Earthquake-Induced Chains of Geologic Hazards: Patterns

Total Page:16

File Type:pdf, Size:1020Kb

Earthquake-Induced Chains of Geologic Hazards: Patterns REVIEW ARTICLE Earthquake‐Induced Chains of Geologic Hazards: 10.1029/2018RG000626 Patterns, Mechanisms, and Impacts Key Points: Xuanmei Fan1 , Gianvito Scaringi1,2 , Oliver Korup3, A. Joshua West4 , • Coupled surface processes initiated 5 5 3 6 by strong seismic shaking are Cees J. van Westen , Hakan Tanyas , Niels Hovius , Tristram C. Hales , important hazards in mountain Randall W. Jibson7 , Kate E. Allstadt7 , Limin Zhang8, Stephen G. Evans9, Chong Xu10, landscapes Gen Li4 , Xiangjun Pei1, Qiang Xu1, and Runqiu Huang1 • Earthquake‐induced landslides pose challenges to hazard and risk 1State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, assessment, management, and 2 mitigation Chengdu, China, Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles • Multidisciplinary approaches University, Prague, Czech Republic, 3Institute of Earth and Environmental Science, University of Potsdam, Potsdam, further the understanding of the Germany, 4Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA, 5Faculty of Geo‐ earthquake hazard cascade, yet Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands, 6School of Earth and challenges remain Ocean Sciences, Cardiff University, Cardiff, UK, 7U.S. Geological Survey, Golden, CO, USA, 8Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, 9Department of Earth Supporting Information: 10 • Supporting Information S1 and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada, Key Laboratory of Active Tectonics and Volcano, Institute of Geology, China Earthquake Administration, Beijing, China Correspondence to: Q. Xu and R. Huang, Abstract Large earthquakes initiate chains of surface processes that last much longer than the brief [email protected]; moments of strong shaking. Most moderate‐ and large‐magnitude earthquakes trigger landslides, ranging [email protected] from small failures in the soil cover to massive, devastating rock avalanches. Some landslides dam rivers and impound lakes, which can collapse days to centuries later, and flood mountain valleys for hundreds of Citation: kilometers downstream. Landslide deposits on slopes can remobilize during heavy rainfall and evolve into Fan, X., Scaringi, G., Korup, O., West, debris flows. Cracks and fractures can form and widen on mountain crests and flanks, promoting increased A. J., van Westen, C. J., Tanyas, H., et al. fl (2019). Earthquake‐induced chains of frequency of landslides that lasts for decades. More gradual impacts involve the ushing of excess debris geologic hazards: Patterns, downstream by rivers, which can generate bank erosion and floodplain accretion as well as channel mechanisms, and impacts. Reviews of avulsions that affect flooding frequency, settlements, ecosystems, and infrastructure. Ultimately, earthquake Geophysics, 57. https://doi.org/10.1029/ 2018RG000626 sequences and their geomorphic consequences alter mountain landscapes over both human and geologic time scales. Two recent events have attracted intense research into earthquake‐induced landslides and Received 1 OCT 2018 their consequences: the magnitude M 7.6 Chi‐Chi, Taiwan earthquake of 1999, and the M 7.9 Wenchuan, Accepted 22 APR 2019 China earthquake of 2008. Using data and insights from these and several other earthquakes, we analyze Accepted article online 7 MAY 2019 how such events initiate processes that change mountain landscapes, highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface. Plain Language Summary Strong earthquakes in mountainous regions trigger chains of events that modify mountain landscapes over days, years, and millennia. Earthquake shaking can cause many tens of thousands of landslides on steep mountain slopes. Some of these sudden slope failures can block rivers and form temporary lakes that can later collapse and cause huge floods. Other landslides move more slowly, in some cases in a stop‐start fashion during heavy rains or earthquake aftershocks. Debris from these landslides can clog channels, and during heavy rainfall, the debris can be transported downstream for many kilometers with catastrophic consequences. New landslides tend to happen more frequently than usual for months to years following an earthquake because the strong ground shaking has fractured and weakened the slopes. Other effects of large earthquakes can last, in various forms, over geologic time scales. Over the past two decades, our understanding of these issues has advanced because of the detailed study of the 1999 Chi‐Chi earthquake in Taiwan and the 2008 Wenchuan earthquake in China. We compile and discuss the results of research on these and other earthquakes and explain what we have learned, what we still need ©2019. The Authors. to know, and where we should direct future studies. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs 1. Introduction License, which permits use and distri- bution in any medium, provided the Earthquake‐triggered landslides and their consequences are major hazards in mountains. The destructive original work is properly cited, the use is non‐commercial and no modifica- earthquakes in Taiwan (M 7.6, 1999), China (M 7.9, 2008), Nepal (M 7.8, 2015), and New Zealand (M 7.8, tions or adaptations are made. 2016) caused widespread landsliding and prompted researchers to study with increasing detail how FAN ET AL. 1 Reviews of Geophysics 10.1029/2018RG000626 earthquake‐triggered landslides erode landscapes. Early work by Simonett (1967) and Pearce and Watson (1983, 1986) recognized the importance of earthquakes in abruptly raising rates of erosion, sediment trans- port, and deposition. Detailed work on the 1999 Chi‐Chi, Taiwan earthquake (e.g., Dadson et al., 2004), pro- posed that earthquakes can change mountain landscapes instantaneously by triggering downslope movement of soils, debris, and rock landslides involving 103–1010 m3; more gradual flushing of these loose materials from the affected areas continues for some time after the triggering earthquake. Earthquake magnitude and depth are first‐order controls on the degree of landscape disturbance, modulated by the character of incoming seismic waves, topography, rock‐mass properties, groundwater conditions, and other factors (Fan, Scaringi, et al., 2018; Gorum et al., 2011). Seismic shaking is an instantaneous perturba- tion, but its effects attenuate, and the cumulative effects of earthquakes can leave a mark in the evolution of mountain landscapes (Hovius et al., 2011; Marc, Hovius, & Meunier, 2016). A cascade of processes actually takes place after a large continental earthquake (Figure 1). These processes bring differing degrees of hazard, which pose a risk when interacting with the human world. Spatial frequency distributions of earthquake‐triggered landslides are influenced by several factors, includ- ing source materials (i.e., the soil/regolith cover or the type of underlying intact bedrock), movement mechanisms (sliding, falling, flowing, or their combinations), ground‐motion characteristics, and sizes (in terms of planform area involved, depth, and volume displaced; Figure 1, red background). The shaking also can weaken slopes across the landscape and make them more prone to delayed failure (increased rate of occurrence). Days to years after the earthquake (blue background), landslide dams formed by earthquake‐ triggered landslides can breach and generate floods. Remobilizations and coalescence of landslide debris as a consequence of heavy rainfall can generate destructive debris flows. Years to decades later (yellow back- ground), floods can continue, albeit less frequently. Delayed slope failures also can occur, and slow processes such as river aggradation will become apparent as the earthquake‐generated debris progressively moves downstream. Description and discussion around these processes and their cause‐effect links form the struc- ture of this review, as presented in section 1.1. Many landslide disasters since 1900 have had an earthquake origin (Chen et al., 2012; Froude & Petley, 2018; Gorum et al., 2011; section 2.1). Investigating the patterns of these processes is essential for risk mitigation, emergency response, reconstruction, and increasing resilience (Das et al., 2018; Flentje & Chowdhury, 2018; Petley, 2011). Integrating these processes over longer time scales reveals the way earthquakes shape moun- tain belts and provides diagnostics for identifying past earthquakes in sediment and landforms. A large body of literature on specific aspects of the earthquake‐induced surface processes has grown over the past five decades. More than a thousand articles were published presenting case studies, models, and discus- sions on the impacts of the 2008 Wenchuan earthquake alone (Fan, Juang, et al., 2018). However, no com- prehensive reviews have covered thus far the complete role of earthquake‐induced landslides and their consequences across a variety of landscapes (and seismic patterns) and in short‐ to long‐term time scales. Only a small number of specialized reviews and meta‐analyses touching upon specific aspects of this topic have been published. The most widely recognized works, which were relevant for the preparation of our comprehensive review, are reported in Table 1. 1.1. Structure of the Review Seismic shaking
Recommended publications
  • Changes in Geyser Eruption Behavior and Remotely Triggered Seismicity in Yellowstone National Park Produced by the 2002 M 7.9 Denali Fault Earthquake, Alaska
    Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali fault earthquake, Alaska S. Husen* Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA R. Taylor National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming 82190, USA R.B. Smith Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA H. Healser National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming 82190, USA ABSTRACT STUDY AREA Following the 2002 M 7.9 Denali fault earthquake, clear changes in geyser activity and The Yellowstone volcanic field, Wyoming, a series of local earthquake swarms were observed in the Yellowstone National Park area, centered in Yellowstone National Park (here- despite the large distance of 3100 km from the epicenter. Several geysers altered their after called ‘‘Yellowstone’’), is one of the larg- eruption frequency within hours after the arrival of large-amplitude surface waves from est silicic volcanic systems in the world the Denali fault earthquake. In addition, earthquake swarms occurred close to major (Christiansen, 2001; Smith and Siegel, 2000). geyser basins. These swarms were unusual compared to past seismicity in that they oc- Three major caldera-forming eruptions oc- curred simultaneously at different geyser basins. We interpret these observations as being curred within the past 2 m.y., the most recent induced by dynamic stresses associated with the arrival of large-amplitude surface waves. 0.6 m.y. ago. The current Yellowstone caldera We suggest that in a hydrothermal system dynamic stresses can locally alter permeability spans 75 km by 45 km (Fig.
    [Show full text]
  • The Race to Seismic Safety Protecting California’S Transportation System
    THE RACE TO SEISMIC SAFETY PROTECTING CALIFORNIA’S TRANSPORTATION SYSTEM Submitted to the Director, California Department of Transportation by the Caltrans Seismic Advisory Board Joseph Penzien, Chairman December 2003 The Board of Inquiry has identified three essential challenges that must be addressed by the citizens of California, if they expect a future adequately safe from earthquakes: 1. Ensure that earthquake risks posed by new construction are acceptable. 2. Identify and correct unacceptable seismic safety conditions in existing structures. 3. Develop and implement actions that foster the rapid, effective, and economic response to and recovery from damaging earthquakes. Competing Against Time Governor’s Board of Inquiry on the 1989 Loma Prieta Earthquake It is the policy of the State of California that seismic safety shall be given priority consideration in the allo- cation of resources for transportation construction projects, and in the design and construction of all state structures, including transportation structures and public buildings. Governor George Deukmejian Executive Order D-86-90, June 2, 1990 The safety of every Californian, as well as the economy of our state, dictates that our highway system be seismically sound. That is why I have assigned top priority to seismic retrofit projects ahead of all other highway spending. Governor Pete Wilson Remarks on opening of the repaired Santa Monica Freeway damaged in the 1994 Northridge earthquake, April 11, 1994 The Seismic Advisory Board believes that the issues of seismic safety and performance of the state’s bridges require Legislative direction that is not subject to administrative change. The risk is not in doubt. Engineering, common sense, and knowledge from prior earthquakes tells us that the consequences of the 1989 and 1994 earthquakes, as devastating as they were, were small when compared to what is likely when a large earthquake strikes directly under an urban area, not at its periphery.
    [Show full text]
  • Lessons Learned from Oil Pipeline Natech Accidents and Recommendations for Natech Scenario Development
    Lessons learned from oil pipeline natech accidents and recommendations for natech scenario development Final Report Serkan Girgin, Elisabeth Krausmann 2015 Report EUR 26913 EN European Commission Joint Research Centre Institute for the Protection and Security of the Citizen Contact information Elisabeth Krausmann Address: Joint Research Centre, Via E. Fermi 2749, 21027 Ispra (VA), Italy E-mail: [email protected] https://ec.europa.eu/jrc Legal Notice This publication is a Science and Policy Report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Image credits: Trans-Alaska Pipeline on slider supports at the Denali Fault crossing: ©T Dawson, USGS JRC92700 EUR 26913 EN ISBN 978-92-79-43970-4 ISSN 1831-9424 doi:10.2788/20737 Luxembourg: Publications Office of the European Union, 2015 © European Union, 2015 Reproduction is authorised provided the source is acknowledged. Abstract Natural hazards can impact oil transmission pipelines with potentially adverse consequences on the population and the environment. They can also cause significant economic impacts to pipeline operators. Currently, there is only limited historical information available on the dynamics of natural hazard impact on pipelines and Action A6 of the EPCIP 2012 Programme aimed at shedding light on this issue. This report presents the findings of the second year of the study that focused on the analysis of onshore hazardous liquid transmission pipeline natechs, with special emphasis on natural hazard impact and damage modes, incident consequences, and lessons learned for scenario building.
    [Show full text]
  • UCLA UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title An Improved Framework for the Analysis and Dissemination of Seismic Site Characterization Data at Varying Resolutions Permalink https://escholarship.org/uc/item/6p35w167 Author Ahdi, Sean Kamran Publication Date 2018 Supplemental Material https://escholarship.org/uc/item/6p35w167#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles An Improved Framework for the Analysis and Dissemination of Seismic Site Characterization Data at Varying Resolutions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Civil Engineering by Sean Kamran Ahdi 2018 © Copyright by Sean Kamran Ahdi 2018 ABSTRACT OF THE DISSERTATION An Improved Framework for the Analysis and Dissemination of Seismic Site Characterization Data at Varying Resolutions by Sean Kamran Ahdi Doctor of Philosophy in Civil Engineering University of California, Los Angeles, 2018 Professor Jonathan Paul Stewart, Chair The most commonly used parameter for representing site conditions for ground motion studies is the time-averaged shear-wave velocity in the upper 30 m, or VS30. While it is preferred to compute VS30 from a directly measured shear-wave velocity (VS) profile using in situ geophysical methods, this information is not always available. One major application of VS30 is the development of ergodic site amplification models, for example as part of ground motion model (GMM) development projects, which require VS30 values for all sites. The first part of this dissertation (Chapters 2-4) addresses the development of proxy-based models for estimation of VS30 for application in subduction zone regions.
    [Show full text]
  • Engineering Geology and Seismology for Public Schools and Hospitals in California
    The Resources Agency California Geological Survey Michael Chrisman, Secretary for Resources Dr. John G. Parrish, State Geologist Engineering Geology and Seismology for Public Schools and Hospitals in California to accompany California Geological Survey Note 48 Checklist by Robert H. Sydnor, Senior Engineering Geologist California Geological Survey www.conservation.ca.gov/cgs July 1, 2005 316 pages Engineering Geology and Seismology performance–based analysis, diligent subsurface for Public Schools and Hospitals sampling, careful reading of the extensive geologic in California literature, thorough knowledge of the California Building Code, combined with competent professional geological work. by Robert H. Sydnor Engineering geology aspects of hospital and public California Geological Survey school sites include: regional geology, regional fault July 1, 2005 316 pages maps, site-specific geologic mapping, geologic cross- sections, active faulting, official zones of investigation Abstract for liquefaction and landslides, geotechnical laboratory The 446+ hospitals, 1,400+ skilled nursing facilities testing of samples, expansive soils, soluble sulfate ±9,221 public schools, and 109 community college evaluation for Type II or V Portland-cement selection, campuses in California are regulated under California and flooding. Code of Regulations, Title 24, California Building Code. Seismology aspects include: evaluation of historic These facilities are plan–checked by senior–level seismicity, probabilistic seismic hazard analysis of Registered Structural Engineers within the Office of earthquake ground–motion, use of proper code terms Statewide Health Planning and Development (OSHPD) (Upper–Bound Earthquake ground–motion and Design– for hospitals and skilled nursing facilities, and the Basis ground–motion), classification of the geologic Division of the State Architect (DSA) for public schools, subgrade by shear–wave velocity to select the correct community colleges, and essential services buildings.
    [Show full text]
  • Distribution Pattern of Landslides Triggered by the 2014
    International Journal of Geo-Information Article Distribution Pattern of Landslides Triggered by the 2014 Ludian Earthquake of China: Implications for Regional Threshold Topography and the Seismogenic Fault Identification Suhua Zhou 1,2, Guangqi Chen 1 and Ligang Fang 2,* 1 Department of Civil and Structural Engineering, Kyushu University, Fukuoka 819-0395, Japan; [email protected] (S.Z.); [email protected] (G.C.) 2 Department of Geotechnical Engineering, Central South University, Changsha 410075, China * Correspondance: [email protected]; Tel.: +86-731-8253-9756 Academic Editor: Wolfgang Kainz Received: 16 February 2016; Accepted: 11 March 2016; Published: 30 March 2016 Abstract: The 3 August 2014 Ludian earthquake with a moment magnitude scale (Mw) of 6.1 induced widespread landslides in the Ludian County and its vicinity. This paper presents a preliminary analysis of the distribution patterns and characteristics of these co-seismic landslides. In total, 1826 landslides with a total area of 19.12 km2 triggered by the 3 August 2014 Ludian earthquake were visually interpreted using high-resolution aerial photos and Landsat-8 images. The sizes of the landslides were, in general, much smaller than those triggered by the 2008 Wenchuan earthquake. The main types of landslides were rock falls and shallow, disrupted landslides from steep slopes. These landslides were unevenly distributed within the study area and concentrated within an elliptical area with a 25-km NW–SE striking long axis and a 15-km NW–SE striking short axis. Three indexes including landslides number (LN), landslide area ratio (LAR), and landslide density (LD) were employed to analyze the relation between the landslide distribution and several factors, including lithology, elevation, slope, aspect, distance to epicenter and distance to the active fault.
    [Show full text]
  • A Rapid Identification Method for Severely
    Environ Earth Sci (2016) 75:704 DOI 10.1007/s12665-016-5540-6 ORIGINAL ARTICLE A rapid identification method for severely earthquake-damaged areas based on damaged mobile phone base stations in China 1 2 1 1 Xiaoyong Zhang • Qingshui Lu • Baokun Ning • Zhiyong Huang Received: 26 October 2015 / Accepted: 5 March 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract Obtaining an accurate map of severely dam- property. However, current methods to map earthquake- aged areas immediately after an earthquake is a high pri- damaged areas in China do not meet the required 2-h time ority in China. Previous methods of mapping these areas in constraint. For instance, seismic intensity attenuation the country have been too slow. The increasing number of models rely on seismic intensity in the earthquake epi- mobile phone base stations provides a new means of central region to identify extremely damaged areas, but identifying areas severely damaged by earthquakes in a acquiring seismic intensity data to determine that region very short time. In this study, we derive a new method requires many hours of processing (Yu 1995; Zhang et al. based on the data of faulty mobile phone base stations. Our 2009; Tan et al. 2011). Some studies use earthquake results show that areas of extreme earthquake damage aftershock data to estimate extremely damaged areas. identified according to base stations damaged by the However, with this method, processing the seismic data to Ludian and Lushan earthquakes were in very good agree- derive a map of such areas requires at least 1 day because a ment with large-magnitude seismic intensity zones outlined series of aftershock data observed within 24 h after the by the China Earthquake Administration.
    [Show full text]
  • Geologic Mapping and the Trans-Alaska Pipeline Using Geologic Maps to Protect Infrastructure and the Environment
    Case Study Geologic Mapping and the Trans-Alaska Pipeline Using geologic maps to protect infrastructure and the environment Overview The 800-mile-long Trans-Alaska Pipeline, which starts at examining the fault closely and analyzing its rate of Prudhoe Bay on Alaska’s North Slope, can carry 2 million movement, geologists determined that the area around barrels of oil per day south to the port of Valdez for export, the pipeline crossing—had the potential to generate a equal to roughly 10% of the daily consumption in the United very significant earthquake greater than magnitude 8. States in 2017. The pipeline crosses the Denali fault some 90 miles south of Fairbanks. A major earthquake along the fault could cause the pipeline to rupture, spilling crude oil into the surrounding environment. Denali Fault Trace In 2002, a magnitude 7.9 earthquake struck the Denali fault, one of the largest earthquakes ever recorded in North America, which caused violent shaking and large ground movement where the pipeline crossed the fault. However, the pipeline did not spill a drop of oil, and only saw a 3-day shutdown for inspections. Geologic mapping of the pipeline area prior to its construction allowed geologists and engineers to identify and plan for earthquake hazards in the pipeline design, which mitigated damage to pipeline infrastructure and helped prevent a potentially major oil spill during the 2002 earthquake. Geologic Mapping The Trans-Alaska Pipeline after the 2002 earthquake on the Denali Mapping the bedrock geology along the 1,000-mile-long fault. The fault rupture occurred between the second and third Denali fault revealed information on past movement on the beams fault and the likely direction of motion on the fault in future Image credit: Tim Dawson, U.S.
    [Show full text]
  • Interseismic Slip and Coupling Along the Haiyuan Fault Zone Constrained by Insar and GPS Measurements
    remote sensing Article Interseismic Slip and Coupling along the Haiyuan Fault Zone Constrained by InSAR and GPS Measurements Xin Qiao 1,2 , Chunyan Qu 1,* , Xinjian Shan 1, Dezheng Zhao 1 and Lian Liu 1 1 State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China; [email protected] (X.Q.); [email protected] (X.S.); [email protected] (D.Z.); [email protected] (L.L.) 2 Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-Sen University, Zhuhai 519000, China * Correspondence: [email protected] Abstract: The Haiyuan fault zone is an important tectonic boundary and strong seismic activity belt in northeastern Tibet, but no major earthquake has occurred in the past ∼100 years, since the Haiyuan M8.5 event in 1920. The current state of strain accumulation and seismic potential along the fault zone have attracted significant attention. In this study, we obtained the interseismic deformation field along the Haiyuan fault zone using Envisat/ASAR data in the period 2003–2010, and inverted fault kinematic parameters including the long-term slip rate, locking degree and slip deficit distribution based on InSAR and GPS individually and jointly. The results show that there is near-surface creep in the Laohushan segment of about 19 km. The locking degree changes significantly along the strike with the western part reaching 17 km and the eastern part of 3–7 km. The long-term slip rate gradually decreases from west 4.7 mm/yr to east 2.0 mm/yr.
    [Show full text]
  • Active Tectonics and Intracontinental Earthquakes in China: the Kinematics and Geodynamics
    The Geological Society of America Special Paper 425 2007 Active tectonics and intracontinental earthquakes in China: The kinematics and geodynamics Mian Liu Youqing Yang Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA Zhengkang Shen State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China Shimin Wang Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA Min Wang Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China Yongge Wan School of Disaster Prevention Techniques, Yanjiao, Beijing 101601, China ABSTRACT China is a country of intense intracontinental seismicity. Most earthquakes in west- ern China occur within the diffuse Indo-Eurasian plate-boundary zone, which extends thousands of kilometers into Asia. Earthquakes in eastern China mainly occur within the North China block, which is part of the Archean Sino-Korean craton that has been thermally rejuvenated since late Mesozoic. Here, we summarize neotectonic and geo- detic results of crustal kinematics and explore their implications for geodynamics and seismicity using numerical modeling. Quaternary fault movements and global position- ing system (GPS) measurements indicate a strong infl uence of the Indo-Asian colli- sion on crustal motion in continental China. Using a spherical three-dimensional (3-D) fi nite-element model, we show that the effects of the collisional plate-boundary force are largely limited to western China, whereas gravitational spreading of the Tibetan Plateau has a broad impact on crustal deformation in much of Asia. The intense seis- micity in the North China block, and the lack of seismicity in the South China block, may be explained primarily by the tectonic boundary conditions that produce high devi- atoric stresses within the North China block but allow the South China block to move coherently as a rigid block.
    [Show full text]
  • Structure-Controlled Asperities of the 1920 Haiyuan M8.5 and 1927
    www.nature.com/scientificreports OPEN Structure‑controlled asperities of the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes, NE Tibet, China, revealed by high‑resolution seismic tomography Quan Sun1,2, Shunping Pei1,2,3*, Zhongxiong Cui4, Yongshun John Chen5, Yanbing Liu1,2, Xiaotian Xue1,2, Jiawei Li1,2, Lei Li1,2 & Hong Zuo1,2 Detailed crustal structure of large earthquake source regions is of great signifcance for understanding the earthquake generation mechanism. Numerous large earthquakes have occurred in the NE Tibetan Plateau, including the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes. In this paper, we obtained a high‑resolution three‑dimensional crustal velocity model around the source regions of these two large earthquakes using an improved double‑diference seismic tomography method. High‑ velocity anomalies encompassing the seismogenic faults are observed to extend to depths of 15 km, suggesting the asperity (high‑velocity area) plays an important role in the preparation process of large earthquakes. Asperities are strong in mechanical strength and could accumulate tectonic stress more easily in long frictional locking periods, large earthquakes are therefore prone to generate in these areas. If the close relationship between the aperity and high‑velocity bodies is valid for most of the large earthquakes, it can be used to predict potential large earthquakes and estimate the seismogenic capability of faults in light of structure studies. Earthquakes occur when the stored energy in the Earth’s lithosphere is suddenly released. Large earthquakes usually cause great hazards on natural environment and/or humans. Tere has been an obvious surge of great earthquakes with magnitudes ≥ 8.0 during the past decade with great diversity at various aspects 1.
    [Show full text]
  • Liquefaction Limits in Earthquake And
    Floods on Mars Released from Groundwater by Impact Chi-yuen Wang, Michael Manga and Alex Wong Department of Earth and Planetary Science University of California, Berkeley CA 94720 On earth, large earthquakes commonly cause saturated soils to liquefy and streamflow to increase. We suggest that meteoritic impacts on Mars may have repeatedly caused similar liquefaction to enable violent eruption of groundwater. The amount of erupted water may be comparable to that required to produce catastrophic floods and to form outflow channels. Key words: liquefaction, impacts, chaos 1. Introduction Liquefaction frequently occurs on Earth during or immediately after large earthquakes, when saturated soils lose their shear resistance, become fluid-like, and are ejected to the surface, causing lateral spreading of ground and foundering of engineered foundations (e.g., Terzaghi et al., 1996). During the 1964 Alaskan earthquake, for example, ejection of fluidized sediments occurred at distances more than 400 km from the epicenter (Waller, 1968). Increased streamflow is also commonly observed after earthquakes (Montgomery and Manga, 2003). Suggested causes include coseismic liquefaction (Manga et al., 2003), coseismic strain (Muir-Wood and King, 1993), enhanced permeability (Rojstaczer et al., 1995) and rupturing of hydrothermal reservoirs (Wang et al., 2004a). Extensive laboratory and field studies (e.g., Terzaghi et al., 1996) show that saturated soils liquefy during ground shaking as a result of pore-pressure buildup that in turn is due to the compaction of soils in an undrained condition. Furthermore, laboratory experiments (Dobry, 1985; Vucetic, 1994) showed that the threshold of pore-pressure buildup is insensitive to the type of soils (from clays to loose sand) and the environmental conditions.
    [Show full text]