliculus. C. Lateral geniculate body. D. Lateral lemniscus. E. Superior olivary nucleus. 82 For Questions 11, 12, and 13, match the following thalamic nuclei with their principle afferent connections: A. Posterior ventral lateral. B. Posterior ventral medial. C. Lateral ventral. D. Anterior ventral. 11. Brachium conjunctivum. 12. Thalamic fasciculus. 13. Trigeminal lemniscus. For Questions 14, 15 and 16, match destructive lesions in the following locations with the appropriate deficits: A. Hippocampus. B. Inferior frontal gyrus C. Middle frontal gyrus. D. Angular gyrus. 14. Motor aphasia. 15. Deviation of eyes to the side of the lesion. 16. Memory impairment. 17. Dynamic receptors responding to angular acceleration are found in the: A. Utricle. B. Ampullae of semicircular canals. C. Saccule. D. Helicotrema E. Organ of Corti. 18. Choroid plexus is found in all the following places except: A. Anterior horn of lateral ventricle. B. Foramen of Monroe. C. Roof of fourth ventricle. D. Roof of third ventricle E. Temporal horn of lateral ventricle. 19. Regarding upper motor neurons of the pyramidal system, all are correct except: A. They form the cortico spinal tract. B. If damaged, may result in upgoing toe sign (Baninski sign). C. They terminate as motor end plates on striped muscle. D. They include fibers of the cortico bulbar system. E. They comprise part of the internal capsule. 83 20. All of the following are part of the limbic system exceEt: A. Septal area. B. Dentate nucleus. c. Amygdaloid nucleus. D. Hippocampus. E. Cingulate gyrus. 2l. The right fasciculus gracilis carries impulses of: A. Position sense from the left leg. B. Thermal sense from the right leg C. Position sense from the right arm D. Position sense from the right leg. E. position sense from the left foot. 22. Structures found in the pons include all exceEt: A. Medial lemniscus. B. Motor trigeminal nucleus. C. Medial longitudinal fasciculus. D. Inferior olivary nucleus. E. Abducens nucleus. 23. Hypothalmic neurons secreting transmitters from axons terminating ~n the posterior pituitary are found in the: A. Posterior hypothalamic nucleus. B. The lateral tuberal nucleus. C. Supraoptic nucleus. D. Mammillary body. E. Medial tuberal nucleus. 24. All the following may result from basal ganglia lesions except: A. Hemiballismus. B. Huntington's chorea. C. Intentional tremor. D. Athetosis. E. Dyskinesia. 25. The hypoglossal nerve emerges from the brain stem: A. Between the olive and the pyramid. B. Between the olive and the trigeminal eminence. C. Between the pyramids. D. In the ponto medullary sulcus. E. Caudal to the pyramidal decussation. 84 ANSWERS: I. B 7. D 13. B 19. C 25. A 2. D 8. D 14. B 20. B 3. D 9. D 15. C 2I. D 4. A 10. C 16. A 22. D 5. B II. C 17. B 23. C 6. D 12. D 18. A 24. C .
Recommended publications
  • The Superior and Inferior Colliculi of the Mole (Scalopus Aquaticus Machxinus)
    THE SUPERIOR AND INFERIOR COLLICULI OF THE MOLE (SCALOPUS AQUATICUS MACHXINUS) THOMAS N. JOHNSON' Laboratory of Comparative Neurology, Departmmt of Amtomy, Un&versity of hfiehigan, Ann Arbor INTRODUCTION This investigation is a study of the afferent and efferent connections of the tectum of the midbrain in the mole (Scalo- pus aquaticus machrinus). An attempt is made to correlate these findings with the known habits of the animal. A subterranean animal of the middle western portion of the United States, Scalopus aquaticus machrinus is the largest of the genus Scalopus and its habits have been more thor- oughly studied than those of others of this genus according to Jackson ('15) and Hamilton ('43). This animal prefers a well-drained, loose soil. It usually frequents open fields and pastures but also is found in thin woods and meadows. Following a rain, new superficial burrows just below the surface of the ground are pushed in all directions to facili- tate the capture of worms and other soil life. Ten inches or more below the surface the regular permanent highway is constructed; the mole retreats here during long periods of dry weather or when frost is in the ground. The principal food is earthworms although, under some circumstances, larvae and adult insects are the more usual fare. It has been demonstrated conclusively that, under normal conditions, moles will eat vegetable matter. It seems not improbable that they may take considerable quantities of it at times. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University of Michigan.
    [Show full text]
  • Neuronal Organization in the Inferior Colliculus Revisited with Cell-Type- Dependent Monosynaptic Tracing
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Systems/Circuits Neuronal organization in the inferior colliculus revisited with cell-type- dependent monosynaptic tracing Chenggang Chen1, Mingxiu Cheng1,2, Tetsufumi Ito3 and Sen Song1 1Tsinghua Laboratory of Brain and Intelligence (THBI) and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China 2National Institute of Biological Sciences, Beijing, 102206, China 3Anatomy II, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan DOI: 10.1523/JNEUROSCI.2173-17.2018 Received: 31 July 2017 Revised: 2 February 2018 Accepted: 7 February 2018 Published: 24 February 2018 Author contributions: C.C., T.I., and S.S. designed research; C.C. and M.C. performed research; C.C. and T.I. analyzed data; C.C. wrote the first draft of the paper; C.C., T.I., and S.S. edited the paper; C.C., T.I., and S.S. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. This work was supported by funding from the National Natural Science Foundation of China (31571095, 91332122, for S.S.), Special Fund of Suzhou-Tsinghua Innovation Leading Action (for S.S.), Beijing Program on the Study of Brain-Inspired Computing System and Related Core Technologies (for S.S.), Beijing Innovation Center for Future Chip (for S.S.), and Chinese Academy of Sciences Institute of Psychology Key Laboratory of Mental Health Open Research Grant (KLMH2012K02, for S.S.), grants from Ministry of Education, Science, and Culture of Japan (KAKENHI grant, Grant numbers 16K07026 and 16H01501; for T.I.), and Takahashi Industrial and Economic Research Foundation (for T.I.).
    [Show full text]
  • DR. Sanaa Alshaarawy
    By DR. Sanaa Alshaarawy 1 By the end of the lecture, students will be able to : Distinguish the internal structure of the components of the brain stem in different levels and the specific criteria of each level. 1. Medulla oblongata (closed, mid and open medulla) 2. Pons (caudal, mid “Trigeminal level” and rostral). 3. Mid brain ( superior and inferior colliculi). Describe the Reticular formation (structure, function and pathway) being an important content of the brain stem. 2 1. Traversed by the Central Canal. Motor Decussation*. Spinal Nucleus of Trigeminal (Trigeminal sensory nucleus)* : ➢ It is a larger sensory T.S of Caudal part of M.O. nucleus. ➢ It is the brain stem continuation of the Substantia Gelatinosa of spinal cord 3 The Nucleus Extends : Through the whole length of the brain stem and upper segments of spinal cord. It lies in all levels of M.O, medial to the spinal tract of the trigeminal. It receives pain and temperature from face, forehead. Its tract present in all levels of M.O. is formed of descending fibers that terminate in the trigeminal nucleus. 4 It is Motor Decussation. Formed by pyramidal fibers, (75-90%) cross to the opposite side They descend in the Decuss- = crossing lateral white column of the spinal cord as the lateral corticospinal tract. The uncrossed fibers form the ventral corticospinal tract. 5 Traversed by Central Canal. Larger size Gracile & Cuneate nuclei, concerned with proprioceptive deep sensations of the body. Axons of Gracile & Cuneate nuclei form the internal arcuate fibers; decussating forming Sensory Decussation. Pyramids are prominent ventrally. 6 Formed by the crossed internal arcuate fibers Medial Leminiscus: Composed of the ascending internal arcuate fibers after their crossing.
    [Show full text]
  • Auditory and Vestibular Systems Objective • to Learn the Functional
    Auditory and Vestibular Systems Objective • To learn the functional organization of the auditory and vestibular systems • To understand how one can use changes in auditory function following injury to localize the site of a lesion • To begin to learn the vestibular pathways, as a prelude to studying motor pathways controlling balance in a later lab. Ch 7 Key Figs: 7-1; 7-2; 7-4; 7-5 Clinical Case #2 Hearing loss and dizziness; CC4-1 Self evaluation • Be able to identify all structures listed in key terms and describe briefly their principal functions • Use neuroanatomy on the web to test your understanding ************************************************************************************** List of media F-5 Vestibular efferent connections The first order neurons of the vestibular system are bipolar cells whose cell bodies are located in the vestibular ganglion in the internal ear (NTA Fig. 7-3). The distal processes of these cells contact the receptor hair cells located within the ampulae of the semicircular canals and the utricle and saccule. The central processes of the bipolar cells constitute the vestibular portion of the vestibulocochlear (VIIIth cranial) nerve. Most of these primary vestibular afferents enter the ipsilateral brain stem inferior to the inferior cerebellar peduncle to terminate in the vestibular nuclear complex, which is located in the medulla and caudal pons. The vestibular nuclear complex (NTA Figs, 7-2, 7-3), which lies in the floor of the fourth ventricle, contains four nuclei: 1) the superior vestibular nucleus; 2) the inferior vestibular nucleus; 3) the lateral vestibular nucleus; and 4) the medial vestibular nucleus. Vestibular nuclei give rise to secondary fibers that project to the cerebellum, certain motor cranial nerve nuclei, the reticular formation, all spinal levels, and the thalamus.
    [Show full text]
  • Lecture 12 Notes
    Somatic regions Limbic regions These functionally distinct regions continue rostrally into the ‘tweenbrain. Fig 11-4 Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 1 Chapter 11, questions about the somatic regions: 4) There are motor neurons located in the midbrain. What movements do those motor neurons control? (These direct outputs of the midbrain are not a subject of much discussion in the chapter.) 5) At the base of the midbrain (ventral side) one finds a fiber bundle that shows great differences in relative size in different species. Give examples. What are the fibers called and where do they originate? 8) A decussating group of axons called the brachium conjunctivum also varies greatly in size in different species. It is largest in species with the largest neocortex but does not come from the neocortex. From which structure does it come? Where does it terminate? (Try to guess before you look it up.) 2 Motor neurons of the midbrain that control somatic muscles: the oculomotor nuclei of cranial nerves III and IV. At this level, the oculomotor nucleus of nerve III is present. Fibers from retina to Superior Colliculus Brachium of Inferior Colliculus (auditory pathway to thalamus, also to SC) Oculomotor nucleus Spinothalamic tract (somatosensory; some fibers terminate in SC) Medial lemniscus Cerebral peduncle: contains Red corticospinal + corticopontine fibers, + cortex to hindbrain fibers nucleus (n. ruber) Tectospinal tract Rubrospinal tract Courtesy of MIT Press. Used with permission. Schneider, G.
    [Show full text]
  • Brainstem and Its Associated Cranial Nerves
    Brainstem and its Associated Cranial Nerves Anatomical and Physiological Review By Sara Alenezy With appreciation to Noura AlTawil’s significant efforts Midbrain (Mesencephalon) External Anatomy of Midbrain 1. Crus Cerebri (Also known as Basis Pedunculi or Cerebral Peduncles): Large column of descending ​ “Upper Motor Neuron” fibers that is responsible for movement coordination, which are: a. Frontopontine fibers b. Corticospinal fibers Ventral Surface c. Corticobulbar fibers d. Temporo-pontine fibers 2. Interpeduncular Fossa: Separates the Crus Cerebri from the middle. ​ 3. Nerve: 3rd Cranial Nerve (Oculomotor) emerges from the Interpeduncular fossa. ​ 1. Superior Colliculus: Involved with visual reflexes. ​ ​ ​ ​ Dorsal Surface 2. Inferior Colliculus: Involved with auditory reflexes. ​ ​ ​ 3. Nerve: 4th Cranial Nerve (Trochlear) emerges caudally to the Inferior Colliculus after decussating in the ​ superior medullary velum. Internal Anatomy of Midbrain 1. Superior Colliculus: Nucleus of grey matter that is associated with the Tectospinal Tract (descending) and the Spinotectal Tract ​ (ascending). a. Tectospinal Pathway: turning the head, neck and eyeballs in response to a visual stimuli.1 Level of ​ ​ ​ b. Spinotectal Pathway: turning the head, neck and eyeballs in response to a cutaneous stimuli.2 Superior ​ ​ ​ ​ 2. Oculomotor Nucleus: Situated in the periaqueductal grey matter. Colliculus ​ 3. Red Nucleus: Red mass3 of grey matter situated centrally in the Tegmentum. Involved in motor control (Rubrospinal Tract). ​ 1. Inferior Colliculus: Nucleus of grey matter that is associated with the Tectospinal Tract (descending) and the Spinotectal Tract ​ (ascending). Tectospinal Pathway: turning the head, neck and eyeballs in response to a auditory stimuli. ​ ​ ​ ​ 2. Trochlear Nucleus: Situated in the periaqueductal grey matter. Level of ​ Inferior 3.
    [Show full text]
  • ON-LINE FIG 1. Selected Images of the Caudal Midbrain (Upper Row
    ON-LINE FIG 1. Selected images of the caudal midbrain (upper row) and middle pons (lower row) from 4 of 13 total postmortem brains illustrate excellent anatomic contrast reproducibility across individual datasets. Subtle variations are present. Note differences in the shape of cerebral peduncles (24), decussation of superior cerebellar peduncles (25), and spinothalamic tract (12) in the midbrain of subject D (top right). These can be attributed to individual anatomic variation, some mild distortion of the brain stem during procurement at postmortem examination, and/or differences in the axial imaging plane not easily discernable during its prescription parallel to the anterior/posterior commissure plane. The numbers in parentheses in the on-line legends refer to structures in the On-line Table. AJNR Am J Neuroradiol ●:●●2019 www.ajnr.org E1 ON-LINE FIG 3. Demonstration of the dentatorubrothalamic tract within the superior cerebellar peduncle (asterisk) and rostral brain stem. A, Axial caudal midbrain image angled 10° anterosuperior to posteroinferior relative to the ACPC plane demonstrates the tract traveling the midbrain to reach the decussation (25). B, Coronal oblique image that is perpendicular to the long axis of the hippocam- pus (structure not shown) at the level of the ventral superior cerebel- lar decussation shows a component of the dentatorubrothalamic tract arising from the cerebellar dentate nucleus (63), ascending via the superior cerebellar peduncle to the decussation (25), and then enveloping the contralateral red nucleus (3). C, Parasagittal image shows the relatively long anteroposterior dimension of this tract, which becomes less compact and distinct as it ascends toward the thalamus. ON-LINE FIG 2.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,358,393 B1 L0zano (45) Date of Patent: Jun
    US00935.8393B1 (12) United States Patent (10) Patent No.: US 9,358,393 B1 L0ZanO (45) Date of Patent: Jun. 7, 2016 (54) STIMULATION METHODS AND SYSTEMS 4,203,440 A 5/1980 Theeuwes FORTREATING AN AUDITORY 4,203.442 A 5/1980 Michaels DYSFUNCTION 4,210,139 A 7/1980 Higuchi (Continued) (76) Inventor: Andres M. Lozano, Toronto (CA) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 WO WOO1,08617 A1 2/2001 U.S.C. 154(b) by 1826 days. OTHER PUBLICATIONS (21) Appl. No.: 11/271,126 Office action dated Sep. 16, 2009 for related U.S. Appl. No. 1 1/271,688 (Lozano-1), filed Nov. 9, 2005, Inventor: Andres M. (22) Filed: Nov. 9, 2005 Lozano, (14 pages). Related U.S. Application Data (Continued) (60) gynal application No. 60/626,174, filed on Nov. Primary Examiner — Nicole F Lavert s (74) Attorney, Agent, or Firm — Faegre Baker Daniels LLP (51) Int. Cl. A61N L/00 (2006.01) (57) ABSTRACT A6 IB5/02 (2006.01) Methods of treating auditory hallucinations, hyperacusis, A6 IN L/36 (2006.01) Schizophrenia, and/or phonophobia include applying at least A61N L/05 (2006.01) one stimulus to a stimulation site within a patient with an (52) U.S. Cl. implanted stimulator in accordance with one or more stimu CPC .......... A61N I/36132 (2013.01); A61N I/0541 lation parameters. The stimulation site may include, for (2013.01) example, at least one or more of a cochlear nucleus, auditory (58) Field of Classification Search striae, Superior olivary complex, lateral lemniscus, inferior USPC ......................................
    [Show full text]
  • Commissural Projections of the Nuclei of the Lateral Lemniscus and Keuronal Degeneration Following Midline Transections in the Adult Rat By
    Commissural Projections of the Nuclei of the Lateral Lemniscus and Keuronal Degeneration Following Midline Transections in the Adult Rat by Brian Anthony van Adel B .Sc. (Hons) Carleton University, 1995 A thesis subrnitted to the faculty of Graduate Studies and Research in partial fulnllment of the requirements of the degree of Master of Science Specialization in Neuroscience Deparûnent of Biology Ottawa-Carleton Institutes of Biology and Neuroscience Carleton University Ottawa, Ontano May, 1998 O copyright 1998, Brian Anthony van Adel National Library Bibliothèque nationale 1+1 .,nad, du Canada Acquisitions and Acquisitions et Bibliographie Services seMces bibliographiques 395 Wellington Street 395, rue Wellington OttawaON KtAW ûuawaON KtAON4 canada CaMda The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, 10- disûiiute or sen reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette these sous paper or electronic formats. la forme de microfiche/fïlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otheMrise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT The normal neuroanatomical organization of the rat's nuclei of the lateral lemniscus (nLL) was investigated (Experiment 1) as a prerequisite for a time course analysis of retrograde changes in commissural projec~glemniscd neurons following midline surgical transection of their axons (Expriment 2).
    [Show full text]
  • Role of P2y Receptors in the Spinal-Trigeminal System in Vivo and in Vitro
    UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Farmacia Dipartimento di Scienze Farmacologiche Corso di Dottorato di Ricerca in Scienze Farmacotossicologiche, Farmacognostiche e Biotecnologie Farmacologiche (XXIII CICLO) Graduate School in Pharmacological Sciences / Scuola di Dottorato in Scienze farmacologiche TESI DI DOTTORATO DI RICERCA PURINERGIC TRANSMISSION IN MIGRAINE: ROLE OF P2Y RECEPTORS IN THE SPINAL-TRIGEMINAL SYSTEM IN VIVO AND IN VITRO BIO/14 Tesi di dottorato di: GIOVANNI VILLA MATRICOLA: R07517 TUTOR: Chiar.ma Prof.ssa Maria Pia ABBRACCHIO CORRELATORE: Dr.ssa Stefania CERUTI COORDINATORE: Chiar.mo Prof. Guido FRANCESCHINI ANNO ACCADEMICO 2009/2010 Index INDEX 1. INTRODUCTION _______________________________ 1 1.1 PAIN AND NOCICEPTION 2 1.1.1 Molecular basis of nociception 3 1.1.2 The trigeminal nerve and the spinal-trigeminal system 4 1.1.3 Role of non-neuronal cells in pain transmission 9 1.2 MIGRAINE 12 1.2.1 Description of the migraine attack 14 1.2.2 How and where does the migraine attack originate? 15 1.2.3 Familial hemiplegic migraine 21 1.2.4 Current and future pharmacological treatment of migraine 24 1.3 THE PURINERGIC SYSTEM 29 1.3.1 Purinergic signalling 30 1.3.2 P2X receptors 32 1.3.3 P2Y receptors 33 1.3.4 Pathophysiological roles of extracellular nucleotides in the nervous system 36 1.4 PURINES AND PAIN 41 1.4.1 Role of P2X receptors in pain transmission 42 1.4.2 Role of P2Y receptors in pain transmission: sensory ganglia 46 1.4.3 Role of P2Y receptors in pain transmission: CNS 48 2.
    [Show full text]
  • The Nuclear Pattern of the Nok-Tectal Portions of the Midbrain and Isthmus in the Opossum
    THE NUCLEAR PATTERN OF THE NOK-TECTAL PORTIONS OF THE MIDBRAIN AND ISTHMUS IN THE OPOSSUM RUSSELL T. WOODBURNE Department of Anatomy, Uniwersity of Yichigan SIX PLATES (TWELVE FIGURES) INTRODUCTION It is logical that the present series of descriptions of the nuclear pattern of the midbrain tegmentum in mammals should begin with the account of this region in marsupials, since the American opossum presents a simplified and generalized type of mammalian midbrain. The material employed in the present study consists of toluidin blue series, cut in various planes, of the brain of the American opossum, Didelphis virginiana. These preparations are a part of the Huber Neurological Collection of the Department of Anatomy of the University of Michigan. The literature particularly pertinent to specific nuclear de- scriptions will be discussed in connection with such descrip- tions and the general literature dealing with other than marsupial forms is dealt with in other sections of this series of papers and complete reference made in the comprehensive bibliography. There are, however, certain papers of which some mention should be made. The series of papers by Castaldi ('23, '24, '26) gave the basis for the nomenclature and the general pattern of subdivision followed here. Tsai's ('25) account of portions of the marsupial midbrain, although con- cerned primarily with tectal and pretectal areas, gave some aid in orientation. Certain of the pretectal regions were con- sidered in the light of earlier accounts of Chu ( '32) and Bodian ('40). The text of Ariens Kappers, Huber and Crosby ('36) was used for general orientation and comparative information.
    [Show full text]
  • The Human Cortical Dental Pain Matrix : Neural Activation Patterns of Tooth Pain Investigated with Fmri
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2011 The human cortical dental pain matrix : neural activation patterns of tooth pain investigated with fMRI Brügger, Michael Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-164035 Dissertation Published Version Originally published at: Brügger, Michael. The human cortical dental pain matrix : neural activation patterns of tooth pain investigated with fMRI. 2011, University of Zurich, Faculty of Arts. The Human Cortical Dental Pain Matrix Neural Activation Patterns of Tooth Pain investigated with fMRI Thesis presented to the Faculty of Arts of the University of Zurich for the degree of Doctor of Philosophy by Michael Brügger of Marbach SG Accepted in the spring semester 2009 on the recommendation of Prof. Dr. rer. nat. Lutz Jäncke and Prof. Dr. med. dent. Sandro Palla Zurich, 2011 …the authors "art‐like" interpretation of a human brain under tooth pain… CONTENTS SUMMARY .................................................................................................................................. 6 ZUSAMMENFASSUNG ................................................................................................................ 7 PREFACE ..................................................................................................................................... 9 1. INTRODUCTION ....................................................................................................
    [Show full text]